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Abstract 16 

As is the case for humans, it has long been thought that nonhuman primates can be described 17 

in terms of their personality. Scientific observations that support this view include the 18 

presence of individual differences in social behavior and that they are relatively stable 19 

throughout life. Consequently, individuals are constrained in their behavioral flexibility when 20 

dealing with various environmental challenges. Still, the variation among individuals during 21 

development suggests that the environment influences how primates behave. Research in 22 

fields including psychology, behavior genetics, and behavioral ecology have tried to identify 23 

the mechanisms responsible for this interplay of behavioral stability and change. In this 24 

review we integrate theories and findings from research on humans and nonhuman primates 25 

that highlight how and to what extent genetic and environmental contributions shape the 26 

development of social behavior. To do so we first provide an overview and define what is 27 

meant by mean level and rank-order change of behavior. We then review explanations of 28 

behavioral stability and change, focusing on the role of genetic effects, how environmental 29 

circumstances influence behavioral variation throughout development, and how genetic and 30 

environmental influences may interact to produce this variation. Finally, we point to future 31 

research directions that could help us to further understand the development of social behavior 32 

in primates from within a behavior genetics framework. 33 
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Introduction 38 

Teasing, helping, playing, working, learning – within our circle of acquaintances, for many 39 

social behaviors, we can think of individuals that fall somewhere between one or the other 40 

extreme of variation in any given behavior. Apparently, social behavior and social 41 

relationships among humans are influenced by individual characteristics. Research from the 42 

last four decades has shown that this applies equally to our closest relatives, the nonhuman 43 

primates (henceforth “NHPs”). But how flexible are these individual characteristics? Where 44 

do they come from? And can they be changed? In this review we elaborate on the 45 

development of individual differences in behavior by comparing findings on humans and 46 

NHPs with a focus on the genetic and environmental forces that influence development.  47 

In NHP personality research, the data underlying the quantification of individual differences 48 

typically stems either from questionnaires, completed by people with good knowledge of the 49 

individual animals, counted behavioral observations, or individuals’ reactions to behavioral 50 

tests, where subjects encounter, for example, a setup containing novel objects or food items. 51 

Usually a variety of different behaviors are assessed, the correlations among behaviors are 52 

calculated and behaviors are grouped into summarizing dimensions using statistical 53 

techniques as factor analysis or principal component analysis. In humans, the investigation of 54 

such dimensions led to the formulation of the Five-Factor Model of human personality 55 

(Digman 1990), where differences among people can be summarized along the dimensions 56 

extraversion, agreeableness, conscientiousness, openness to experience, and neuroticism. The 57 

Five-Factor Model often serves as a reference point in NHP studies (see e.g. King and 58 

Figueredo 1997; Weiss et al. 2015) and analogues or variations of these factors have been 59 

found to a varying extent in different NHP species (Weiss 2017a).  60 

The history of animal personality research and the different approaches used, whether by 61 

behavioral ecologists or comparative psychologists, have been reviewed elsewhere (Gosling 62 
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2001; Réale et al. 2007; Uher 2008; Koski 2011; Carter et al. 2013; Sih et al. 2015; Roche et 63 

al. 2016; Weiss 2017b). As such, we will not rehash this literature. Instead, we will focus on 64 

the development of behavioral variation among individuals. First, we will review the current 65 

knowledge about stability of behavioral differences on a phenotypic level and then proceed to 66 

a more detailed overview of the genetic and environmental contributions to behavioral 67 

stability and change. We hereby will follow the broad conceptual separation common to 68 

research in behavior genetics. Hence by “genetic effects” we refer to behavioral variation due 69 

to differences in the sequence of the DNA of individuals and by “environmental effects” we 70 

refer to all other influences affecting behavioral variation that are not caused by variation in 71 

the individuals’ DNA. Towards the end of our review we will also look at the interplay 72 

between genetic and environmental effects. The review will focus on findings from NHPs but 73 

will be complemented by findings from the human literature where appropriate, that is, if it 74 

provides additional insight. 75 

Phenotypic stability over the lifetime 76 

Do aggressive children grow up to be aggressive adults? To answer this and similar questions, 77 

we must distinguish between two types of behavioral stability or change. The first is an age-78 

related metric called mean-level change, which refers to differences in the mean expression of 79 

a behavioral phenotype at different points in development. Mean-level change can be 80 

quantified with regression analysis where age (or different developmental stages, e.g., being 81 

an infant, juvenile, adult, etc.) is included as predictor of behavioral variation. Ideally, mean-82 

level change is studied in a longitudinal design, with repeated measurements taken from the 83 

same individuals over time. The second is rank-order change, which is quantified by the 84 

magnitude of relative changes in behavior that occur among individuals within a population. 85 

It is independent of mean-level changes in absolute behavior. An example of a situation where 86 

there is little to no rank-order change would be if children who are highly aggressive relative 87 
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to their age peers become adults who are highly aggressive relative to their age peers. Rank-88 

order stability (or change) of behavior may be quantified by two techniques. The first involves 89 

conducting a simple correlation among behavioral measurements from two time points. The 90 

second involves computing the repeatability coefficient, which is an intraclass correlation that 91 

is based on multiple measures per individual and which describes the proportion of total 92 

behavioral variance due to differences between individuals (Boake 1989; Nakagawa and 93 

Schielzeth 2010). If the variance within individuals (between different measurements) is zero, 94 

then repeatability equals one. If the total behavioral variance is solely due to variation within 95 

individuals, then repeatability equals zero. We illustrated the difference between mean-level 96 

and rank-order stability in Fig. 1. 97 

 98 

Mean-Level Change 99 

 100 

Knowledge of lifetime age effects on mean-level change in NHP personality stems especially 101 

from a study by King and colleagues (2008). They used cross-sectional data from 102 

chimpanzees that were divided into five age groups and found age-related differences in terms 103 

of lower extraversion and openness to experience scores, and higher agreeableness and 104 

conscientiousness scores, in older individuals. These results are corroborated by behavioral 105 

measurements from chimpanzees, where boldness and exploration tendency, which are related 106 

in their content to extraversion and openness, respectively, also appear to decline with age 107 

(Massen et al. 2013). Such a pattern could also be partly replicated in and transferred to 108 

orangutans by Weiss and King (2015), with the exception that in this species agreeableness is 109 

lower in older subjects. In common marmosets, females also tend to become less agreeable 110 

with increasing age, while both males and females become less inquisitive (Koski et al. 2017). 111 

The same pattern applies to older white-faced capuchin monkeys who are less agreeable and 112 

less open to new experiences as well (Manson and Perry 2013). So, although individuals are 113 
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rather stable in their average behavioral propensities in relation to each other, age-related 114 

mean-level differences of behavior occur at the level of the population. Some age-related 115 

patterns seem to be similar across species (e.g., declines in openness / inquisitiveness / 116 

exploration tendency), while the development of agreeableness (indicating pro-social and 117 

tolerant behavior) differs among them. The reasons for developmental differences among 118 

species need to be clarified by future studies. Possible reasons for inter-species differences are 119 

the differing content and structure of the personality dimensions or varying selection 120 

pressures between species (Weiss and King 2015). In a sample of adult rhesus macaques 121 

(Brent et al. 2013), age was largely unrelated to personality dimensions, indicating that mean-122 

level changes could be especially evident when changes over the lifetime or during early 123 

development are considered. Concerning the latter, strong changes in age-specific behavior 124 

have been reported that are tied to sex-specific life histories (Kulik et al. 2015a, b; von Borell 125 

et al. 2016).  126 

 127 

Rank-Order Stability 128 

 129 

In adult NHPs, the rank-order stability of behavioral differences ranges from being moderate 130 

(above r=0.3) to high (above r=0.5), and is statistically significant (e.g. King et al. 2008; 131 

Weiss et al. 2011; Brent et al. 2013; Weiss 2015). High levels of stability are found most 132 

often in studies that use ratings on questionnaires. Here, estimates of rank-order stability may 133 

be as high or higher than 0.7 (e.g., Stevenson-Hinde and Zunz 1978; King et al. 2008; Weiss 134 

et al. 2011). These estimates reflect the relative stability of average behavior of individuals, 135 

that is, the consistency of displaying certain behavioral phenotypes accumulated across 136 

situations (Weiss et al. 2009). If rank-order stability is calculated as repeatability of 137 

behavioral measurements, the resulting repeatability coefficient is typically lower than in 138 

studies using questionnaire ratings (e.g. Brent et al. 2013; Neumann et al. 2013; von Borell et 139 
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al. 2016), aligning closer to the meta-analytical mean repeatability of 0.37 measured across 140 

species (Bell et al. 2009). It must be noted though that differences in repeatability among non-141 

aggregated behavioral measurements and aggregated questionnaire ratings could occur 142 

because averaging single ratings into broader dimensions, that is, into personality “factors”, 143 

“domains”, “dimensions”, or “components”, contributes to the stability of these measures 144 

(Rushton et al. 1983). During early ontogeny, the stability of individual differences is 145 

typically lower than in adults (von Borell et al. 2016) and may show substantial variation 146 

from year to year, which may in turn differ across personality domains (Stevenson-Hinde et 147 

al. 1980).  148 

 149 

What do our measurements tell us about stability? And what do they not tell us? 150 

 151 

The studies presented so far used questionnaire ratings or counted behavioral observations to 152 

assess the personalities of the individuals under study. They showed patterns of mean-level 153 

change in behavior and rank-order stability of individual differences in behavior that 154 

predominantly reflect variation on a year-wise or season-wise timescale. However, these 155 

approaches may not be sensitive to short-termed effects of the environment. As indicated 156 

above, questionnaire ratings accumulate impressions of an animal’s behavior across situations 157 

and therefore do not capture short-term interactions of behavior with environmental 158 

fluctuations. Some of the studies also rely on animals kept in captivity (e.g., living in zoos, as 159 

in King et al. 2008), which may limit the naturally occurring environmental variation for 160 

some species.  161 

 162 

One possible means by which the influence of the environment on behavior could be tested is 163 

by continuously sampling behavioral observations in free ranging animals (von Borell et al. 164 

2016). Yet, the fallacy of behavioral sampling is that observations, for example single 165 
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incidents of displaying aggressive behavior, are typically also aggregated over time to form a 166 

reliable estimate of individual propensities. Otherwise, rare coincidences, like a generally 167 

unaggressive individual showing a sign of aggression, could lead to unwarranted conclusions 168 

about a general behavioral tendency. Because naturally occurring observations of certain 169 

behaviors may be scarce, aggregation operates usually on relatively large time scales (e.g., 170 

year-wise or season-wise). Such aggregation limits the possibility of analyzing behavioral 171 

plasticity in response to the environment to long-term fluctuations, stable population 172 

differences, or permanent changes within populations (such environmental effects will be 173 

discussed in the following section). Whether there are developmental influences on short-term 174 

plasticity (i.e., reaction norms; Dingemanse et al. 2010) is thus often not assessed. This is 175 

despite the fact that it might be hypothesized that NHPs become, for example, less flexible in 176 

their behavior with increasing age. Examples from other species show that individuals may 177 

vary in their seasonal plasticity, that they are repeatable in such plasticity (i.e., temporally 178 

consistent in their rank-order of shown plasticity) and that the mean plasticity across 179 

individuals may decrease with age (e.g., in great tits; Araya-Ajoy and Dingemanse 2017). 180 

These findings of differences in plasticity are likely due to frequency-dependent costs or 181 

benefits leading to individually different behavioral strategies. Furthermore, such costs or 182 

benefits are likely to change with experience, leading to mean level changes in plasticity 183 

during ontogenic development (Wolf et al. 2008). The question of age-related variability in 184 

behavioral plasticity appears to be somewhat of a blind spot in the study of NHP behavioral 185 

development. To address this question requires studies that obtain repeated measurements of 186 

behavior-situation interactions within and across time intervals or that can calculate the effect 187 

of age on behavioral reaction norms in cross-sectional data. One way to gather these kinds of 188 

data is by means of behavioral tests that involve simulating situations that an animal may 189 

encounter in the wild (e.g., encountering a novel environment or object, confrontation with 190 

the vocalization of a predator). For NHPs in captivity behavioral tests have been developed to 191 
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assess behavioral variation among individuals (e.g., Uher et al. 2013; Staes et al. 2016). If 192 

such behavioral tests are conducted with environmental variation or transferred to the natural 193 

habitats of NHPs, this approach allows for a controlled collection of data that may be linked 194 

to short-term environmental fluctuations. For example, tests of social facilitation that compare 195 

behavioral responses to novelty when individuals are alone to when they are in a social 196 

context show short-term environmental effects on behavior (reviewed in Forss et al. 2017). In 197 

common marmosets, the latency to eat novel food is reduced in a social context, but only in 198 

juveniles, suggesting that individual age affects the strength of social facilitation (Yamamoto 199 

and Lopes 2004). Following these results, behavioral reaction norms of neophobia or 200 

exploration tendency with varying social contexts could be further tested in a longitudinal 201 

setting to assess the degree to which individual differences in reaction norms are stable 202 

throughout development, i.e., their rank-order stability. There are also examples of behavioral 203 

tests conducted with NHPs in the wild (e.g., playback experiments in Neumann et al. 2013; 204 

novel-object and novel-food tests in Arnaud et al. 2017). These could be paired with 205 

environmental information (e.g., current group composition, time elapsed since among-group 206 

conflict, etc.) to form behavioral reaction norms and tested for hypothesized age effects, 207 

preferably in a longitudinal design. Other possibilities would be to use data from continuous 208 

observations in a non-aggregated way or aggregating observations according to relatively 209 

short-term environmental fluctuations and analyze them via linear mixed effects models that 210 

can account for zero-inflated observations in the case of rarely observed behaviors (Zuur et al. 211 

2009; Dingemanse and Dochtermann 2013; Brooks et al. 2017). Such an approach would be 212 

informative about relationships between behaviors, between individuals, (correlated) changes 213 

in behavior within individuals, and whether the interaction among behavior and 214 

environmental factors (plasticity) changes with age (Dingemanse and Dochtermann 2013). 215 

For a “how-to” example of using the full potential of linear mixed models when analyzing 216 

behavioral observations of NHPs see Martin and Suarez (2017). 217 
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 218 

What do we know from humans? 219 

 220 

Findings from research on human personality development are largely consistent with 221 

findings from NHPs. In terms of rank-order stability, humans become more stable throughout 222 

their lives, developing from moderate stability (approx. r=0.35) in behavioral differences 223 

during childhood to high stability (approx. r=0.70) during late adulthood (Roberts and 224 

DelVecchio 2000; Terracciano et al. 2006). Mean-level changes occur primarily during early 225 

adulthood, a time often marked by major changes in an individual’s environment and 226 

increased control over life-history decisions: After a period of decreased psychological 227 

“maturity” during early puberty (Denissen et al. 2013), humans typically develop towards a 228 

more mature and functional personality in that they become more agreeable, conscientious 229 

and show more emotional stability (Roberts et al. 2006; Donnellan et al. 2007). However, 230 

they also tend to become less flexible (Roberts et al. 2002).  231 

 232 

Determinants of Plasticity and Stability in Behavior 233 

Now that we know that behavioral variation among individuals is not fixed and that rank-234 

order and mean-level changes occur in particular during childhood, adolescence, and young 235 

adulthood, the question remains how these changes can be explained. We propose to approach 236 

questions about behavioral stability and change using a behavior genetics framework, because 237 

it helps us to disentangle whether and how behavioral development is caused by 238 

environmental influences, genetic effects, or their interplay. 239 

 240 

Genetic Effects on Behavioral Development 241 

 242 
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The rationale behind genetic effects on behavior is that variation in DNA sequences among 243 

individuals will lead to variation in their behavioral propensities. The extent to which genes 244 

influence a behavioral phenotype is measured with a population statistic “heritability”. 245 

Heritability (or h2) is the ratio of genetically influenced variance in a trait to the total variance 246 

of the trait in a population (Plomin et al. 2012; Johnson 2014). Heritability may also be 247 

calculated as the ratio of genetically influenced variance to the repeatable variance (as this 248 

“error-free” variance poses an upper limit to the heritability; Adams et al. 2012). A trait’s 249 

heritability may reflect additive genetic effects whereby the effects of variants of genes 250 

(polymorphisms) independently add up to shape the trait into a specific direction. This is 251 

known as narrow-sense heritability. A trait’s heritability may also reflect non-additive genetic 252 

effects whereby the interactions among different gene variants affect the expression of the 253 

trait. An example of this would be a dominant genetic variant (allele) that suppresses the 254 

effect of a recessive genetic variant at the same or different loci. The combined influence of 255 

additive and non-additive genetic variance is referred to as broad-sense heritability, which is 256 

denoted H2.  257 

 258 

To provide a general impression of how heritable personality traits are in NHPs, we calculated 259 

the median and range of published estimates of narrow-sense heritability across NHP species 260 

and studies (see Tables S1, S2 in the supplement). For personality factors we calculated a 261 

median heritability of h2=0.25 and a range from 0.00 to 0.63 (based on the studies from Weiss 262 

et al. 2000; Fairbanks et al. 2004; Adams et al. 2012; Brent et al. 2013; Johnson et al. 2015; 263 

Latzman et al. 2015; Staes et al. 2016; Wilson et al. 2017; Inoue-Murayama et al. 2018). The 264 

heritability of single behaviors appears to be very similar, with a median h2=0.25 and range of 265 

0.11 to 0.91 (based on studies by Rogers et al. 2008; Fawcett et al. 2014; Hopkins et al. 2014, 266 

2015; Johnson et al. 2015; Watson et al. 2015). Non-additive genetic effects may contribute a 267 

significant proportion to genetically influenced variance, leading to higher broad-sense 268 
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heritability estimates (H2). Based on a study on orangutans we calculated a median H2 of 0.69 269 

(Adams et al. 2012). Published estimates of broad-sense heritability are, however, an 270 

exception, as this requires extended study designs including twins or a large number of full- 271 

and half-siblings (ibid.). Unfortunately for a developmental perspective, we do not know of 272 

longitudinal studies that published heritability estimates for a birth cohort across time. Nor do 273 

we know of cross-sectional estimates of heritability along different developmental stages. 274 

Hence, we cannot say whether the heritability estimates of personality traits, and thus 275 

influences relating to environmental factors, increase or decrease throughout development.  276 

 277 

In humans the average heritability estimated from meta-analyses is a little higher than in 278 

NHPs, accounting for about 40% of variation (Turkheimer et al. 2014; Vukasović and Bratko 279 

2015). Interestingly, estimates coming from family and adoption studies, that include only 280 

additive genetic effects, have an average effect size of 0.22 (Vukasović and Bratko 2015), 281 

which is close to the median effect size we calculated for narrow-sense heritability in NHPs. 282 

This percentage may rise to about 50% when only data from twin studies is considered (van 283 

den Berg et al. 2004; Vukasović and Bratko 2015) as these estimates reflect the broad-sense 284 

heritability. From a developmental perspective, we know that the heritability of personality 285 

tends to decrease with increasing age, dropping from roughly 75% during infancy and early 286 

childhood down to the above-mentioned estimate of 40% in later adulthood (Briley and 287 

Tucker-Drob 2017). Thus, in the period after birth, individual differences in behavior are 288 

largely influenced by genetic effects, with the role of environmental effects increasing with 289 

age.  290 

 291 

The increasing role of the environment is also reflected in its contribution to the increase in 292 

the rank-order stability of personality (from r=0.35 in infancy to about r=0.70 in adults; see 293 

above), which can be explained by genetic or environmental influences. Here twin studies 294 
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find that the genetic contribution remains at a steady 35% during the lifespan, while the 295 

environmental contribution increases to account for an additional 35% of rank-order stability 296 

during development. This means that the stable proportion of behavioral variation is almost 297 

entirely genetically influenced during infancy, but that the post-infancy stability increase is 298 

almost entirely influenced by environmental factors (Tucker-Drob and Briley 2019). 299 

 300 

Environmental Effects 301 

 302 

Given the heritability estimates above, we can expect that environmental effects may 303 

contribute to over 50% of behavioral variation in NHPs and about 50% in humans, varying 304 

with the age of the individual. An important goal of personality and developmental studies 305 

across disciplines has been to identify environmental factors that are capable of altering or 306 

shaping behavioral differences among individuals. Here we review two broad categories of 307 

well-studied environmental factors that influence developing behavioral differences: stressful 308 

life experiences and the influence of maternal care and rearing conditions. 309 

 310 

Stressful Life Experiences 311 

Environmental stressors influence behavioral development during prenatal or very early life 312 

stages. For example, low food availability is linked to higher prenatal maternal stress in 313 

Assamese macaques, which leads to increased growth, but decreased motor skill acquisition 314 

and reduced immune function in their offspring (Berghänel et al. 2016). Although this 315 

evidence is circumstantial, life-history trade-offs such as these may extend to the development 316 

of individual differences in related behavioral traits, for example a trade-off between playing 317 

and growth (Berghänel et al. 2015). Fertility is also affected by low-quality early 318 

environments with individual differences being linked to drought years in baboons (Lea et al. 319 

2015). Next to the quality of the environment, effects of the dominance hierarchy have been 320 
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documented as a lasting stressor in NHP development. In chimpanzees, for example, maternal 321 

rank during pregnancy is not only related to the stress response of the mother, but also to the 322 

stress response of her dependent offspring, and especially males thereof (Murray et al. 2018). 323 

A relationship between maternal or individual rank and behavioral differences, and especially 324 

those relating to aggressive and fearful/bold behavior, has been shown for NHPs of different 325 

ages (e.g., French 1981; Bolig et al. 1992; Brent et al. 2013; von Borell et al. 2016). In an 326 

experimental manipulation, Kohn and colleagues (2016) showed that climbing up the 327 

dominance hierarchy was causally related to changes in social approachability and boldness. 328 

We can thus expect changes in the dominance hierarchy as a possible source of 329 

environmentally induced variation in personality development. Related evidence stems from a 330 

case of severe and selective tuberculosis infection in wild baboons, where the more aggressive 331 

individuals of a troop died at once, because they ate from a neighboring troop’s food resource 332 

that was infected. These deaths led to an overall more tolerant social style in the troop. While 333 

dominance interactions were concentrated among closely ranked individuals, high-ranking 334 

individuals were more tolerant of very low-ranking individuals. The latter finding was related 335 

to a disproportionally high number of reversals in the direction of dominance among 336 

individuals far apart in rank (Sapolsky and Share 2004). This is in line with the argument that 337 

high-ranking individuals can typically afford aggressive or displacing behavior due to 338 

agonistic support from other individuals (Silk 2002), which was apparently less the case in the 339 

newly stratified troop of baboons after the epidemic infection.    340 

 341 

Although the quality of the natural environment and dominance hierarchies in social groups 342 

affect behavioral differences from early life on, new challenges arise around the time of 343 

maturation that drive behavioral variation. A prominent example in NHPs is the migration 344 

from the natal group to a new group (natal dispersal). Migration is typically accompanied by 345 

increases in mortality or injury rates, decreases in access to resources, and social costs, i.e., 346 
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the loss of social ties or rank (Dittus 1979; Weiß et al. 2016). Following migration, male 347 

rhesus macaques show more fearful and less physically aggressive behavior than before (von 348 

Borell et al. 2016), which is consistent with findings from captive pigtailed macaques, where 349 

individuals that are new to a facility are more cautious (Sussman et al. 2014). Migration may 350 

also trigger rank-order changes in behavior, possibly reflecting different reactions or 351 

strategies following migration. In the study of von Borell et al. (2016) this was reflected in 352 

very low or even negative correlations among fearful behaviors measured in the year before 353 

and after migration, despite their overall lifetime repeatability. In female rhesus macaques, the 354 

birth of the first infant is a similar developmental milestone and is marked by a decreased 355 

frequency of initiating social contacts outside of maternal kin (von Borell et al. 2016).  356 

 357 

Maternal Influences and Rearing 358 

Parental care and the quality of mother-offspring interactions are also known to affect the 359 

development of individual differences in NHP behavior. Here we highlight some findings in 360 

this literature. Interested readers are encouraged to refer to a detailed review of this literature 361 

in this topical collection (Maestripieri 2018). 362 

  363 

Differences in maternal style are typically described along the two dimensions protectiveness 364 

and rejection, but may vary a little between NHP species, that is, maternal behaviors may also 365 

load on three different factors in a factor analysis (De Lathouwers and Van Elsacker 2004). 366 

Protectiveness and rejection have been linked to individual differences in behavior across 367 

various age-stages in NHP development. For example, in an observational study of Japanese 368 

macaques, infants of highly protective mothers showed lower levels of exploratory behavior 369 

and interacted less with their group members. On the other hand, infants of mothers who 370 

rejected them interacted more than average with other group members. These effects 371 

diminished, however, over the course of development and were present mostly during early 372 
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infancy (Bardi and Huffman 2002). A stable effect of maternal style was reported by Bardi 373 

and colleagues (2015) who found that juvenile baboons that experienced more stress-related 374 

interactions with their mother during early life showed higher locomotor activity and cortisol 375 

levels during a stress test than individuals that experienced more affiliative mother-offspring 376 

interactions.  377 

 378 

Such effects of parental care or mother-offspring interaction were further supported by 379 

experimental studies. An effect of maternal protectiveness on offspring caution was shown in 380 

vervet monkeys (Fairbanks and McGuire 1993). In this study maternal protectiveness was 381 

experimentally increased by introducing new males to some housing groups. Infants and 382 

juveniles of mothers from the “protective” condition showed higher latencies to approach a 383 

novel object, indicating increased caution. Approach latencies were highly correlated among 384 

mothers and infants but not among mothers and juveniles. These results indicate that a 385 

mixture of environmental and genetic effects contributed to the development of behavioral 386 

differences. Maestripieri and colleagues (2006) could not find an effect of maternal 387 

protectiveness on offspring behavior in rhesus macaques, but they did find that higher 388 

maternal rejection led to more solitary play in offspring. This effect did not differ between 389 

mother-reared and cross-fostered individuals, ruling out the possibility that this observation is 390 

simply driven by genetic similarity between mothers and their offspring.  391 

 392 

A special case of maternal influence on behavioral differences is maternal deprivation or the 393 

disruption of maternal care. Rhesus macaques that spent their first year of life in total 394 

isolation showed hardly any positive social responses or activities afterwards and were also 395 

consistently fearful. Individuals who spent shorter periods of time in isolation showed a 396 

behavioral pattern similar to that of monkeys who spent a year in isolation, followed by 397 

highly individualized (adequate and non-adequate) adaptations to social situations, 398 
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presumably based on inherited individual differences and unique learning experiences 399 

(Harlow et al. 1965). Similar differences in the social response to short periods of isolation 400 

have been documented in free-ranging rhesus macaque infants (Berman et al. 1994). Here, 401 

increased short-term separations of mothers and their infants, which occurred when the 402 

mothers resumed mating, led to increased distress in the infants. Like the captive infants, 403 

described by Harlow and colleagues (1965), who were isolated for short periods, the free-404 

ranging infants developed differing social responses to and after the separation events. 405 

Specifically, some infants reacted with social withdrawal and decrease of social play and 406 

others rather increased their social behavior like grooming. Differential responses to maternal 407 

separation or maternal style, whether marked by decreased or increased social behavior, have 408 

been linked with genetically inherited differences in stress responsivity (Clarke and Boinski 409 

1995; Suomi 2004). Further studies of maternal separation in captivity, typically on hand-410 

raised and later on peer-reared individuals, suggest temporally consistent increases in anxious, 411 

shy, and impulsive behavior in comparison with their mother-reared counterparts. These 412 

behavioral differences may extend to neglectful or abusive maternal behavior, when peer-413 

reared females become mothers themselves (reviewed in Soumi 1997). More recent studies, 414 

albeit in a different species, show mixed results: while nursery-reared chimpanzees were 415 

reported to be less agreeable and more extraverted than their mother-reared counterparts 416 

(Latzman et al. 2015), a similar study of chimpanzees found no such differences between 417 

these groups (Martin 2005). 418 

 419 

The effects of differential care appear to extend to scenarios were the intensity of human care 420 

varies. Young chimpanzees who experienced enhanced responsive care were less distressed 421 

and showed less disorganized attachment than chimpanzees who only received a minimal 422 

standard of care from human caregivers (van IJzendoorn et al. 2008). In addition to maternal 423 

style, maternal separation, and the amount of care, the time infants spend with conspecifics 424 
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seems to affect personality development. For example, chimpanzees who as infants spent less 425 

time with conspecifics were rated as being less extraverted later in life than individuals who 426 

spent more time with conspecifics (Freeman et al. 2016). 427 

 428 

Issues of causality 429 

From a behavior genetics standpoint, non-experimental studies and non-genetically-informed 430 

quasi-experimental studies cannot establish causal relationships between environmental and 431 

behavioral variation. Although environmental effects can be separated in a controlled 432 

randomized experiment (at the cost of decreased ecological validity), all other behavior-433 

environment correlations are likely influenced by genetic variation. As Johnson (2014) put it: 434 

 “The situation and the individual’s environmental history may set the stage and limit 435 

the range of choice of action, but the individual’s genotype is involved both in the 436 

actions taken and the individual’s presence in this situation in the first place. We 437 

cannot understand development without taking this into consideration.”  438 

Among the findings on stressful life events or rearing experience reviewed above, 439 

experimentally separated environmental effects rely largely on captive NHPs, while in studies 440 

conducted in the wild, environmental and genetic effects can be confounded. There are 441 

several mechanisms of such confounding. Prominent examples include gene-environment 442 

correlations (rGE) and gene-environment interactions (G x E), both of which will be 443 

discussed below. The main message at this point is, that a neglect of genetic information can 444 

lead to premature causal interpretations of the role the environment may play in behavioral 445 

development (Briley et al. 2018). For example, the association between early adversity and a 446 

faster life-history strategy that has been reported in NHPs, has received theoretical and 447 

empirical support from the human literature as well, leading, for example, to earlier puberty 448 

and marriage (see reviews by Belsky 2012; Del Guidice 2014). However, findings of life-449 

history embedded behavioral differences related to early adversity did not hold up in a study 450 
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design that included information of genetic relatedness based on pedigrees to control for 451 

genetic confounding. Mendle and colleagues (2009) found that the association among father 452 

absence and timing of first intercourse in humans was best explained by genetic risk factors 453 

that correlate both with father absence and early sexual activity, diminishing the role of the 454 

mere experience of an absent father. Likewise, decisions involving changes in the social 455 

environment, such as NHP dispersal, are known to carry a genetic component (Trefilov et al. 456 

2000; Krawczak et al. 2005) that could also be correlated to behavioral differences. Also, 457 

relationships between rank and behavior may partly be affected by feedback processes 458 

entailing a genetic component, for example the interplays of aggressive behavior, which has a 459 

heritable component, and changes in the dominance hierarchy in male NHPs (Koyama 1970; 460 

Bernstein 1976). In humans, some studies on personality development try to test whether 461 

environmental effects are causal by including a control group. Examples can be found in 462 

studies on personality development during periods of spatial and social transformation in 463 

human adolescents or young adults: events like a high-school student exchange (Hutteman et 464 

al. 2015), studying abroad as college student (Zimmermann and Neyer 2013), graduation from 465 

high school (Bleidorn 2012), or forming a partner relationship (Neyer and Lehnart 2007) 466 

mostly trigger a development towards personality maturation compared to the control group, 467 

i.e., increases in conscientiousness, agreeableness and self-esteem, and a decrease in 468 

neuroticism. Going abroad was also related to increases in openness to new experiences. The 469 

inclusion of a control group is certainly an improvement over not including a control group, 470 

as it can be the case in related studies of NHP migration in the wild, where it is often difficult 471 

to gather a control group with similar characteristics and a similar sample size as the 472 

migrating individuals. Yet, in naturally occurring control group designs, such as the above-473 

described human studies, the decision of whether to participate and the behavioral differences 474 

among individuals of the control and quasi-experimental groups may be influenced by 475 

common genetic effects. Even if both groups have been matched to be similar in their 476 
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behavioral characteristics prior to the environmental change, this change may only activate or 477 

amplify a genetic predisposition of a behavioral tendency, for example, being open to new 478 

experience that was already entailed in the decision of participating in this event. 479 

 480 

In the human literature, the impact of individuals’ genetic background on behavior or (life-481 

history) decisions (e.g., student exchange, marriage, etc.) led to the “first law of behavior 482 

genetics” that all traits are heritable (Turkheimer 2000). It follows that behavior-environment 483 

correlations cannot be interpreted as prima facie evidence of a causal environmental influence 484 

without considering that such associations are probably genetically mediated (Johnson et al. 485 

2011; Johnson and Penke 2014; Turkheimer et al. 2014). Accordingly, calls for genetically 486 

informed designs in the study of behavior-environment associations have been pointed out in 487 

primatology (e.g. Adams 2014; Brent and Melin 2014) and psychology (Turkheimer and 488 

Harden 2014), that could control for a genetic basis of differences in the environment that 489 

individuals experience. For example, studies looking at the effects of migration on behavioral 490 

differences among individuals could control for the possibility that both share a common 491 

genetic basis. Briley and colleagues (2018) reviewed techniques that are capable of tackling 492 

questions of causality in longitudinal, and even cross-sectional, genetically informative data 493 

(i.e., data where behavioral outcomes and measurements of the environment are paired with 494 

information about relatedness or molecular genetic similarity among individuals). For 495 

example, in a quantitative genetic design, direction-of-causation modeling (DOC modeling) 496 

can be used to estimate the plausibility of a causal direction among an environmental and a 497 

behavioral measure. This approach involves comparing the proportion of variance attributable 498 

to genetic, shared, and nonshared environmental effects in the possible cause and outcome. If, 499 

for example, differences in maternal style have a large genetic component and causally 500 

explain behavioral differences among children, then a genetic component should be 501 

represented in the children’s behavioral differences as well. Comparing the fit of different 502 
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models with alternative directions of causality can help to assess the likelihood of a 503 

hypothesized cause-outcome-relationship (for details see Briley et al. 2018). In human female 504 

twins, DOC modeling showed that parental behavior was more likely the cause of 505 

psychological distress than psychological distress being the cause of parental behavior (i.e., 506 

the model specifying a causal relationship from parental behavior to distress had a better fit 507 

than the other way around; Gillespie et al. 2003). 508 

 509 

Gene-environment interplay 510 

 511 

As pointed out above, in observational studies, whenever a complex interplay among genes 512 

and the environment is present during development, separating the environmental and genetic 513 

sources of variance can be difficult (but still see Briley et al. 2018). In the case of gene-514 

environment correlations (rGE), individuals evoke, pick, or create environmental experiences 515 

based on genetically influenced needs or preferences, or grow up in an environment that is 516 

influenced by genes they share with their parents (see, e.g., Scarr and McCartney 1983; 517 

Bleidorn et al. 2014; Weiss 2017b). Another possibility is that the impact of environmental 518 

experiences differs depending on individuals’ genetic backgrounds (e.g., a genetic risk or 519 

vulnerability; Moffitt 2005), which is termed gene-environment interaction (G x E). While 520 

heritability estimates tell us that the biological underpinnings of behavior cannot be ignored in 521 

developmental studies, they are less useful in helping us to understand the developmental 522 

mechanisms or processes behind emerging behavioral differences, as variance is here 523 

partitioned into being genetic or environmental, and so does not account for gene-524 

environment interplay (Plomin and Bergeman 1991).  525 

 526 

In some species, it is possible to conduct controlled experiments on developmental 527 

psychobiology that allow for a separation of genetic and environmental effects (e.g., by 528 
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breeding genetically identical individuals in identical conditions; Kain et al. 2012; Bierbach et 529 

al. 2017), but ethical and practical reasons mostly prevent scientists from applying these 530 

methods to humans or NHPs (Turkheimer 2000; but see experimental manipulations of 531 

rearing conditions presented above). Yet, there is no need for primatologists or psychologists 532 

to stop searching for the causes of development. Although we may not be able to causally 533 

reconstruct complex developmental pathways, we can test how genes and the environment 534 

correlate and interact in specific scenarios and how likely they are to shape behavioral 535 

development within the limits of such scenarios.  536 

 537 

An example of NHP rGEs is the above-cited genetic influence on dispersal where genetic 538 

variation leads to different ages of migration from the natal group, that is, the encounter of a 539 

novel environment (Trefilov et al. 2000). Correlations among genes (or genetically influenced 540 

traits) and the environment are often referred to as “niche picking” or “niche specialization” 541 

(Johnson et al. 2009; Penke 2010; Stamps and Groothuis 2010; for evolutionary and 542 

mathematical formalization, see Montiglio et al. 2013). If we consider a developmental 543 

pathway where having more of some trait leads to a higher propensity to seek out a specific 544 

environment, which in turn affects the manifestation of that trait, then cross-sectional studies 545 

cannot distinguish between such bidirectional influences of genetic background and the 546 

environment (Kandler et al. 2012). If not explicitly modeled, the variation due to rGE will be 547 

confounded with genetic variance, although an environmental influence is entailed as well 548 

(Bleidorn et al. 2014). Genetically informed longitudinal studies, however, make it possible to 549 

test instantiations of rGE. In humans, Kandler and colleagues (2012) showed that genetic 550 

effects on personality traits, such as neuroticism or agreeableness, can explain variation in the 551 

likelihood of experiencing negative life events and that negative life events, in turn, have a 552 

(small) effect on personality development.  553 

 554 
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G x E effects on personality development can be detected by quantitative or molecular 555 

genetics methods. Quantitative genetic studies test whether differences in a phenotype 556 

between individuals are associated with information on their genetic relatedness (for example 557 

based on known pedigrees), while molecular genetic studies try to associate differences in a 558 

phenotype with a specific pattern of variation in DNA sequence among individuals. In 559 

behavioral genetic research, the latter’s emphasis is on trying to find associations between 560 

genetic variants at specific genetic loci and behavioral traits (candidate gene association 561 

study) or trying to associate a large number of variants that are spread across the genome with 562 

a behavioral trait (genome-wide association study, GWAS). In a quantitative genetics 563 

framework, Latzman and colleagues (2015) have shown that heritability estimates of 564 

personality dimensions vary among mother- and nursery-reared chimpanzees. Specifically, 565 

they found lower heritability estimates in nursery-reared individuals indicating that their 566 

atypical environmental circumstances at an early age led to a higher proportion of 567 

environmentally influenced behavioral variation among their traits. Results from humans also 568 

support interaction effects of rearing quality and genes. For example, Krueger and colleagues 569 

(2008) showed that the genetic influence on adolescent personality varied with the levels of 570 

regard they received from their parents. In particular, low levels of regard were associated 571 

with an increased environmental contribution to phenotypic variance. On a molecular level, 572 

many NHP studies have examined the interplay of environmental variation and candidate 573 

genes in their contribution to behavioral differences. These studies analyzed for example 574 

polymorphisms in genes such as 5-HTTLPR (Barr et al. 2004; Madrid et al. 2018), MAOA 575 

(Newman et al. 2005), and COMT (Gutleb et al. 2017), which often, but not exclusively, were 576 

reported to interact with differences in rearing condition (for a review see Rogers 2018).  577 

 578 

In the molecular genetics area, studies of NHPs and humans used to be closely linked and 579 

shared a desire to identify the genetic underpinnings of behavioral or pathological variation by 580 
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testing the effects of candidate genes (see, e.g., Caspi et al. 2002, 2003 on G x E in humans, 581 

including MAOA and 5-HTTLPR variation affecting violence and depression, respectively). 582 

However, meta-analyses and recent studies in humans that use samples that are several 583 

magnitudes larger in size and extensive genome-wide genetic information led to the 584 

conclusion that complex behavioral traits are unlikely to be substantially influenced by single 585 

genes (Munafò and Flint 2004; Plomin and von Stumm 2018; Sallis et al. 2018). That does 586 

not mean that genetic polymorphisms in single genes do not matter, but that their effects are 587 

usually too small to be detected with the sample sizes of earlier studies, and this is especially 588 

the case when they are modeled in interactions with environmental gradients. Reviews of 589 

human candidate gene studies show that many associations cannot be replicated across studies 590 

and in meta-analyses, and that the effect sizes of statistically significant associations in earlier 591 

studies were often inflated (e.g. Sanchez-Roige et al. 2018). These findings led researchers to 592 

conclude that the literature on associations among common variants in candidate genes and 593 

behavior, for both main effects and G x E interactions, is awash with false positive results 594 

(Sallis et al. 2018). Genome-wide association studies that explore associations of common 595 

genetic variants and behavior throughout the whole genome show that a large number of 596 

genetic variants (single nucleotide polymorphisms; SNPs) contribute to the heritability of 597 

complex traits, however with small effect sizes. Replicated SNPs typically explain less than 598 

0.1% of the phenotypic variance (Munafò et al. 2014; Sallis et al. 2018). While many SNPs 599 

reported in candidate gene studies did not replicate in sufficiently powered GWAS (e.g., 600 

Chabris et al. 2012), many variants that met genome-wide significance levels that have been 601 

identified in GWAS could be replicated in large independent samples (> 100,000 individuals; 602 

e.g., Okbay et al. 2016). These variants are spread broadly across the genome, including 603 

intragenic regions that do not code for proteins (Boyle et al. 2017; Sanchez-Roige et al. 2018). 604 

Additionally, extended study designs show that rare genetic variants that are not tagged in 605 

GWAS can contribute to individual variation in complex traits (Hill et al. 2018). While these 606 
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findings and conclusions stem from human studies, they are likely to apply to NHP studies as 607 

well (Munafò et al. 2014). That is not to say that all statistically significant results stemming 608 

from NHP candidate-gene or GxE studies are false positives. Some gene-behavior 609 

associations have replicated across populations, species, and behavioral measures (reviewed 610 

in Weiss 2017a; Rogers 2018). For example, variants in the arginine vasopressin receptor 1A 611 

gene (AVPR1A) appear to replicate across different samples of chimpanzees (Anestis et al. 612 

2014; Hopkins et al. 2014; Staes et al. 2015; Wilson et al. 2017), bonobos (Staes et al. 2016) 613 

and common marmosets (Inoue-Murayama et al. 2018). However, the combination of small 614 

sample sizes and relatively large effects of reported genetic variants is similar to the early 615 

wave of human studies in the field of behavior genetics. It is thus probably worth retaining 616 

one’s skepticism about this literature. Reported effect sizes of replicated genetic variants in 617 

NHPs (e.g. given in Staes et al. 2015 and Wilson et al. 2017 for AVPR1A) are several 618 

magnitudes larger than most of the extensively studied candidate-gene variants and GWAS 619 

results in humans (see Sanchez-Roige et al. 2018 for a review). It is possible that the 620 

development and the social influences on behavioral variation among humans are more 621 

complex and thus less influenced by single genetic variants. Also, studies on captive NHPs 622 

provide a more restricted and controlled environment (e.g., controlled diet, less habitat 623 

variation), which might lead to stronger genetic effects. A recent study on the effects of 624 

variants in OXTR and AVP receptor genes (AVPR1A, AVPR1B) on behavior in rhesus 625 

macaques, however, failed to replicate previous results and showed only very small effects of 626 

the 12 SNPs that were examined (Madlon-Kay et al. 2018). Alongside the emerging 627 

consistency of findings that single genetic variants have only small effects on complex traits, 628 

Madlon-Kay and colleagues (2018) discuss other methodological difficulties, including 629 

missing control of genetic relatedness within the population and/or missing adjustment of p-630 

values, that raise doubt about earlier positive results. 631 

 632 
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A promising avenue for matching smaller sample sizes with genetic information appears to be 633 

the use of polygenic scores, where genetic variants accounting for small effects are weighted 634 

and summed, creating a score for each subject that is a more powerful estimator of behavioral 635 

differences. Given a robust knowledge of genetic variants that contribute to behavioral 636 

differences in a species, polygenic scores can help relatively small samples to reach sufficient 637 

power to detect molecular genetic effects on behavior and be paired with environmental 638 

measures to assess G x E (Plomin and von Stumm 2018). For example, a polygenic score that 639 

predicts 10% of the variance in a trait only needs a sample size of 60 individuals to detect its 640 

effect with 80% power (ibid.). The problem for NHP studies is that, depending on the species, 641 

it might be impossible to gather a sufficiently large initial sample to identify genetic variants 642 

that are worth including in a polygenic score in the first place.  643 

 644 

In the concluding lines of this section we want to provide a glimpse into the emerging field of 645 

epigenetics. Epigenetics refers to processes whereby environmental signals affect genetic 646 

variation by mechanisms such as DNA methylation or histone modification. Briefly, these 647 

environmentally induced mechanisms can lead to individual differences in gene transcription 648 

and expression, which can result in behavioral differences (Kaminsky et al. 2008). In baboons, 649 

for example, Runcie and colleagues (2013) found that different aspects of the social 650 

environment and social behavior (social connectedness, group size, and maternal dominance 651 

rank) interacted with the genotype by means of differences in gene expression along these 652 

environmental or behavioral gradients. This suggests that social behaviors, like grooming, are 653 

not only influenced by genetic variation, but also influence genetic variation. From an 654 

ontogenetic perspective, this means that genes are not destiny for the development of 655 

personality, but rather that the environment can alter the genetic tracks individuals are set on. 656 

The precise way in which epigenetic mechanisms function in relation to complex traits, as social 657 

behavior, is under current investigation (Hu and Barrett 2017). First evidence on the behavioral 658 
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level indicates, for example, the potential role of epigenetics in the stress response system and 659 

associated behavioral differences such as risk-taking or novelty-seeking (Laviola et al. 2003; 660 

Kaminsky et al. 2008; Canestrelli et al. 2016). Also epigenetic mechanisms in the domain of 661 

memory formation and learning (Duke et al. 2017) may transfer to behavioral differences 662 

among individuals. But until we have replicated evidence of epigenetic effects on behavioral 663 

traits, a degree of humility about these findings would seem appropriate (see also Cobben and 664 

van Oers 2016). In particular, epigenetic explanations centering on specific genes should be 665 

interpreted carefully, as associations among single genes and behaviors often do not replicate 666 

in studies of humans and NHPs (see above). Given the increasing general understanding of 667 

genome-wide DNA methylation patterns in humans and NHPs (Lea et al. 2016, 2018), the role 668 

of epigenetics in personality development could become an interesting area of future research 669 

(Trillmich et al. 2018).   670 

 671 

Summary and Outlook  672 

We can infer that behavioral differences among individual NHPs develop towards increasing 673 

rank-order stability and a pattern indicative of what has been described as a “mature” 674 

personality in humans (but see exceptions in Manson and Perry 2013; Weiss and King 2015; 675 

Koski et al. 2017). Whereas environmental influences on behavioral variation among 676 

individuals act in humans especially around the time of adolescence and young adulthood, 677 

behavioral variation in NHPs seems to already be affected early in life. Among these early 678 

environmental influences are stress-related variation in the natural environment, parenting 679 

style or rearing conditions. Later in life, migration or maternity during young adulthood may 680 

also affect personality development. As a complex interplay among genotype and the 681 

environment is likely, and the statistical power to detect even two-way interactions is low, 682 

current research is still far from disentangling the causal pathways that lead to behavioral 683 

differences. We propose that one possible way to peek inside this “black box” is to conduct 684 
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genetically informed longitudinal studies or to use cross-sectional DOC modeling 685 

(Turkheimer and Harden 2014; Briley et al. 2018). That said, studies have to be adequately 686 

powered if they wish to use these tools. Since statistical power often turns out to be a problem 687 

in NHP studies, one possible direction might be to identify polygenic scores for behavioral 688 

differences in relatively large samples of a species, for example in breeding facilities, and 689 

then to apply this knowledge to the typically smaller populations in the wild or in other 690 

captive settings, such as zoos or sanctuaries. This could enable one to conduct genetically 691 

informative studies without the need for pedigree data or could supplement studies with 692 

(partly) existing pedigree data. Furthermore, testing evolutionary hypotheses stating under 693 

which conditions correlations among behavioral differences will occur and how stable these 694 

correlations are under changing environments or selection regimes (see Sih et al. 2004; 695 

Dochtermann and Dingemanse 2013) could be a fruitful direction for primate personality 696 

research. An example would be to test whether environmental variation affecting food 697 

resources favors different behavioral strategies or correlations among behaviors that form 698 

behavioral syndromes (Dingemanse et al. 2004).  Human studies could also be informed, or 699 

inspired by, the increasing knowledge of dominance rank and hierarchy effects on behavioral 700 

variation in NHPs. 701 
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Fig. 1 The difference between mean-level and rank-order stability 1157 

 Scenario a): The rank-order of differences in aggressiveness stays stable between all four 1158 

individuals throughout development, while the mean-level aggressiveness in the population 1159 

increases with age. 1160 

Scenario b): The mean-level aggressiveness in the population stays stable throughout 1161 

development, while the rank-order of aggressiveness changes between the four individuals 1162 

over the years. 1163 
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