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Abstract 

Gangestad et al. (this issue) recently published alternative analyses of our open data to 

investigate whether women show ovulatory shifts in preferences for men’s bodies. They argue 

that a significant three-way interaction between log-transformed hormones, a muscularity 

component, and women’s relationship status provides evidence for the ovulatory shift 

hypothesis. Their conclusion is opposite to the one we previously reported (Jünger et al., 

2018). Here, we provide evidence that Gangestad et al.’s differing conclusions are 

contaminated by overfitting, clarify reasons for deviating from our preregistration in some 

aspects, discuss the implications of data-dependent re-analysis, and report a multiverse 

analysis which provides evidence that their reported results are not robust. Further, we use the 

current debate to contrast the risk of prematurely concluding a null effect against the risk of 

shielding hypotheses from falsification. Finally, we discuss the benefits and challenges of 

open scientific practices, as contested by Gangestad et al., and conclude with implications for 

future studies. 

 

Keywords: multiverse analysis; ovulatory cycle; mate preferences; steroid hormones; body 
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Recently we1 (Jünger, Kordsmeyer, Gerlach, & Penke, 2018) published a study in Evolution 

and Human Behavior showing that female preferences for cues of male body masculinity do 

not increase with fertility across the natural female ovulatory cycle, no matter if they are 

judged for attractiveness as a sexual or long-term partner. These results contradict the 

ovulatory shift hypothesis (Gangestad et al., 2005). Instead, we found some evidence for a 

general increase of female attraction around ovulation, independent of male body masculinity 

cues, which is in line with a general increase in sexual desire around ovulation (Arslan, 

Schilling, Gerlach, & Penke, in press) and the motivational priority shifts hypothesis (Roney, 

2018). Gangestad and colleagues (this issue; henceforth Gangestad et al.) conducted a 

reanalysis on our open data, and although analyzing the same dataset, their results and 

conclusions differ significantly from ours. We appreciate Gangestad et al.’s effort and 

scrutiny of our data and analyses and welcome the opportunity to correct lapses in how we 

communicated our preregistered analysis. Still, we disagree that their reanalysis should lead to 

substantially different conclusions than the ones we stated. In the following, we clarify 

misrepresentations of our and Gangestad et al.,’s study and preregistration. Next, we provide a 

multiverse analysis, which provides evidence that Gangestad et al.’s results are not robust. We 

then discuss the risks of shielding a hypothesis from falsification and demonstrate the 

importance of open science practices. 

1. Clarifying misrepresentations  

Gangestad et al. critically address a number of points regarding our interpretation of our own 

preregistration, our analytic strategy and our conclusion. To begin with, Gangestad et al. 

criticize substantial parts of our preregistration. At the time we wrote our preregistration back 

in early 2016, preregistrations were not well-established in psychology and clear-cut 

                                                           
1 Please note that we refer to the Jünger et al. (2018) results as “our results”, although Ruben C. Arslan was not a 

co-author on this paper. Further, Julia Jünger’s last name has since changed to Stern. 
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standards were lacking, especially for complex designs such as ours. As a consequence, we 

must admit that some parts of the preregistration were ambiguous and we agree that our 

preregistration left room for analytical flexibility. However, we disagree with their 

interpretation of our preregistration. We directly derived our analytical decisions from the 

wording of the hypotheses we preregistered. In the following, we will contrast our 

interpretation of our preregistration and our analytical decisions against those of Gangestad et 

al., criticise their analytical decisions that they claim to have derived from their 

preregistration, and clarify a potentially misleading reporting of an independent study by 

Marcinkowska and colleagues (2018b). 

1.1. Predictor variables 

1.1.1. Variables that might reflect body masculinity or muscularity 

In our study we investigated cycle shifts in preferences for seven potential cues of male body 

masculinity, including height, testosterone levels, strength, shoulder-chest ratio (SCR), 

shoulder-hip ratio (SHR), upper-torso volume relative to lower torso volume, and upper arm 

circumference. In additional analyses, we tested whether our effects were robust when 

controlling for BMI.  

First, Gangestad et al. criticize our selection of variables and state that we did not offer 

a rationale for picking them. We are happy to expand on this. The stated aim of Jünger et al. 

(2018) was to clarify “whether there are mate preference shifts for masculine male body 

characteristics across the ovulatory cycle” (p. 413), thus conceptually replicating previous 

studies that reported ovulatory cycle shifts for preferences in body height (Pawlowski & 

Jasienka, 2005), sexual dimorphism in body shape (Little, Jones, & Burriss, 2007), and 

muscularity (Gangestad et al., 2007), especially in the light of reported null replications 

(Marcinkowska et al., 2018a; Peters et al., 2009). Note that Gangestad et al. deviate from our 

original article by moving the focus solely to muscularity. All seven male features we 
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preregistered and investigated were directly derived from previous evidence that they are 

sexually dimorphic in human adults and show links to formidability (e.g., Price et al., 2012). 

Detailed justifications including references can be found in the supplementary material (Table 

S1). 

Second, Gangestad et al. point out that the simultaneous testing of all seven predictors 

in a multiple regression is a weak test for the potential effect of their shared variance, which 

undoubtedly exists. Yet we also analyzed a composite score variable, averaging all seven 

masculinity indicators, which did not change the results (see the open script on the Open 

Science Framework, https://osf.io/n4hj6/). Gangestad et al. ignored this additional analysis.  

Instead, Gangestad et al. compute a composite score of only two variables (strength and upper 

arm circumference), selected based on their associations with observer-rated bodily sexual 

attractiveness and dominance (the latter taken from the open data of Kordsmeyer et al., 

20182). Then they factor-analysed all variables and tested the hypotheses with one of the 

resulting factors as a robustness check. However, the composite score of strength and upper 

arm circumference, as used in the main analyses by Gangestad et al., includes only two out of 

seven preregistered masculinity predictors. Thus, we want to emphasize here that the lack of 

preference shifts for five out of seven body masculinity cues we preregistered seems 

uncontroversial and that Gangestad et al. shifted the focus to only two of them.  

Third, Gangestad et al. claim that we did not properly control for confounding effects 

of BMI on preferences, because we controlled for a main effect of BMI, not an interaction 

effect. We agree that controlling for an interaction effect would have been the better way to 

control for confounds of preference shifts and thank Gangestad et al. for drawing attention to 

this issue. However, when we control for an interaction effect of BMI and cycle phase, the 

                                                           
2 We would like to note that the bodily dominance ratings from Kordsmeyer et al. (2018) were collected after the 

Jünger et al. (2018) manuscript had already been submitted for publication, thus it never occurred to us to 

incorporate them into our original analyses, which would also have been a deviation from our preregistration. 

https://osf.io/n4hj6/
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estimated effects remain virtually identical and non-significant. Details can be found in the 

supplementary material (Table S2). 

1.1.2. Cycle phase versus log-transformed hormones 

Further, Gangestad et al. criticize our sampling procedure and the decision to use cycle 

phase as our main predictor variable, as a number of fertile phase sessions might have been 

missclassified. Therefore, they claim that log-transformed hormone values would have been 

the better choice (section 4.12, Gangestad et al., this issue). First, cycle phase was clearly 

preregistered as our main predictor variable, as it was part of all of our hypotheses3, whereas 

estradiol and progesterone were just mentioned in the mediator hypothesis. However, we used 

hormone levels for testing the mediation of our main effect, but not as mediators for the 

interaction effect, as we did not detect a significant interaction effect to be mediated (Baron & 

Kenny, 1986) and stopping the mediation test at this junction results in tighter error control. 

However, Gangestad et al. do not test a mediator effect either, as they simply regress the 

mediator on the outcome variable. Second, Gangestad et al. ignore our robustness analyses. 

More precisely, as a matter of fact, we excluded all of the potentially missampled participants, 

based on a combination of cycle regularity and LH test significance in our robustness checks. 

Thus, we redid all our analyses using this sample of n = 112 women. Whereas it is true that a 

positive LH test alone does not necessarily indicate ovulation, using it together with a follow-

up of the next menstrual onset4 is probably one of the most reliable procedures we have to 

characterize the fertile phase (Fales, Gildersleeve, & Haselton, 2014; Gangestad et al., 2016). 

                                                           
3 Just to give one example for a preregistered hypothesis tested in our study, the exact wording was “Moderation: 

When evaluating men as potential short-term partners based on their bodies, women in their fertile window, 

compared to their luteal phase, report increased attraction to men with higher baseline testosterone level”. 

Hypotheses expecting an interaction effect were introduced with the word “moderation”, hypotheses expecting a 

mediator effect of hormones were introduced with the word “mediation”. The preregistration is publicily 

available at https://osf.io/egjwv/ 
4 Also when ovulation is delayed and thus probably a second LH peak was undetected, the cycle must have been 

longer and characterized as irregular. Another reason for missclassification of cycle phase would be an 

anovulatory cycle, which would either lead to no positive LH test or, again, to a rather long, irregular cycle 

length. 

https://osf.io/egjwv/
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In this subsample, the reported main effect of cycle phase became stronger, but the interaction 

effects that would be in favor of the ovulatory shift hypothesis still remained non-significant 

(Jünger et al., 2018, section 4.6), a fact that was not acknowledged by Gangestad et al. 

Gangestad et al. claim that measures of salivary hormone levels are better predictors 

than a cycle phase variable comprised of LH tests and actual cycle length based on the 

reasonable assumption that estradiol and progesterone causally mediate the effects of cycle 

phase. However, they ignore the fact that we cannot measure salivary steroids with the same 

accuracy as LH surges. Crucially, measurement error can reverse which predictor is more 

likely to show an association. Indeed, since the liquid chromatography–mass spectrometry 

(LCMS) analysis of the estradiol levels only detected 22% of all possible values, the samples 

were reanalysed using an immunoassay kit (Jünger et al., 2018, p. 416). Interestingly, the 

correlation between LCMS analyses and the immunoassay data was r = .06, which made us 

doubt the reliability of the measures and underlined our preregistered decision to focus on 

cycle phase as a primary predictor. In line with this, Schultheiss, Dlugash and Mehta (2019) 

argue that estradiol and progesterone usually have extremely low concentrations in saliva, and 

are thus challenging to assess, even with LCMS analyses. They further mention that serum 

estradiol, when in a low range comparable to what is usually observed in saliva, can lead to 

immunoassay and LCMS outcomes that show unacceptably low convergence (r = .32, as 

reported in Huhtaniemi et al., 2012). Until recently the reliability of salivary hormone 

assessments might not have received much attention in the literature, but claiming that 

salivary hormones are better variables to investigate ovulatory cycle shifts compared to LH 

validated cycle phase with follow-up to the next menstrual onset requires ignoring the critical 

issue of measurement error. There is good evidence that LH tests can predict ovulation with 

high precision when compared to ultrasound-determined day of ovulation, which is usually 
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regarded as the gold standard (e.g. Blake, Dixson, O’Dean, & Denson, 2016), and much less 

evidence that salivary estradiol and progesterogen measures can do so.  

Furthermore, even when deciding to use hormone values as a predictor rather than 

cycle phase, there are different ways to do so. Gangestad et al. decided to log-transform 

hormone values for certain theoretical reasons (which are debatable, e.g., Higham, 2016; 

Higham, this issue). In contrast, we simply centered hormone values within women and 

scaled them afterwards, which dealt with skewness (as shown in our Figure S1, and as 

previously done in other hormone-based cycle shift studies, e.g., by Jones et al., 2018; Roney 

& Simmons, 2016). A third possibility would be to use untransformed, raw hormone levels 

(as e.g., done by Marcinkowska et al., 2018a). All three approaches might have their 

advantages or disadvantages, so it is indeed difficult to decide what the best way is to deal 

with hormone values. Interestingly, when computing Gangestad et al.’s models using either 

scaled hormone values (as we did in our study) or untransformed hormone values instead of 

log-transformed values, the two-way interactions between E/P and their strength/muscularity 

component (S/M) as well as the three-way interactions between E/P, S/M and relationship 

status they report on become non-significant (all ps > .24; see Tables S3 and S4). Again, this 

fragility of their results was not acknowledged by Gangestad et alia.  

1.1.3. Three-way interaction with relationship status 

Gangestad et al. criticize that we did not consider a three-way interaction effect with 

relationship status, although we preregistered it. It is correct that we did not report such an 

interaction. We decided not to report it as the simpler two-way interactions between cycle 

phase and masculinity cues (either entered individually, together, or as a composite score), 

were non-significant and test power was likely too low to detect a more complex three-way 

interaction effect (Mathieu, Aguinis, Culpepper & Chen, 2012; see also Section 1.2 below). 

We regret this omission as it is indeed a deviation from our preregistration, but saw it as 
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permissible at the time because it led to unaltered conclusions (see Table S5). Even in 

Gangestad et al.’s reanalysis, the two-way interactions between S/M and ln(E/P), or S/M and 

ln(E) or ln(P), printed bold in their Tables 4, 5 and 6, because they are “primary effects of 

interest”, are almost all non-significant. Importantly, the majority of effects even point in a 

negative direction, opposite of the expected effect. Additionally, Gangestad et al.’s analyses 

of the three-way interaction of cycle phase x S/M x relationship status do not result in a 

significant effect (see their Table 9). The three-way interaction effect they focus on is a 

different one: “We include the ln(E/P) x Strength/Muscularity x Relationship Status 

interaction. This hypothesis had been specified in Jünger et al.’s pre-registration but was not 

tested in their analysis” (Gangestad et al., p. 6). This is not true: we preregistered a three-way 

interaction involving cycle phase, relationship status and the masculine body cues. Neither a 

Strength/Muscularity composite or factor, nor the three-way interaction involving hormones, 

nor the log-transformation of E/P was part of our preregistration. Gangestad et al. make it 

seem as if we file-drawered results that ran counter to our favored conclusion, but we never 

preregistered, nor ran any of the analyses that yielded significant findings in Gangestad et al. 

(i.e., mainly the three-way interaction between ln(E/P), S/M and relationship status, 

controlling for BMI, on sexual attractiveness ratings). 

In addition, we also disagree that their reported analysis on the effect of the three-way 

interaction between ln(E/P), S/M and relationship status, controlling for BMI, on sexual 

attractiveness ratings maps onto the theoretical predictions we made in our paper.  In our 

preregistration, we predicted that cycle shifts in preferences are larger for partnered women 

than for single women (Hypothesis 7, p. 6). A simple p-value for a three-way interaction does 

not answer this question; the interaction has to be unpacked. When doing so by analyzing the 

two-way interactions between log-transformed hormones and the muscularity composite 

score, Gangestad et al. report that the effect is positive but non-significant for partnered 
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women, whereas it is negative and significant for singles (see their Table 6). Both effects have 

the same size of an unstandardized model estimate (0.03 on an 11-point Likert scale), but in 

opposite directions. Based on the theory, we would expect a strong interaction in partnered 

women, and an attenuated or zero interaction in single women, not the cross-over effect 

reported by Gangestad et al. (as Gangestad et al. acknowledge). 

Furthermore, even for Gangestad et al.’s preferred main result the effect size is not 

very impressive. Gangestad et al.’s Figure 1 shows model-based estimates of the associations 

at the 5th and 95th percentile of S/M. Even when choosing such extreme values for the 

moderator, the interaction is barely apparent in their graph. Below, we show a slightly 

different graph (see Figure 1) of the same model in which we display model-based estimates 

of the effect of the S/M component by relationship status and average versus high log(E/P). 

We superimpose (in gray) the model-based differences between women in the strength of the 

association (random slopes). We think this graph supports our view that there is only little 

variation between and within women in the preference for S/M. Even using Gangestad et al.'s 

preferred model, it seems clear that the purported moderators (ln(E/P) and relationship status) 

explain little of this variation between and within women. Although Gangestad et al. are 

correct in saying that our reported Spearman rank correlation does not preclude cycle changes 

in preferences, we think the graph rather supports our interpretation. 
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Figure 1. This spaghetti plot shows that only a very small amount of the variation in slopes between 

women (gray lines) is explained by the moderators ln E/P and relationship status. For the most part, 

women consistently prefer men who are higher in muscularity (Gangestad et al.’s S/M component). 

The slopes are extracted from the fitted multilevel model from Gangestad et al.’s Table 3 and are 

estimated adjusted for BMI. The mean levels in this marginal effect plot reflect an average BMI man.  

 

1.2. Gangestad et al.'s preregistration 

Gangestad et al. want to show that their analyses are not data-dependent and thus comparable 

in informational value to our preregistered analyses. To substantiate this, they base some of 

the analytic decisions they aply to our data on a preregistration for a separate, but somewhat 

similar study of theirs that they uploaded to the Open Science Framework on 18 April 2018 

(https://osf.io/4x7ub/). This is important, because it could potentially ensure that their analytic 

decisions were not biased by seeing our results. However, clearly the decision to re-analyse 

our data at all was made after seeing our study and our results, as was the decision to frame 
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the re-analysis in terms of parts of their own preregistration. The impact of such a case of 

potential partial data-dependence is hard to predict and it is not clear how well overfitting is 

still guarded against (see also Jones, Marcinkowska & DeBruine, this issue). More 

importantly, the way they modelled the three-way interaction of log-transformed E/P x 

muscularity component x relationship status, controlling for BMI, on sexual attractiveness 

ratings, which is the main analyses they built their reanalysis on, is actually not even part of 

Gangestad et al.’s preregistration for their separate study, as their study is based on morphed 

stimuli for which a Strength/Muscularity component or factor cannot be computed, nor was a 

BMI control necessary or planned for their morphed stimuli. Furthermore, in their 

preregistration, they explicitly describe a two-way interaction as their key hypothesis, as they 

aim to primarily recruit women in relationships, not singles. Thus, contrary to their claim, the 

exact analyses they did were never preregistered by anyone.  

Moreover, we want to draw attention to the fact that in their preregistration, Gangestad 

et al. provide a power simulation, which is laudable. This power simulation indicates that, 

with N = 250 women, they have a test power of .94 to detect a two-way interaction effect of d 

= .35. Transferred to the analyses they report in their reanalyses (N = 157 women, a three-way 

interaction effect and a much smaller effect size), their analyses seems heavily underpowered 

to find the effect they are reporting. This increases the risk that effect sizes are overestimated, 

thus making their reproducibility questionable (e.g., Button et al., 2013). At the very least, the 

three-way interaction they report requires direct replication in a well-powered study before 

any weight can be put on it. 

In summary, Gangestad et al. refer to their own preregistration to lend credence to the 

idea that their re-analysis of our data was just as unbiased by seeing the data as were ours. 

This is misleading, because important analytic decisions, crucial for the pattern they report, 

were made after seeing our results and data. At best, a subset of decisions was constrained by 
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their preregistration. As it stands, their analyses and reporting gave Gangestad et al. much 

leeway to pick and choose which p-values to focus on. Combined with the lower power to 

detect realistic effect sizes for moderators according to their own power analysis, their results 

are probably not robust. 

1.3. Gangestad et al.’s “independent demonstration”: misrepresenting Marcinkowska et 

al.’s (2018b) results 

In section 5.7 of their reanalysis, Gangestad et al. report an effect of Marcinkowska et al.’s 

(2018b) study. Here, they state that Marcinkowska et al. (2018b) report a similar three-way 

interaction as they find, claiming that “these results give additional reason to think that the 

interaction effect we report is robust” (p. 14). Note that this is the same dataset in which 

Marcinkowska and colleagues did not observe any compelling evidence for any hormonally 

influenced within-woman preference shifts across the cycle for facial masculinity, facial 

symmetry or body masculinity (reported in a different article, Marcinkowska et al., 2018a). 

Marcinkowska et al. (2018b) mainly focus on between-women effects, but also report a 

number of different robustness checks for within-women hormone effects, all finding no 

compelling evidence for preference shifts across the cycle or tracking changes in within-

woman hormone levels. There is one exception. In Table S24 (in their supplementary 

material) they report a significant interaction effect between daily progesterone levels and 

relationship status on preferences for masculine bodies (p = .04). They further report that 

simple effect analyses suggest that this effect is positive and only significant for singles (p = 

.01), not for paired participants (p = .96). Note that this effect thus runs in the exact opposite 

direction of the effect Gangestad et al. report for our dataset. Thus, the one singled-out 

significant result from Marcinkowska et al.’s (2018b) extensive supplementary robustness 

checks (31 Tables) does not support the robustness of the three-way-interaction Gangestad et 

al. found in our data.  
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2. Using multiverse analysis to increase transparency  

Above, we hinted that changing almost any single analytical decison in Gangestad et al.’s 

analysis leads to non-significant results. But which analytical decisions are the right ones? 

That is probably impossible to tell, because many potential decisions are plausible and several 

may even be equally right in the sense that they provide approximations of the construct of 

interest. The concept of the garden of forking paths (Gelman & Loken, 2013) explains how 

researcher’s decisions can lead to a multiple comparisons problem via considering a large 

number of potentially plausible analytical decisions. Thus, it explains how our results can 

differ from those reported by Gangestad et al. despite analyzing the exact same data. In their 

Table 2, they describe the key differences between their and our analytical choices. Here, we 

take the opportunity to translate these differences to possible and plausible decisions that have 

to be made when walking through the garden of forking paths. The directly derived choices 

from these differences are displayed in Table 1. 

Table 1 

Differences in Gangestad et al.’s and our analytical choices that lead to different paths in the 

garden of forking paths 

1. Predictor 1: Assessment of fertility 

a) Cycle phase whole dataset (N = 157) 

b) Cycle phase LH validated dataset (n = 112) 

c) Hormone levels: log-transformed hormones 

d) Hormone levels: mean-centered and scaled hormones 

e) Hormone levels: raw hormone levels 

2. If fertility assessed by hormone levels, how are they entered? 

a) Estradiol-to-progesterone ratio 

b) Estradiol and progesterone separately 

3. Predictor 2: masculinity/ muscularity cue 

a) Factor analysis, resulting in 3 factors 

b) „Empicirally vetted“ strength / upper arm circumference composite 

c) Simultaneous entry of all 7 variables 

d) Composite score of all 7 variables 

e) Separate models for all 7 variables 

4. Control variable 

a) Controlling for an interaction effect of BMI 

b) Not adding a control variable 

5. Two-way vs. Three-way interaction 



15 
 

a) Three-way interaction with relationship status 

b) Two-way interaction without relationship status 

 

Figure 2 shows a garden of forking paths: it showcases the possible analytical 

decisions regarding our dataset that are displayed in Table 1. Please note that this graph only 

shows possible plausible decisions after already deciding for cycle phase as a predictor 

variable, which are approximately 1/4th of plausible analytical decisions we focus on here. 

The reason we did not display the decision for hormone variables here is that the figure 

involving all decisions was simply too big to be printed (and would require at least A2 

format). The full garden of forking paths can be found in the supplementary material (Figure 

S1). 

 

Figure 2. A graphical representation of a garden of forking paths, illustrating possible and 

plausible analytical decisions after deciding for cycle phase as a predictor for cycle shifts in 
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preferences. Note that this figure only displays approximately 1/4th of the possible and 

plausible decisions. The full garden of forking paths can be found in the supplementary 

material (Figure S1). 

 

Our preregistration did not specify statistical models. This can be seen as allowing 

ourselves many researcher degrees of freedom, making it easier to reveal foregone 

conclusions. Of course, we believe we tested models that were reasonably based on the 

literature and did not try to engineer a particular conclusion. Moreover, we had several 

robustness checks in our paper (e.g., repeating the analyses with n = 112 women with LH 

validated fertile phase, using separate models for all cues, and generating a composite score 

averaging all cues), thus already protecting against arbitrary analytical decisions, more so than 

is usually done in the literature. However, our private beliefs and internal best practices can 

hardly stand up to the level of scrutiny in Gangestad et al.’s critical commentary. Therefore, 

we decided to run a multiverse analysis (Steegen, Tuerlinckx, Gelman, & Vanpaemel, 2016) 

to investigate whether the null results for preference shifts we previously reported (Jünger et 

al., 2018) or Gangestad et al.’s reported effects are more robust (or whether neither are). A 

multiverse analysis entails making all the different analytical decisions that would be possible 

and plausible for a given hypothesis and then running all the respective statistical tests 

(Steegen et al., 2016). The resulting p-values of all these analyses are then displayed in a 

single histogram. More precisely, we investigate whether choosing a different path during the 

data transformation or analytical decision process has a significant impact on the results and 

how many of the different analyses do, indeed, lead to statistically significant results. Thus the 

resulting large set of reasonable scenarios will show how conclusions can change because of 

arbitrary analytical decisions.  

How do we construct such a multiverse of decisions? After all, there already are 

almost infinite possible decisions about what counts as an outlier to exclude. To construct this 
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multiverse in a principled manner, we focused on the decisions where we and Gangestad at al. 

took different turns in the garden of forking paths that were reported as “primary” differences 

in their Table 2. This does not, by any means, exhaust all plausible possibilities. One could 

easily argue that, for example, including or excluding between-women hormone effects, other 

control variables (such as testosterone levels), different random slope specifications, and so 

on might be additional plausible decisions. However, all the different decisions that they refer 

to, shown in Table 1 and Figure S1, already led to 416 different models and 1,254 p-values of 

interest5. We computed all these different models. Data and analysis script for the multiverse 

analysis is publicly available (https://osf.io/6afhg/). 

As displayed in Figure 3, the results suggest that any cycle shifts in mate preferences 

for men’s bodies reported in Gangestad et al. might not be robust: Out of 1,254 resulting p-

values, 31 were significant (<.05), thus 2.47 percent. One could think that these significant p-

values all stem from small variations of the model Gangestad et al. report and do, thus, 

indicate robustness of their results. This is not the case. Rather, they stem from very different 

paths and about half of them even point in the direction opposite of what is predicted by the 

ovulatory shift hypothesis. Details can be found in Table S6. 

Further, we want to stress that p-values, by their nature, are distributed equally (as 

they are equally likely) when the null hypothesis is true. If an effect exists, the distribution of 

significant p-values should be right-skewed, even when the effect is small and test power to 

detect it is low (Simonsohn, Nelson, & Simmons, 2014). However, the rate of 2.47% 

significant p-values from our analysis is even below the rate of 5% significant p-values one 

would expect by chance as false positives. Furthermore, the overall distribution is rather 

uniform, whereas the significant p-values <.05 are left-skewed, not right-skewed as would be 

                                                           
5 Note that in most models more than one p-value is of interest: Models with E and P separately entered have at 

least two, models with the seven predictors entered simultaneously have at least seven and models testing a 

three-way interaction also contain a p-value for a two-way interaction. 
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expected for a robust effect. Note that the effect Gangestad et al. report in their main analysis 

(p = .019, see their Table 4) is the smallest p-value in our multiverse analysis (see Table S6). 

How come the effect Gangestad et al. reported is framed as robust by them? Indeed, most of 

the models they report are miniscule deviations from their analytical decisions (e.g. including 

third variables such as testosterone or age as controls, which neither we nor they ever 

discussed as central), but do not really reflect a difference in the primary analytical decisions 

as displayed in their Table 2, which we combined in our multiverse analysis. 

Figure 3. Histogram displaying the frequency of the 1,254 p-values of interest resulting from 

the multiverse analysis. Note that the red dotted line is at p = .05 and thus separates nominally 

significant results on the left from nominally non-significant results on the right. 
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3. The problem of unfalsifiability 

The good genes ovulatory shift hypothesis (proposed by Gangestad et al., 2005) has been 

tested in quite a number of studies (meta-analysed in Gildersleeve, Haselton & Fales, 2014, 

and Wood et al., 2014). As stated in Gildersleeve, Haselton and Fales (2014), the ovulatory 

shift hypothesis makes three directly testable predictions: First, when fertile, women should 

be more sexually attracted to men’s characteristics that reflect good genes, compared to their 

low-fertility days. Second, cycle shifts in women’s mate preferences for good genes 

characteristics should be absent or only weakly present when evaluating men for long-term 

relationships. Third, when fertile, women should not be sexually attracted to men’s 

characteristics that reflect a higher suitability as a long-term partner, compared to their low-

fertility days. 

Since it is not possible to test the third prediction here (as there is no clear hypothesis 

regarding which characteristics in men’s bodies should reflect a higher suitability as a long-

term partner), we will focus on the other two predictions. Regarding the first prediction, we 

did not find compelling evidence that women’s mate preferences vary across the cycle (or on 

high-fertility compared to low-fertility days). Women’s cycle phase did not, neither in our 

original study, nor in Gangestad et al.’s reanalysis, nor in our multiverse analysis, interact 

significantly with any of the assumed indicators of good genes (i.e., cues of body 

masculinity/muscularity) to predict sexual attractiveness ratings. When choosing hormones as 

a predictor variable rather than cycle phase, the two-way interaction between hormone levels 

and the purported indicators of good genes were also non-significant. However, Gangestad et 

al. reported a significant three-way interaction with women’s relationship status. Importantly, 

this interaction effect was only significant when log-transforming hormone levels and in 

combination with other analytical decisions, e.g., computing a certain composite score and 

controlling for BMI. When unpacking this three-way interaction, Gangestad et al. report that 
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the effect was only significant for singles, not for partnered women, and in the opposite 

direction as predicted by the ovulatory shift hypothesis (though it was in the predicted 

direction for partnered women). Still, our multiverse analysis suggests the effects reported by 

Gangestad et al. are not robust. 

Regarding the second prediction, our and Gangestad et al.’s results point in the same 

direction: results for long-term attractiveness do not differ from results for sexual 

attractiveness. Indeed, the effect is absent when evaluating cycle phase as a predictor of long-

term attractiveness, but given that the same is true for sexual attractiveness, this result cannot 

be seen as in favor of the ovulatory shift hypothesis. Moreover, for those log-transformed 

hormone analyses for which Gangestad et al. found significant effects for sexual 

attractiveness, the same effects were significant for long-term attractiveness ratings (see their 

Table S20). They fail to mention this. This raises the question of how their results can be in 

favor of their hypothesis, if results for sexual and long-term attractiveness are virtually 

identical. However, Gangestad et al. might argue that there are no long-term attractiveness 

cues in bodies that are independent from sexual attractivess cues. 

Let us evaluate the evidence. Gangestad et al. seem to agree with us that there are no 

ovulatory preference shifts on individual cues to body masculinity or sexual dimorphism, such 

as height, contradicting some earlier studies (Little, Jones, & Burriss, 2007; Pawlowski & 

Jasienka, 2005). When the focus is shifted to upper-body muscularity, we begin to disagree. 

In our analyses we find no evidence for preference shifts at all. Gangestad et al. find 

significant effects for a set of analyses with very specific assumptions about how to construct 

the muscularity variable, what to control for, how to conceptualize ovulation (on a very 

proximate level), how to transform variables, and how to specify the multilevel model. 

Contrary to their claims, most of these analytic decisions are not constrained by either their or 

our preregistration. Gangestad et al. give extensive justifications for each of their analytic 
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decisions, but our multiverse analysis makes it clear that virtually all other reasonable sets of 

analytic decisions do not lead to significant results. Of course it might be the case that 

Gangestad et al. have indeed identified the most ideal set of analytic decisions, but then it is 

still peculiar that their significant effect is so fragile that it immediately breaks down under 

most reasonable variations of the analytic decision, especially given that our data provide 

more statistical power than most previous studies. For these reasons, we do not think that our 

data and results, nor the results reported by Gangestad et al., are in favor of the ovulatory shift 

hypothesis. Indeed, the null results of our study are in line with other, recently published, 

large-scale replication studies investigating cycle shifts in preferences for masculine faces 

(Dixson et al., 2018; Jones et al., 2018; Marcinkowska et al., 2018a), bodies (Marcinkowska 

et al., 2018a; van Stein et al., 2019), voices (Jünger et al., 2018b) and behaviors (Stern, 

Gerlach, & Penke, 2019). Drawing null conclusions from just our data would be premature. 

However, recent work clearly challenges previous evidence for the ovulatory shift hypothesis, 

especially because recent studies used more rigorous methods and designs than previous 

reports of significant effects (for an overview see Jones, Hahn, & DeBruine, 2019). This 

clearly shifts the balance to a need for more positive evidence in order to retain the good 

genes ovulatory shift hypothesis. 

But even if the three-way interaction between hormones, upper-body muscularity and 

relationship status on sexual attractiveness ratings was robust, that does not imply that it is 

practically meaningful. We agree with Gangestad et al. that just focussing on p-values and 

setting a rather arbitrary cut-off (e.g., p < .05) to decide about the existence of an effect (what 

they call “simple up-down thinking”, p. 14) is problematic for several reasons already 

outlined by Gangestad et alia. We agree that it is also important to include effect sizes. Thus, 

we encouraged Gangestad et al. during the review process to specify the smallest effect size 

of interest (SESOI; Anvari & Lakens, 2019 ) that would still be consistent with an adaptive 
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evolutionary explanation, and hence in favor of the hypothesis. In section 5.4. Gangestad et al. 

state that “the current data do not allow one to pinpoint effect sizes with sufficient precision to 

judge their theoretical meaningfulness or practical impact” (p. 13). The reported 

unstandardized effect size of their three-way interaction was 0.05 on an eleven-point Likert 

scale. Although we agree that “headless digital figures” (p. 34) might not have the same effect 

as real-life male bodies, this statement, together with the previously raised issues, shields their 

hypothesis from falsification. If we cannot falsify the hypothesis based on p-values or effect 

sizes, or the overall evidence provided by recent, rigorous studies, how could we ever do so? 

If it is not possible to falsify a hypothesis, is it even possible to confirm it?  

We agree with Gangestad et al. that null conclusions can discourage future research on 

a topic. We agree that one should not make strong conclusions in favor of the null hypothesis 

too early, especially not based on a single study. We agree that more data is needed from 

independent, highly powered, preferably preregistered, replication studies employing strong 

methods and designs. Regarding the current evidence, we are happy to conclude uncertainty 

about the effect. However, it should be noted that most of the original significant findings in 

the earlier literature come from underpowered studies, making them at least in need of 

replication. All recent high-powered replication studies did not find compelling evidence for 

the effect. Statistical tests of more complex hypotheses, like the moderation by relationship 

status, were probably underpowered in all existing studies so far. Hence, we encourage 

researchers to collect more data on this research question. However, we also urge researchers 

to specify testable, falsifiable hypotheses and standards for falsification, as unfalsifiable 

hypotheses impede scientific progress, the search for alternative hypotheses, and thus the 

accumulation of knowledge. 

4. Showcase for the importance and helpfulness of Open Science 
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Gangestad et al. are concerned that studies using open scientific practices might be 

prematurely evaluated positively without appropriate scrutiny (p. 37). While we take this 

concern seriously, we also think the current exchange clearly demonstrates the advantages of 

open science, as it would have not been at all possible without embracing open science 

practices. The more researchers publicly offer about the planning and hypothesis of a study 

(in the form of a preregistration or registered report), the data, analytic code, and material, the 

better the study can be critically checked and independently evaluated. This can also motivate 

researchers to increase the quality of their work. We agree with Gangestad et al. that 

preregistration does not ensure appropriate testing of hypotheses or meaningful results. It 

certainly is also not in itself a guarantee for well-conducted research or high data quality. 

Most preregistrations are, indeed, improvable, including ours for the current study. We clearly 

learned over the last few years that writing a good, precise preregistration is hard, especially 

for complex research designs and hypotheses. Still every little bit of added transparency helps, 

as every bit reduces researcher degrees of freedom. In garden of forking path situations, the 

main thing we want to avoid is choosing the path based on the outcome, i.e., whether a 

hypothesis is supported or falsified. Therefore, preregistration prevents a number of 

questionable research practices. In addition, we think that review before results, as in the 

increasingly popular format of Registered Reports (Chambers, 2013), can clearly improve 

scientific practice. Importantly, as many authors in the open science literature have pointed 

out, this does not negate the value of exploratory research. Exploration is often useful and 

necessary, but to avoid misleading ourselves, strategies to prevent overfitting, including 

replication, controlling for multiple testing, or dividing the data into training and test sets are 

very important. Further, transparency is crucial: exploratory analyses should be framed as 

exploratory. Reporting selected p-values from exploratory research, on the other hand, has 

more potential to mislead than to enlighten. 
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This valuable post-publication discussion of our work sheds light on many 

underdiscussed decisions in data analysis and scientific practice. Although we ultimately 

disagree that Gangestad et al.’s re-evaluation of our work leads to substantially different 

conclusions, we are glad that open data and preregistration enabled this discussion. 

Importantly, many of the researchers of recently published studies investigating ovulatory 

cycle shifts (Dixson et al., 2018; Jones et al., 2018; Jünger et al., 2018a; 2018b; Stern et al., 

2019) opened their data, allowing for in-depth evaluations of the conducted analyses and the 

conclusions put forward, as shown in the current debate. However, all studies for which open 

data were provided reported no compelling evidence for the ovulatory shift hypothesis. In 

sharp contrast, none of the studies reporting evidence in favor of the hypothesis opened their 

data, making it impossible to evaluate whether any previously reported evidence is, indeed, 

robust. Hence, we not only encourage authors of future studies, but also of previous studies to 

open their data and analytic scripts, as we think this is the only way to fairly evaluate the 

whole picture. We need to subject the literature that provided support for the effects on which 

this discussion is based to the same level of scrutiny applied here to make progress. We agree 

that open science practices alone are not an indicator of research quality, but all else being 

equal, a more transparent study has a higher potential to make a lasting contribution to our 

knowledge.  

We are happy that our study shows both the benefits and the challenges of open 

science. We think that this process clearly demonstrates the importance of transparency and 

we hope that it helps to make future science more open and reproducible. 

Data availability 

Open data, open analysis script and the supplementary material are publicly available at 

https://osf.io/6afhg/ 

  

https://osf.io/6afhg/
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