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Abstract: When dealing with a dynamic causal system people may employ a variety of different strategies. One of these 

strategies is causal learning, that is, learning about the causal structure and parameters of the system acted upon. In two 

experiments we examined whether people spontaneously induce a causal model when learning to control the state of an 

outcome value in a dynamic causal system. After the control task, we modified the causal structure of the environment 

and assessed decision makers’ sensitivity to this manipulation. While purely instrumental knowledge does not support  

inferences given the new modified structure, causal knowledge does. The results showed that most participants learned  

the structure of the underlying causal system. However, participants acquired surprisingly little knowledge of the system’s 

parameters when the causal processes that governed the system were not perceptually separated (Experiment 1). Knowl-

edge improved considerably once processes were separated and feedback was made more transparent (Experiment 2). 

These findings indicate that even without instruction, causal learning is a favored strategy for interacting with and control-

ling a dynamic causal system.  
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INTRODUCTION 

 We encounter complex and dynamic causal systems in 
both our professional and everyday lives. Indeed we need 
look no further than ourselves as paradigm examples of such 
systems. We are constituted by biochemical and neurological 
mechanisms that are interconnected in a complex manner 
and operate to maintain a delicate equilibrium. Exercise, diet, 
and medications are methods by which we affect our own 
physiological system in order to regulate it, as well as im-
prove it. Likewise, in cases where we interact with the exter-
nal environment, we often strive to control dynamic systems. 
For example, workers in industrial companies need to learn 
to control highly complex systems such as chemical plants 
and production lines. On a broader scale, politicians, manag-
ers, and stockbrokers act on large social systems (e.g., na-
tions, corporations, stock markets), where social agents 
causally interact in various ways. People generally engage in 
these systems by making goal directed interventions in order 
to achieve their desired outcomes. Marketing campaigns, 
taxation, welfare, and social norms are ways of influencing 
people’s behavior to improve the quality of life and achieve 
happiness.  

 In this paper, we are concerned with the kind of  
knowledge that decision makers acquire when they inter- 
vene on and control such complex systems. In particular, we  
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investigate whether decision makers spontaneously acquire 
causal models, that is, representations that mirror the causal 

mechanisms that govern the dynamic system acted upon. In 

other words, we are interested in whether decision makers 
engage in causal induction during dynamic control tasks, 

even when they are not asked to do so. First, we will briefly 

review the literature on control tasks in relation to findings 
about causal learning.  The existing body of evidence on 

control tasks will be contrasted with research on causal 

learning, which typically does not examine learning with 
dynamic systems. Then we will present two experiments that 

examine whether people spontaneously induce causal models 

when learning to control a dynamic causal system. We close 
by discussing the empirical findings and their relevance for 

the common claim that decision makers fail to acquire causal 

knowledge in control tasks.  

CAUSAL LEARNING WITH DYNAMIC SYSTEMS 

 Previous research on people’s ability to control complex 

dynamic systems (e.g., simulated industrial power plants, 
management systems, ecosystems) has largely neglected the 

role of causal knowledge. This is because theoretical ac-

counts of skill acquisition have focused on explaining the 
apparent dissociation between accurate control performance 

and poor reportable knowledge of the structure of the system 

[1, 2]. Participants’ poor reported knowledge is taken as evi-
dence that very little knowledge about the underlying causal 

structure is acquired. This dissociation between control per-

formance and explicit knowledge is explained in terms of the 
complexity of the environment. Rather than learning the un-
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derlying structure, people are supposed to learn to control the 

system by strengthening their knowledge of the perceptual 

features of the system and the specific decisions they make 
(i.e., what actions they chose in a given state of the system) 

along with the successful outcomes produced [3, 4]. By add-

ing more cases to their knowledge base, they proceed by 
matching the perceived current state of the system to stored 

exemplars of successful situation-decision-outcome associa-

tions. Because this process relies on generating responses 
from memory, no inferences are made about the underlying 

causal relations that govern the system’s behavior. While 

this type of exemplar-based learning is good for controlling 
the system to a target, it occurs at the expense of gaining 

knowledge of the system’s structural properties. Conse-

quently, people show limited success in transferring control 
skills to other goals because their knowledge is bound to 

tasks that have the same perceptual and goal characteristics 

as the original training task [5, 6].  

 This view contrasts sharply with current research in 
causal learning and reasoning.  Research on these topics 
shows that people are able to learn about causal structure 
through various cues to causality, such as temporal sequence, 
statistical relations, consequences of interventions, and prior 
knowledge [7, 8]. In addition, people are not only able to 
learn about the structure, but also the parameters of causal 
models [9-11]. Thus, it has been shown that beliefs about 
causal structure guide the interpretation of covariational data 
and strongly affect the way people structure the available 
learning input (for a recent overview see [12]). 

 Recent research has also emphasized the tight connection 
between causal beliefs and decision making. The causal 
model theory of choice [13, 14] assumes that people use the 
available information to induce a causal model of the deci-
sion problem and the choice situation. A causal model of the 
decision problem encompasses the decision maker’s knowl-
edge about the structure of the system and their beliefs re-
garding the causal influences of the available courses of ac-
tions. The empirical evidence shows that people indeed use 
such causal model representations when making simple one-
shot decisions [13, 14]. Along similar lines, Hagmayer and 
Meder [15, 16] investigated whether people spontaneously 
induce causal models when repeatedly making decisions in 
order to maximize payoff variables. Their results showed 
that many participants induced causal models and used them 
to make decisions. These findings demonstrate that people 
do not solely learn causal models when asked to do so, but 
engage in causal induction even when trying to achieve a 
very different goal.  However, in these experiments non-
dynamic causal systems were used (i.e., systems that did not 
change when participants chose not to act). Furthermore, all 
variables within the system were reset to their initial value 
on every trial. In control tasks, by contrast, the system usu-
ally has some internal momentum and the goal of the deci-
sion maker is not to maximize, but to achieve and maintain a 
certain equilibrium state. 

Why Causal Models? 

 Research on control tasks shows that people can success-
fully learn to control complex systems without acquiring 
explicit knowledge about causal structure. One might there-
fore wonder why decision makers should bother with causal 

learning at all. The answer is that causal knowledge is more 
flexible and adaptive than other forms of knowledge. For 
example, causal model representations enable decision mak-
ers to infer the consequences of novel interventions or to 
evaluate changes in the structure of a causal system [8, 15, 
16]. Crucially, these inferences can be derived from the 
structure and parameters of the causal model without the 
necessity of additional learning input. This is a clear advan-
tage over non-causal representations, which require further 
learning whenever the causal system or the available options 
change. Causal knowledge is also critical when there  
are interferences within a dynamic system, such as when an 
ecosystem is on the edge of collapsing or when an industrial 
system such as a production line breaks down.  

 Consider the simple dynamic causal system depicted in 
Fig. (1a) and assume that the decision maker’s task is to 

maintain the value of the final outcome variable at a certain 

target level. In total, there are eight causal relations within 
this causal system (indicated by the arrows in Fig. 1a). First, 

the decision maker has three options to intervene on the sys-

tem (termed ‘do Alpha’, ‘do Beta’ and ‘do Gamma’), whose 
effects are not known prior to learning. These three actions 

affect three intermediate variables (A, B, and C) which dif-

ferentially contribute to the value of the final outcome: vari-
able A increases the level by 80 points, B by 80 points, and C 

by 120 points. Crucially, outcome variable A not only con-

tributes to the value of the final outcome variable, but also 
activates the intermediate variable B. As a consequence, 

choosing ‘do Alpha’ raises the level of the outcome variable 

by 160 points. In addition, the system is dynamic because a 
decay function reduces the final outcome value by 50% from 

trial to trial, regardless of the action taken by the decision 

maker. Thus, even when one does not act upon the system, 
the value of the target variable changes over time. Formally, 

the value of the final outcome variable is determined by the 

following equation:  

    
Valuet

1

= Valuet
0

decay +  Points | do(X )t
0         

(1)
 

 For example, when the current value of the target vari-

able is 120 and option ‘do Alpha’ is chosen, the resulting 
value is 120 · .5 + 160 = 220 points.  Note that Equation 1 

can be derived from the causal model depicted in Fig. (1a), 

but not vice versa. For example, the equation states how the 
value of the outcome is influenced by a particular interven-

tion, but is silent about the intermediate causal processes 

(e.g., that ‘do Alpha’ generates variable A, which in turn 
generates variable B). 

 Assume that the decision maker’s task is to maintain the 
final outcome variable at a target value of 160 points by re-
peatedly intervening on the causal system.  An exemplar-
based approach supposes that participants encode which 
value of the target variable results from a specific action 
taken in a particular state of the system. Thus the experi-
enced feedback is used to incrementally build up a knowl-
edge base. To decide which action to take next, the current 
state of the system is matched to previously seen cases, and 
successful actions are retrieved from memory and repeated. 
For example, a decision maker may have learned that when 
the state of the target variable is very low it is useful to 
choose ‘do Alpha’, since this action entails the largest in-
crease. Conversely, when the value of the target variable is 
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too high, say at 180 points, it is good to choose ‘do Beta’, 
which results in 180 · .5 + 80 = 170 points.  

 While such a strategy may enable the decision maker to 
learn to control the system, it also has some fundamental 
limitations. For example, because the stored cases are close 
to a specific goal state (e.g., 160 points) the acquired knowl-
edge does not easily generalize to other target values (e.g., 
220 points). Most important for the present paper, such an 
exemplar-based learning strategy is likely to generate erro-
neous actions when the structure of the system changes. 
Consider the modified dynamic causal system depicted in 
Fig. (1b), in which variable B has been removed. A causal 
model representation of the original causal system compris-
ing variables A, B, and C allows the decision maker to evalu-
ate the consequences of removing B from the system for the 
available courses of action. First, due to the removal of B, 
‘do Beta’ no longer has any impact on the outcome. Second, 
since ‘do Gamma’ only influences variable C, the conse-
quences of this action are not affected by the structural modi-
fication. Finally, the impact of ‘do Alpha’ is reduced because 
variable A will no longer generate B. Therefore the overall 
impact of ‘do Alpha’ on the outcome value will be reduced 
because of B’s removal. This, in turn, implies that ‘do Al-
pha’ rather than ‘do Beta’ will now raise the value of the 
target variable by 80 points.  

 An exemplar-based approach is likely to generate errone-

ous conclusions in such a situation because the acquired 

knowledge base does not reflect the intermediate causal 

processes that govern the system.  By contrast, according to 

a causal model approach, people not only learn how their 

actions affect the variable they are asked to control, but they 

also learn how the causal variables within the system are 

related to each other. Consider again the causal system de-

picted in Fig. (1a) and a decision maker who repeatedly acts 

upon the system in order to achieve and maintain a certain 

goal state. Given that the intermediate variables can be ob-

served, intervening on the system provides information from 

which a causal model can be derived. This information in-

cludes feedback about the state of the intermediate variables 

resulting from the chosen action, the time course of events, 

and the resulting outcome value. For example, when choos-

ing ‘do Alpha’ the decision maker may observe that first the 

event A is generated, and after a short delay event B occurs. 

This observation is a valid indicator of A being the cause of 

B rather than ‘do Alpha’ being the common cause of both A 

and B [17]. In addition, a causal chain entails that B never 

occurs without A, which provides a statistical cue to the 

causal structure. Based on the parameterized causal model, 

the causal consequences of the different interventions  

available are inferred and the action entailing the best  

outcome can be chosen. In particular, the implications of 

changes of the causal structure can be inferred. For example, 

the modified causal model shown in Fig. (1b) entails that ‘do 

Alpha’ will allow the decision maker to maintain a target 

level of 160 points, although this has never been observed 
before. 

GOALS AND HYPOTHESES 

 To summarize, while studies on causal learning show that 
people have the capacity to learn about the causal structure 
of their environment, research on control tasks has provided 
little evidence that people acquire substantial causal knowl-
edge when dealing with dynamic systems. However, critics 
of this position have proposed that methodological rather 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Dynamic causal system with three variables (A, B, C) contributing to the value of the outcome and three possible interventions (do 

Alpha, do Beta, do Gamma). Arrows indicate causal relations and numbers parameters. The modified causal system resulting from removing 

variable B is depicted in Fig. (1b).  
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than psychological factors may explain the dissociation [18], 
and many have reported findings in which there is a close 
correspondence between structural knowledge and control 
performance [18, 19]. For example, by regularly probing 
knowledge of structural relations during learning, people 
show insight into the relations that govern the behavior of 
the system. In addition, they use this knowledge to control 
the system in subsequent phases. However, while people 
may have knowledge of the structure of the relations, the 
parameters of these relations tend to be only poorly repre-
sented [6, 20]. People may know whether a relation is posi-
tive or negative, but typically they have very little knowl-
edge about the functional form or the strength of the relation. 
Crucially, research in this area has yet to examine whether 
these relations are causal representations of the system, and 
if so, how they are used to inform decisions to control an 
outcome to a specified criterion. In particular, if the informa-
tion available to participants (instructions, feedback resulting 
from interventions, and background knowledge) is insuffi-
cient for inferring a causal model of the underlying system, it 
is not surprising that participants refrained from doing so. 
Whenever the underlying causal system is dynamic and con-
sists of probabilistic non-linear mechanisms connecting par-
tially unobservable variables, it might simply be impossible 
to pin down the structure and parameters of the system be-
cause the causal model is underdetermined by the available 
data. In this case an exemplar-based strategy seems a much 
better approach, because it can easily adapt to any underly-
ing causal system, as it only represents which action is suc-
cessful under specific circumstances. However, this does not 
mean that participants are necessarily reluctant to induce 
causal models in control tasks. We speculate that participants 
are inclined to infer the causal mechanisms of a system, be-
cause causal knowledge enables them to predict the conse-
quences that would result from a change in the causal sys-
tem. Thus, decision makers who learn to control a dynamic 
system should induce a causal model whenever the feedback 
from the system allows them to do so. We pursued this hy-
pothesis in two experiments. 

EXPERIMENT 1 

 The goal of Experiment 1 was to investigate whether 
participants engage in spontaneous causal learning when 
learning to control a dynamic system. To examine the 
knowledge participants acquired during the control task, we 
employed a number of tests. In particular, we presented par-
ticipants with a change in the causal system’s structure. 
Since different kinds of representations of the system entail 
different reactions to such a change, this modification taps 
into participants’ knowledge. While purely instrumental 
knowledge only allows for very limited inferences about the 
changes in effectiveness of previously used interventions, 
causal knowledge enables the prediction of the consequences 
resulting from the modification. 

Method 

Participants and Design 

 63 students from the University of Göttingen (n = 31, 28 
females, 3 males mean age = 22.8) and various universities 
in Berlin (n = 32, 18 females, 14 males, mean age = 25.5) 
participated. Participants from Berlin were paid a small 

amount of money (5 ); participants in Göttingen could 
choose between being paid and receiving course credit. Par-
ticipants were assigned to one of two counterbalanced condi-
tions that only differed in the placement of one particular test 
question. In one condition, they were immediately queried 
about the underlying causal structure after the learning 
phases. In the other condition they were asked about causal 
structure after completing all other test questions. 27 partici-
pants were assigned to the condition in which they were im-
mediately queried about causal structure after the learning 
phase whereas 36 participants were asked about causal struc-
ture after completing all other tasks (the unequal distribution 
resulted from a miscommunication between the two research 
locations).  

Materials and Procedure 

 We used a computer-based biological scenario in which 
participants were instructed to control the level of a certain 

neurotransmitter in the brain of mice. In order to do so, par-

ticipants could stimulate the mice’s brain with three different 
types of rays (labeled Alpha-, Beta-, and Gamma-rays).  Par-

ticipants were further told that the radiation might activate 

different brain areas, which in turn were responsible for the 
production of a certain amount of the transmitter (cf. Fig. 2). 

It was also pointed out that the brain areas could be inter-

connected. No further information was given about the rela-
tions between the different types of radiation and brain acti-

vation, or between the different brain areas and levels of 

neurotransmitter. 

 Next participants were informed that the specific level of 

the neurotransmitter was essential to the survival of the mice. 
There were two different kinds of mice, each of which 

needed a different neurotransmitter level. One of the mice 

needed a transmitter level of 140±20 points, while the other 
mouse needed a level of 280±20. Then participants were 

asked to maintain the neurotransmitter level on a number of 

subsequent trials. To maintain the transmitter level, they 
could stimulate the brain with Alpha-, Beta- or Gamma-rays 

on each trial (henceforth denoted as ‘do Alpha’, ‘do Beta’, 

and ‘do Gamma’). They also had the option to not stimulate 
the brain (‘do nothing’). 

 Fig. (1a) shows the causal system underlying the control 
task. The level of the neurotransmitter had a decay of 50% 
on each trial (i.e., valuet1 = valuet0 · .5), regardless of the 
action taken. Alpha radiation activated one of the brain areas 
(area A), which in turn activated a second area (area B). The 
joint activation of these two areas resulted in a total increase 
of the transmitter level of 160 points. Beta radiation acti-
vated area B and resulted in an increase of 80 points. Finally, 
Gamma radiation activated the third brain area (area C), 
thereby increasing the transmitter level by 120 points. (The 
causal relations from radiation to brain areas on the one hand 
and brain areas and amount of produced transmitter were 
counterbalanced across participants.) Participants were never 
told the causal model’s parameters or the functional charac-
teristics of the system. Thus, the underlying causal relations 
had to be inferred on the basis of the consequences resulting 
from the interventions. The radiation as well as the subse-
quent activation of the brain areas were presented through 
animations (cf. Fig. 2). First, participants saw which brain 
areas became activated due to the chosen intervention. If 
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they chose intervention ‘do Alpha’ they first saw the activa-
tion of area A, followed by the activation of area B (with a 
delay of 1 s). When they chose ‘do Beta’ or ‘do Gamma’, the 
corresponding brain areas (B and C, respectively) became 
active. Straight afterwards they observed how the transmitter 
level changed from the previous level to the new level (due 
to the combined influence of the decay and the intervention). 
The new level was computed in accordance with the underly-
ing causal model’s parameters (cf. Fig. 1). 

 Before being presented with the control task there was an 
introductory phase in which participants could not intervene 
on the causal system. Rather, they passively observed how 
the transmitter level decreased when the ‘do nothing’ option 
was chosen on four consecutive trials. This learning phase 
was added to ensure that all participants observed the decay 
of 50% before learning to control the system. Note that this 
is a necessary requirement to infer the causal model’s pa-
rameters. Without knowing the value of the decay, the un-
derlying function cannot be solved as it would contain two 
unknowns (i.e., the parameter of the decay and the impact of 
the intervention). 

 The decay learning phase was followed by two consecu-
tive control task phases in which participants had to maintain 
a certain value of the transmitter. Each of these phases com-
prised 20 trials. The desired target levels in the two control 
task phases were 140 and 280, respectively. The different 
target levels were chosen to ensure that participants would 
have to select all of the available options during the control 
task. For example, once a participant had reached a level of 
140, it was best for her to always choose ‘do Beta’, as this 
would result in a constant level of 160, which lies within the 
acceptable range of ±20. Conversely, to maintain a level of 
280 the best strategy was to alternate between ‘do Alpha’ 
and ‘do Gamma’.  

 The order of the two control tasks was randomized across 
participants. On each trial participants could choose among 
the four options (‘do Alpha’, ‘do Beta’, ‘do Gamma’, and 
‘do nothing’). When the task was to maintain a level of 140, 
the initial starting value was 100 points. When the target 
level was 280, the initial starting value was 200. On each 

trial the consequences of the intervention were computed and 
feedback was provided as described above (i.e., which brain 
areas became activated and the resulting value of the trans-
mitter level).   

 After the 40 control task trials participants received three 

different tests designed to tap into their knowledge about the 

causal system: a causal model selection test, two choice 
tasks, and two predicted value tests. The first test aimed to 

directly elicit participants’ reportable knowledge of the un-

derlying causal structure. Participants were presented with a 
graphical representation of two different causal models.  

Subjects had to choose between a causal model in which the 

three brain areas were independent from each other (Inde-
pendent Causes Model) and a model in which an activation 

of area A caused an activation of area B (Causal Chain 

Model). For both models all three brain areas were desig-
nated as causes of the transmitter level. If participants used 

the experienced feedback from the activation of the brain 

areas, they should infer that the causal structure corresponds 
to a causal chain model containing a link A B. Since we 

speculated that this test might have an impact on the other 

tests, we counterbalanced the position of this question. In 
one condition participants were asked this question directly 

after the two control phases, whereas participants in a second 

condition received this question subsequent to all other tests. 

 The next two tests aimed to examine how well partici-
pants had learned to control the system. For the choice test 
(Test 2a) participants were asked to choose interventions for 
four different combinations of start values (120 vs. 160 
points) and target values (140 vs. 280 points). For example, 
participants were told that the current value of the transmitter 
was 120 points and the target value was 280. Then they were 
asked to choose the intervention that would get them as 
closely as possible to the desired target value. To ensure that 
these four decisions were only based on the previously ac-
quired knowledge, no feedback was provided in this phase.  
The start/target-combinations were designed in a way that 
there was a clearcut best answer given that participants  
had learned about the structure and parameters of the causal 
system. The order of these four questions was randomized.  

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Figure of the causal system shown to participants. 
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 After the choice test participants were given the  
predicted value test (Test 2b). For this test, participants had 
to estimate the transmitter level resulting from each of  
the four options (‘do Alpha’, ‘do Beta’, ‘do Gamma’, and 
‘do nothing’) for two starting values (140 and 280 points, 
respectively). Hence subjects made eight estimates. Again no 
feedback was provided. This test was administered to assess 
people’s estimates for the causal impact of each available 
intervention. 

 The next tests were designed to investigate whether and 
how participants would react to changes in the causal under-

pinnings of the decision problem. Participants were pre-

sented with new mice, and were instructed that these were 
identical to the ones they had encountered during the previ-

ous control task, except that the brain area B had been surgi-

cally removed and could no longer produce the transmitter 
(cf. Fig. 1b). The removal of variable B from the causal sys-

tem has a number of implications for the effectiveness of the 

different interventions. As Beta radiation only activates area 
B, this intervention can no longer cause an increase in the 

transmitter level. Moreover, due to the causal link A B, the 

causal impact of Alpha radiation would also be affected. 
During the initial control task, Alpha radiation caused an 

activation of brain area A, which in turn activated area B. 

Together these two events generated an increase of +160 
points. Due to the removal of area B, which produced 80 

points, an activation of area A with Alpha radiation would 

now result in an increase of 80 points. This in turn makes 
Gamma radiation the most effective intervention (+120 

points). The crucial point is that the implications of remov-

ing variable B from the causal system can only be inferred 
from a causal model representation of the decision context. 

Thus, if participants engaged in spontaneous causal induc-

tion during the control task, they could now capitalize  
on their causal knowledge to assess the implications of the 

system’s structural modification. 

 To examine participants’ sensitivity to the structural 
modification of the causal system we employed the same 
two tasks as before. The crucial difference was that this time 
the decisions and estimates referred to the modified causal 
system (i.e., the mice without brain area B). Again partici-
pants were presented with four different combinations of 
start values (120 and 160) and target values (140 vs. 280) 
and were asked to choose the intervention that would get 
them as close as possible to the desired target value (Test 
3a). Finally, we administered the same predicted value test 
as before, in which learners had to estimate the resulting 
transmitter value for each possible intervention (Test 3b). 
Again two different start values (140 and 280, respectively) 
were used. 

 Based on our hypothesis that decision makers would use 
the feedback experienced while learning to control the dy-
namic system to infer a parameterized causal model of the 
system, we expected them (i) to prefer the causal chain 
model over the independent causes model, (ii) change their 
intervention choices from Test 2a to Test 3a, and (iii) adjust 
their predicted values for Alpha and Beta radiation subse-
quent to the removal of variable B (Test 2b vs. Test 3b). 

Results 

Control Task 

In order to learn about the structure and the parameters of the 
causal system it is necessary to experience the consequences 
of all available interventions. Therefore we first checked 
which choices were made in the initial control task. Fig. (3a) 
depicts participants’ choices.  All participants chose every 
option at least once; on average each option was chosen 
roughly 10 times. Thus, in principle participants had suffi-
cient information to learn the structure and parameters of the 
underlying causal system. For example, imagine that the 
current value is 200 and a participant chose ‘do Gamma’. 
The outcome of this intervention would be an activation of 
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Fig. (3). (a) Number of chosen interventions during learning in Experiment 1 (means and SE), (b) distance of actual transmitter level to tar-

get level (means and SE). The two blocks (trial 1-20 and trial 20-40) denote the two learning phases with different target values (140 and 

280). At the beginning of each block, the target and starting value of the transmitter were reset.  
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brain area C and the resulting value of the transmitter would 
be (200 · .5) + C = 220. Since the value of the decay was 
known from the initial observation phase there is only one 
unknown in the equation. Thus, the equation can be solved 
for C to determine how much transmitter is produced by 
brain area C (i.e., C = 220 - (200 · .5) = 120). To check 
whether participants learned to maintain the target level of 
the transmitter, we computed the distance from the target for 
each trial. Fig. (3b) depicts the resulting learning curve aver-
aged over participants. It shows that participants learned to 
control the system, although there was little transfer between 
the two target levels (see the sharp increase in distance on 
trial 21 in Fig. 3b). A within-subjects ANOVA comparing 
the average distance of the first ten trials to the average dis-
tance of the last ten trials yielded a clear effect, F(1,62) = 
10.5, p < .01, MSE = 277.4. Taken together, these results 
suggest that participants successfully learned to maintain the 
target value in the control task. 

Causal Model Selection Task 

 As noted previously, we expected that participants would 
correctly identify the causal structure of the system. This  
was in fact the case: 84% of participants correctly chose  
the causal chain model over the independent causes model, 
which is significantly higher than 50%, 

2
(df = 1, N = 63)  

= 29.3, p < .01. This finding indicates that participants  
were sensitive to the structure of the causal system underly-
ing the control task. Also, participants’ model choices were 
not affected by the measurement point, 

2
(df = 1, N = 63) = 

.04, p > .80.  We therefore pooled the data for the subsequent 
analyses. 

Intervention Choices 

 Next we analyzed decision makers intervention choices 
in Test Phases 2a and 3a, in which they were asked to make 
four intervention decisions for the original system (compris-
ing all three variable A, B, and C) and the modified causal 
system in which variable B was removed. Fig. (4) depicts the 
results.

1
 On the left hand side choices are depicted for the 

causal system participants acted upon in the control task.  If 
participants correctly inferred the consequences of the differ-
ent interventions, they should prefer intervention ‘do Beta’ 
for target level 140 since (current level · decay) + Points|do 
Beta = (120 · .5) + 80 = 140 and (160 · .5) + 80 = 160. For 
target level 280 ‘do Alpha’ is the best option because the 
other options result in less points: (current level · decay) + 
Points|doAlpha = (120 · .5) + 160 = 220 and (160 · .5) + 160 
= 240. Although not perfect, the most frequent choices con-
formed to these predictions. On the right hand side of Fig. 
(4) choices are depicted for the modified causal system in 
which area B (the area normally activated by Beta radiation) 
is removed. Based on the modified causal model, partici-
pants should now have preferred intervention ‘do Alpha’ for 
target level 140 because Points|do BetaB_removed= 0 and 
Points|do AlphaB_removed= 80. For target level 280 ‘do 
Gamma’ should now be chosen because Points|do Gam-

                                                
1
We ran tests to check whether asking participants first about causal structure affected 

their choices. In order to avoid low cell entries we classified participants’ choices as 
predicted vs. not-predicted for all eight test cases. Then we conducted 2-test for each 

test case separately comparing the choices in the two counterbalancing conditions. 
Only one significant difference resulted. Participants more often chose do Alpha after 

the modification given a starting value of 120 and a target of 140 when they were first 
asked about causal structure ( 2 = 8.82, p < .01). As this was the only difference, we 

report the choices for both conditions together in Fig. (4). 

maB_removed= 120, that is ‘do Gamma’ now has a higher im-
pact than ‘do Alpha’. Thus, participants should exhibit a 
differential choice pattern for the original and the modified 
causal system. In contrast to this prediction, Fig. (4) indi-
cates that participants tended to stick with the choices they 
made for the system they initially acted upon. To test 
whether participants changed their preference we conducted 
a Bowker test for choices with respect to a target level of 
140. A Bowker test investigates whether frequencies of dif-
ferent categories (i.e., chosen options) stay the same for two 
measurements. The test confirmed that a number of partici-
pants systematically switched away from choosing ‘do Beta’, 

2
(df = 1, N=126) = 22.1, p < .001. However, not all of them 

turned to ‘do Alpha’ as we expected; a substantial number 
now preferred ‘do Gamma’. For a target level of 280 a 
Bowker test could not be run due to low cell entries. Instead 
we conducted a McNemar test focusing on the ‘do Alpha’ 
and the ‘do Gamma’ choices. In line with the predictions 
derived above, participants switched away from choosing 
‘do Alpha’ and now preferred more often ‘do Gamma’, but 
still most participants continued with ‘do Alpha’, 

2
(df = 1, 

N=126) = 17.3, p < .001. Thus, it does not seem as if deci-
sion makers used a correctly parameterized causal model to 
make their choices. 

Predicted Values 

 In Test Phases 2b and 3b participants were asked to esti-
mate the transmitter values resulting from all possible inter-

ventions (including the option of ‘do  nothing’). Estimates 

were requested for two starting values (140 vs. 280) for both 
the original and modified causal system. Table 1 depicts the 

results for the 16 estimates as well as the values entailed by 

the underlying causal model. For the system participants 
acted upon in the control phase, they generally underesti-

mated the transmitter level resulting from the interventions. 

However, the rank order of the estimates corresponds to the 
order entailed by the underlying causal model.  

 The crucial analyses concern the comparison of ‘do Al-
pha’ and ‘do Beta’ before and after removing variable B 
from the causal system. A causal model analysis entails that 
the ratings for ‘do Alpha’ and ‘do Beta’ should decline. The 
qualitative pattern of estimates conformed to these predic-
tions. Multiple planned comparisons revealed significant 
differences for ‘do Alpha’ ratings before and after the modi-
fication for both starting values of 140 and 280 (cf. Table 1). 
The difference for ‘do Beta’ ratings before and after the 
modification was only significant for a starting value of 140. 
The difference for starting value 280 (p = .055) missed our 
error type I corrected criterion of significance. However, the 
obtained mean estimates also indicate that participants did 
not decrease their estimates as much as entailed by the un-
derlying causal model. Since the removal of area B com-
pletely wipes out the causal impact of ‘do Beta’ on the 
transmitter level the predicted values of ‘do Beta’ should 
equal the ratings for ‘do nothing’. However, only 16 out of 
63 participants made this inference at a current value of 140, 
and only 20 participants at a current value of 280. In line 
with our predictions the small differences obtained for the 
estimates of ‘do Gamma’ and ‘do nothing’ failed to reach 
significance for both starting values. Overall, the findings 
indicate some evidence for participants’ sensitivity to the 
causal model modification, but the results also show that 
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Fig. (4). Percentage of participants choosing a certain intervention in the test phase before the causal system was modified and after the  

modification in Experiment 1. Numbers on the x-axis indicate the specific test case, the first number is the target value (e.g. 140); the second 

number is the starting value (e.g. 120). Choices predicted on the basis of the correct causal model are indicated by dashed borders.  

Table 1. Mean Estimates of Effects Resulting from Interventions in Experiment 1. Numbers in Italics are Predictions Derived from 

a Correctly Parameterized Causal Model, Numbers in Brackets are Standard Errors 

 Target & Start =140 Target & Start = 280 

  Before After Before After 

230 150 300 220 

203.95 184.41 325.10 308.92 

(3.35) (3.92) (5.22) (6.66) 

do Alpha 

F(1,61) = 15.8; p <.001**   F(1,61) = 9.59; p <.003* 

150 70 220 140 

145.03 115.79 243.56 224.78 

(3,65) (4,94) (4.06) (7.78) 

do Beta 

F(1,61) = 20.3; p <.001**   F(1,61) = 3.82; p =.055 

190 190 260 260 

161.40 155.76 268.54 270.60 

(3.58) (3.64) (4.11) (3.71) 
do Gamma 

F(1,61) = 3.66; p =.060  F(1,61) < 1; p =.49  

70 70 140 140 

76.57 81.75 157.03 165.97 

(1.70) (3.25) (4.34) (5.85) 

do Nothing 

 F(1,61) = 3.22; p =.078  F(1,61) = 3.24; p =.072 

Note. For all interventions and target values separate ANOVAs were calculated with counterbalancing condition (causal structure test first vs. causal structure test last) as a between-
participants variable and modification (before vs. after) as a within-participants variable. To correct for accumulation of type 1 error the significance level was set to  = .00645. It 

turned out that neither the counterbalancing condition nor the interaction of the two factors ever reached significance (all Fs <2.1, p>.15). Therefore only the main effects of the 

modification of the causal system are reported in Table 1. Results marked with an asterisk are significant. 
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decision makers did not fully grasp the implications of re-
moving variable B from the causal system. 

Modeling Decision Making Strategies  

 The findings suggest that participants did not success-
fully learn about the causal model and its parameters in the 
initial control task. For a more detailed analysis we modeled 
alternative decision making strategies and analyzed how well 
participants’ judgments conformed to these strategies. The 
first strategy is representative for models assuming that deci-
sion makers learn the relations among options and outcome 
value. The second strategy is exemplar-based. The other 
three strategies model different types of causal model  
approaches. 

Mean Change Heuristic 

 The first strategy is inspired by the natural means heuris-
tic proposed by Hertwig and Pleskac [21] as a strategy for 
making repeated decisions under uncertainty. The natural 
means heuristic assumes that participants cope with uncer-
tainty by encoding the outcomes resulting from the different 
options. This strategy is sensitive to the predicted value of 
the different options, because outcomes depend both on the 
probability and the value of the outcome. In a dynamic sys-
tem, however, the actual outcome also depends on the initial 
state of the system. Therefore the assumption underlying the 
relative change heuristic in the context of a control task is 
that participants do not learn the absolute impact of the dif-
ferent interventions, but rather encode the relative changes 
resulting from their actions.

2
 In particular, this model as-

sumes that participants do not disentangle the influence of 
the interventions from the decay, but merely encode the av-
erage change resulting from a chosen option. For example, if 
the current value of the transmitter is 200 and a participant 

                                                
2
Note that the mean change heuristic is identical to the natural means heuristic if the 

system is reset to the same starting value on each trial. 

chose ‘do Alpha’, the resulting value of the transmitter 
would be (200 · .5) + Points | do A = (200 · .5) + 160 = 260. 
Thus, the relative change resulting from the chosen action 
would be +60 points. In summary, the relative change heu-
ristic is agnostic about causal structure and only focuses on 
the relative impact of the interventions on the state of the 
outcome variable (i.e., the transmitter value). 

 To model this strategy, we computed the relative changes 
participants observed for each type of intervention (i.e., do 
Alpha, do Beta, do Gamma, and do nothing) during the con-
trol task. Fig. (5) depicts the experienced mean changes 
separately for target 140 and target 280. Note that differ-
ences between the two target levels are due to differences in 
starting values. For example, if the current value of the 
transmitter is 150 choosing ‘do Beta’ results only in a small 
relative change ((150 · .5) + 80 = 155). For high starting val-
ues the observed relative change may even be negative, since 
the decay overrides the positive impact of the intervention 
(e.g., if one chooses ‘do Beta’ at a level of 240 the resulting 
value is (240 · .5) + 80 = 200). As can be seen from Fig. (5), 
the observed changes do not correspond to the actual  
parameters of the underlying causal model. However,  
their order reflects the order of impacts of the available  
interventions (‘do Alpha’ > ‘do Gamma’ > ‘do Beta’ > ‘do 
nothing’).  

 The mean changes observed by the individual partici-
pants were then used as predictors for their intervention 
choices (Test phases 2a/b) and predicted value ratings (Test 
Phases 3a/b). To predict the choices in Test phase 2a, the 
mean averages for each option were added to the starting 
value and the difference to the target was computed. The 
option resulting in the minimal difference to the target was 
assumed to provide the best choice for a participant encoding 
only the relative impact of the interventions. Consider a 
situation in which the current value of the transmitter is 120 
and the target value is 140. Further assume that the mean 
changes observed by the participant were +100 for ‘do Al-

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Observed changes in transmitter level in Experiment 1 (means and SE). Change is the difference of the transmitter value resulting 

from the intervention and its starting value prior to the intervention. 
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pha’, +20 for ‘do Beta’, ‘+70 for ‘do Gamma’, and -75 for 
‘do nothing’. The mean change heuristic then predicts that 
the decision maker would choose ‘do Beta’, since 120 + 20 
comes closest to the desired target value.   

 To capture the implications of the removal of area B we 
assumed that decision makers simply subtracted the experi-
enced mean change of ‘do Beta’ from the experienced mean 
change for interventions ‘do Beta’ and ‘do Alpha’. Thus, 
participants following this encoding strategy should assume 
that the intervention ‘do Beta’ is not any longer effective 
after removing B from the causal system (Fig. 1b). Note that 
subtracting the mean change of ‘do Beta’ from ‘do Alpha’ 
does not imply sensitivity to causal structure. It merely as-
sumes that participants were sensitive to the fact that a 
choice of ‘do Alpha’ was followed by an activation of areas 
A and B. 

Exemplar-Based Strategy 

 The second strategy is an implementation of the general-
ized context model [22]. The generalized context model is one 
of the dominant exemplar models in categorization, but it can 
also be used to model repeated decision making. We chose 
this model because it has been widely used and proved highly 
successful in the area of judgment and decision making [23]. 
The exemplar-based strategy assumes that participants encode 
each trial they encounter. More specifically, for each trial the 
starting value of the transmitter, the action chosen, the acti-
vated areas and the resulting change in the outcome value are 
assumed to be stored. To predict the consequences of an  
option on a new trial, the starting value of this particular trial 
is compared to the starting values of all previous trials on 
which the same option had been chosen. Previous outcome 
changes are weighted depending on the similarity of each  
previous starting value to the starting value of the current  
trial. Trials resembling the current trial are weighted more. 
Identical trials receive the maximum weight. By integrating 
the weighted changes of outcomes from previous trials an  
estimate of the outcome value for the considered option for the 
current trial is derived. Estimates for all options are compared 
to the target value to identify the best option. 

 To model this strategy, we first computed the change 
participants observed for each type of intervention (i.e., do 
Alpha, do Beta, do Gamma, and do nothing) on each trial, 
changej, do(x). Then we computed the absolute distance of 
each starting value of each test trial to the starting values of 
all trials seen before [22]. For current trial i and previous 
trials j1…jn the distance was defined as  

dij   =  | valuei,t
0

 valuej,t
0

|
         

(2)
 

 Next, we transformed absolute distances into psychologi-
cal distances reflecting perceived similarities. To do so we 
used the exponential transformation proposed in the general-

ized context model [22]: 

  ij
 =  e dij            

(3)
 

 These similarities were then used to weight the observed 
outcome change on each trial on which the same option was 
chosen. By summing up over the weighted observed out-
come changes and adding the current starting value the out-
come value for each option was predicted. The following 
formula was used: 

    
valuei,dox ,t

1

 = ijj= 1

j= n

change j,dox / ij
j=1

j= n

+ valuei,t
o

       (4) 

 For example, suppose a participant chose ‘do Beta’ 
twice, once with a starting value of 100 points resulting in a 
change of +30 points and once with a starting value of 150 
resulting in a change of -15 points. Now the participant is 
confronted with a starting value of 140 and tries to predict 
the resulting value using these two previous trials. The dis-
tances of the new starting value to the previous starting val-
ues are 40 and 10 points respectively, therefore similarities 
are 4.25  10

-18
 and 4.54  10

-5
. Thus the predicted value is 

(4.25  10
-18

  30 + 4.54  10
-5

  (-15)) / (4.25  10
-18

 + 4.54  
10

-5
) + 140 = 125. As the example shows, closer previous 

trials exhibit a much stronger influence on the prediction. 
Predicted values for each option were then compared to the 
target value. The option whose value comes closest to the 
desired target value is chosen.  

 To capture the implications of the removal of area B we 
assumed that decision makers would use the knowledge they 
had about cases in which only area B was activated before. 
These were the cases in which the option ‘do Beta’ was cho-
sen. Therefore the removal of B can be accounted for by sub-
tracting the predicted value of option ‘do Beta’ from the pre-
dicted value of ‘do Alpha’ and ‘do Beta’ for each particular 
test case. Thus,  

    
valuedo_ Alpha|Bremoved ,t1

= valuedo_ Alpha,t
1

         
(5)

 

    
 value

do _ Beta,t
1

 

 Imagine that the value of ‘do Alpha’ has to be predicted 
for a starting value of 160 points after area B had been re-
moved. Then the predicted values for both ‘do Alpha’ and 
‘do Beta’ are computed. Let’s assume that the resulting val-
ues are +80 for ‘do Alpha’ and -1 for ‘do Beta’. Hence the 
predicted value of ‘do Alpha’ given a removal of area B 
would be 160 + 80 + 1 = 241. Note that this subtraction does 
not imply that participants are sensitive to causal structure. 
Like for the mean change strategy it merely entails that par-
ticipants are sensitive to the fact that ‘do Alpha’ is followed 
by an activation of areas A and B. 

Normative Causal Model Strategy 

 The third strategy assumes that participants use the in-
formation about the decay and the feedback on the interven-

tions to infer the structure and the parameters of the underly-
ing causal system. Hence, it presupposes that the actual pa-
rameters of the causal system are inferred. Choices and esti-
mates are then assumed to be based on the correctly param-

eterized causal model. Predictions derived from this norma-
tive causal model have been presented in the previous sec-
tions (cf. Table 1). We decided to include this strategy as a 
benchmark, although the analyses presented above indicate 

that participants in general did not follow this strategy. 

Subjective Causal Model Strategy 

 The fourth strategy assumes that participants engaged in 
causal learning and correctly inferred the underlying causal 

structure, but failed to derive correct parameter estimates. 

Thus, it may be the case that participants engaged in causal 
decision making, but based their choices and predictions on 

their subjective estimates of the causal model’s parameters. 

These subjective parameter estimates may deviate from the 
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actual parameters since extracting the causal model’s  

parameters required participants to disentangle the impact of 

the different interventions from the influence of the decay.  

 To model this strategy, we used participants’ estimates 
for the consequences of the interventions to derive their in-
dividual parameter estimates of the causal model. We first 
reconstructed participants’ assumptions about the decay by 
dividing their individual predicted value estimates for the 
consequences of ‘do nothing’ before the causal structure 
modification by the respective starting value (140 or 280) 
and then taking the mean of these two estimates. Assume a 
participant estimated that ‘do nothing’ at current transmitter 
values of 140 and 280, respectively, would result in values of 
90 and 160. The subjective estimates for the decay would 
then be (90/140 +160/280) / 2 = .61. 

 Next we calculated the supposed influence for the other 
interventions from the predicted value estimates given for 
the original causal model. To do so, we multiplied the start-
ing values by the participants’ subjective estimate of the de-
cay and then subtracted the result from the participants’ sub-
jective estimate for the resulting transmitter value for this 
intervention. Assume a participant predicts that the resulting 
transmitter level would be 220 for ‘do Alpha’ at a current 
value of 140. Her subjective estimate of the decay was .6. 
The subjective estimate for the impact of ‘do Alpha’ would 
then be 220 – (140 · .6) = 136. We again averaged the results 
for each intervention across the two starting values (140 and 
280). Note that the resulting parameter estimates were based 
on the ratings participants gave before the causal system was 
modified. In order to predict the parameters of the modified 
causal system, the parameter for ‘do Beta’ was subtracted 
from the derived estimates of ‘do Alpha’ and ‘do Beta’. 
Hence, the parameter values decreased to zero for ‘do Beta’ 
and remained unchanged for ‘do Gamma’ and ‘do nothing’. 
These individual parameter estimates (including the decay) 
were then used to predict the individual choices in Test 
Phases 2a and 3a (i.e., the intervention choices made for the 
original and modified causal system) and the predicted val-
ues for each intervention after area B had been removed 
(Test Phase 3b). 

Subjective Causal Model Without Decay 

A fifth possible strategy is that participants induced a causal 

model and estimated its parameters, but assumed that no decay 

would be present once an intervention was taken. That is, de-
cision makers may have assumed that stimulating the brain by 

means of radiation eliminates the transmitter’s decay. Causal 

Bayes net theories in fact make the assumption that certain 
(‘strong’) interventions eliminate all other causal influences on 

the variable intervened on [24]. Another reason for not assum-

ing decay when acting upon the system might have been that 
the impact of the decay was not directly observable during the 

control task.  The decay was only explicitly observed when the 

‘do nothing’ option was chosen, otherwise the transmitter 
level was merely observed to change up- or downward. The 

assumption of no decay given interventions entails different 

parameters for the causal model. To calculate these parameters 
we again used participants’ ratings of predicted values in Test 

Phase 2b (i.e., the predicted value estimates for the unmodified 

causal system). The only difference to the previous model  
is that the decay is ignored when the impact of the three  

interventions is calculated. Otherwise the calculation is identi-

cal to the previous strategy. The same holds for the derivation 

of the predictions. 

Evaluating the Decision Models 

 To evaluate the different strategies we compared the 
models’ predictions with participants’ individual choices  

and ratings. For the choice task, the number of correctly pre-

dicted interventions was computed separately for each par-
ticipant.

3
 The number of correct predictions ranged from 

zero (none of the choices was predicted) to four (every 

choice made was predicted by the model).  The resulting 
distributions for all strategies are depicted in Fig. (6). For 

example, the normative causal model correctly predicted all 

four choices made by a participant with respect to the system 
observed during learning (i.e., before modification) for 15 

participants, it predicted 3 out of 4 choices for another 34 

participants, 2 out of 4 for ten participants, and only 1 out of 
4 for 4 participants. There were no participants for which the 

normative causal model failed completely. In Fig. (6) also 

the prospective results from a random choice model are de-
picted. Random choices were modeled by a binomial distri-

bution with n = 4 choices and a probability of p = .25 to pre-

dict the actual choice by chance. If participants chose ran-
domly, then none of a participant’s choices should be  

correctly predicted for 20 participants, only one choice  

for 27 participants, two choices for 13 participants and 3 out 
of 4 choices for 3 participants. Given random choices no 

complete matches are expected (see Fig. (6) black lines and 

diamonds).  

 As Fig. (6a) shows, all strategies predicted participants’ 

choices before the modification of the causal system better 

than the random choice model.  The resulting distributions 
all deviated significantly from the random binomial distribu-

tion (
2

mean_change = 1963.0, p < .001; 
2

exemplar = 1179.0, p < 

.001; 
2

causal_normative = 1250.9,  p < .001; 
2

causal_subjective+decay = 
1239.7,  p < .001; 

2
causal_subjective+no_decay = 1260.2, p < .001).  

Hence, all strategies can predict the decisions made by the 

participants with respect to the system they intervened upon 
in the initial control task. A different picture arises for the 

intervention choices made regarding the modified causal 

system in which variable B was removed. As shown in Fig. 
(6b) only the mean change heuristic, the exemplar-based 

strategy and the subjective causal model without decay were 

able to predict participants’ choices, although the predictions 
from the other strategies also deviated from the random 

choice model (
2

mean_change = 179.4, p < .001; 
2

exemplar = 123.3, 

p < .001; 
2

causal_normative = 17.0, p = .002; 
2

causal_subjective+decay = 
61.2, p < .001; 

2
causal_subjective+no_decay = 190.6, p < .001). Thus, 

only strategies not explicitly taking the system’s momentum 

(i.e., the decay of the outcome value) into account were able 
to predict participants’ choices before and after the causal 

modification. Moreover, the three strategies had almost the 

same predictive power (cf. Fig. 6b).  

                                                
3
We decided to include all participants in the evaluation of the five models. Although it 

would be interesting to see whether participants who correctly identified the underlying 

causal model used different strategies, we decided not to split up participants into 

subgroups. The reasons are that (i) participants had a probability of 50% to pick the 
true model in the model selection task by chance, and (ii) all other conceivable indica-

tors of causal assumptions would have to be derived from the variables that are used in 
modeling. 
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 Next we compared the models’ predictions with partici-
pants’ estimates of the predicted values for the modified 
causal system (i.e., the ratings given in Test Phase 3b). Recall 
that we calculated the parameters of the causal model strate-
gies from participants’ ratings in Test phase 2b. To assess the 
fit between participants’ actual ratings of the transmitter level 
and predictions we calculated the normalized root mean 
square errors (NRMSE)

4
. Lower values of NRMSE indicate a 

better fit between the strategies’ predictions and participants’ 
predicted value estimates. It turned out that the subjective 
causal model without decay fitted slightly better than the mean 
change heuristic and the exemplar-based strategy, NRMSE-

mean_change = .285, NRMSEexemplar = .234, NRMSEcausal_normative = 
.261, NRMSEcausal_subjective+decay = .242, NRMSEcausal_subjective+no_ 

decay = .213. Within-participants t-tests
5
 confirmed that the 

causal model without decay predicted participants ratings bet-
ter than the mean change heuristic (t(62) = 10.4, p < .01), the 
exemplar model (t(62) = 3.04, p < .01), and the normative 
causal model (t(62) = 2.57, p < .05). Only a marginal differ-
ence resulted for the causal model with decay (t(62) = 1.71, 
p < .10).  

Summary 

 The findings of this first experiment provide mixed  
evidence for the induction of causal models in the context of 
a control task. On the one hand, the results of the causal 
model selection task indicate that a majority inferred the true 
underlying causal structure. On the other hand, we found 
only minimal evidence that participants inferred the actual 
parameters of the system. Neither their choices of interven-

                                                
4
This measure normalizes the deviations on the range of values. 

5
The distributions of NRMSEs were one-peaked and not obviously skewed. Therefore 

t-tests are a robust way to test for differences. 

tions for the modified causal system nor their predicted  
values for these interventions conformed to the true causal 
model and its parameters. Even when we reconstructed  
participants’ parameter estimates from their ratings on an 
individual basis answers could not be predicted (see results 
for the subjective causal model with decay). However, one 
strategy predicted participants’ choices and ratings quite 
well: A causal model strategy which assumes that interven-
tions eliminate decay.  

EXPERIMENT 2 

 A possible explanation for the findings of Experiment 1 
is that participants assumed that no decay was present when-
ever they intervened on the system. This idea receives some 
support from the literature on causal models. For example, a 
number of recent studies have examined how people reason 
about interventions that deterministically fix the state of a 
variable [9-11, 14, 24] (see [25] for a formal analysis based 
on causal Bayes net theory). These studies show that people 
tend to assume that interventions override the influence of 
the target variable’s natural causes. Thus, one may speculate 
that decision makers in Experiment 1 assumed that the decay 
is only present when no intervention is attempted, but is 
eliminated once an intervention is made. An immediate con-
sequence of this assumption would be that they did not at-
tempt to separate the causal impact of the interventions from 
the influence of the decay in order to derive the causal 
model’s parameters. The modeling results also provide some 
support for this hypothesis. The subjective causal model 
without decay fitted participants’ choices and estimates quite 
well.  

 If this hypothesis is correct, then there should be a sub-
stantial difference when participants are provided with in-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Results of strategies modeled in Experiment 1: Mean change heuristic, normative causal model, subjective causal model with decay, 

subjective causal model without decay. Depicted is the distribution of the number of correctly predicted choices for each participant. As a 

benchmark the predictions of a random choice model are depicted (binomial distribution with n=4 and p=.25). See text for explanations. 
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formation that the decay is present even when they intervene 
on the causal system. In this case they should infer the pa-
rameters of the underlying causal system more accurately 
and should derive better predictions for the modified causal 
system. Therefore we replicated Experiment 1, but now on 
each trial showed participants how the transmitter level de-
creased due to the decay, before the positive impact of the 
chosen intervention was added. 

Method 

Participants and Design 

 61 students from different universities in Berlin partici-
pated (32 females, 29 males, mean age = 25.0). They were 
paid 5 for participating. Again they were randomly as-
signed to one of the two counterbalanced conditions that 
only differed in the placement of the causal model selection 
task. 30 participants were asked about the underlying causal 
structure directly after the control task, 31 were asked after 
all other test phases. 

Materials and Procedure 

 The materials and procedure were the same as in Ex-

periment 1.The only difference was that on each trial during 

the control task participants could observe the impact of the 
decay. After making their choice, participants first observed 

the activation of the brain areas resulting from the chosen 

intervention. Then they saw how the value of the transmitter 
decreased by 50%. Finally, they observed how the transmit-

ter level raised to its final level (assuming they had inter-

vened on the system, if they had chosen ‘do nothing’ the 
level remained at the state caused by the decay). For exam-

ple, when the current state was +100 and participants chose 

‘do Alpha’ they would first observe how brain areas A and B 

became successively activated. Next they would observe 

how the transmitter level decreased to 50 points (due to the 
decay); then they would observe it rose to170 points (due to 

the intervention). The whole sequence was presented as one 

animation without any interruptions.  

Results 

Control Task 

 The interventions chosen by the participants are depicted 
in Fig. (7a). The choice pattern was very similar to the first 
experiment. Participants preferred to choose intervention ‘do 
Beta’ when the target level was 140 and interventions ‘do 
Alpha’ and ‘do Gamma’ when that target value was 280. 
These choices are in accordance with all of the discussed 
theoretical accounts, including decision making based on a 
correctly parameterized causal model. Fig. (7b) depicts the 
learning curve for the participants (i.e., the distance between 
the target level and the achieved level of the transmitter), 
which indicates that they successfully learned to control the 
system and to maintain the target level of the transmitter. A 
within-participants ANOVA comparing the average differ-
ence in the first ten trials to the average distance in the last 
ten trials confirmed participants’ improvement, F(1,60) = 
16.8, p < .001, MSE = 302.5. 

Causal Model Selection Task 

 As with the previous experiment a majority of partici-
pants (80%) correctly preferred the causal chain model over 
the independent causes model. This percentage again de- 
viated significantly from random choices, 

2
(df = 1, N = 61) 

= 22.4, p < .01. A 2 2 Chi-Square test revealed no difference 
between the two counterbalancing conditions, 

2
(df = 1, N = 

 a b 

 

 

 

 

 

 

 

 

 

 

Fig. (7). (a) Number of chosen interventions during learning in Experiment 2 (means and SE), (b) distance of actual transmitter level to tar-

get level (means and SE). The two blocks (trial 1-20 and trial 20-40) denote the two learning phases with the different target values (140 and 

280). At the beginning of each block, the target and starting value were reset. 
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61) = .50, p > .50. We therefore pooled the data for all sub-
sequent analyses. 

Intervention Choices
6
  

 Fig. (8) depicts participants’ choices for the system they 
acted upon during the control task (left hand side) as well the 
interventions chosen for the modified causal system (right 
hand side). For the original system, participants preferred to 
choose ‘do Beta’ given a target of 140 and ‘do Alpha’ given 
a target of 280. Thus, choices again conformed to the predic-
tions derived from the correctly parameterized causal model. 
However, the obtained choice pattern differs considerably 
for the modified causal system. After the removal of area B 
participants chose ‘do Alpha’ and ‘do Gamma’ more often 
for a target of 140, and ‘do Gamma’ more often for a target 
of 280. Most of these changes were in accordance with the 
predictions derived from the correctly parameterized causal 
model. A Bowker test for target level 140 confirmed a sig-
nificant difference between the choices made before and 
after the modification, 

2
(df = 6,

 
N = 122) = 42.8, p < .001. 

For a target level of 280 we again used a McNemar test for 
choices of ‘do Alpha’ and ‘do Gamma’ due to low cell en-
tries. This test again yielded a significant result, 

2
(df = 1, 

N = 122) = 33.1, p < .001, indicating that participants 
switched from ‘do Alpha’ to ‘do Gamma’. Thus, in contrast 
to Experiment 1 we found clear indications that participants 
acquired substantial knowledge of the causal structure and its 
parameters and used this knowledge to adapt their choices 
when variable B was removed from the system. 

                                                
6
We again tested whether the order of the test questions affected participants’ choices. 

There was no difference between the two counterbalancing conditions, all 2< 1, p 

>.33. 

Predicted Values 

 Participants’ estimates of the transmitter level resulting 
from the interventions are shown in Table 2. Numbers on the 
left show the estimates for the original causal system; num-
bers on the right represent participants’ estimates for the 
modified causal system. Participants significantly reduced 
the predicted values of ‘do Alpha’ and ‘do Beta’ for the 
modified causal system while the predicted values for ‘do 
Gamma’ and ‘do nothing’ remained about the same. This 
inference pattern was obtained for both starting values (see 
Table 2 for the results of the statistical analyses). Thus the 
qualitative pattern conformed to the predictions derived from 
a correctly parameterized causal model. Although the quanti-
tative estimates still deviated from the values derived from a 
causal model analysis, much larger differences between the 
original and modified causal structure were obtained than in 
Experiment 1 (cf. Table 1). A closer inspection of the data 
revealed that 21 (target 140) and 19 (target 280) out of the 61 
participants lowered their estimates for ‘do Beta’ to the 
amount implied by the parameters of the causal model ( be-

fore-after = -80 ± 20). On the other hand, 15 (target 140) and 22 
(target 280) participants did not lower their estimates ( before-

after  0). The rest of the participants lowered their estimates 
to a different degree. 

Evaluation of Strategy Models 

 Participants’ intervention choices and predicted value 

estimates were again modeled using the strategies defined in 

Experiment 1 (mean change heuristic, exemplar-based strat-

egy, normative causal model, subjective causal model with 

decay, and subjective causal model without decay). Based on 

the predictions derived for each individual participant the 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). Percentage of participants choosing a certain intervention in the test phase before the causal system was modified and after the 

modification (Experiment 2). Numbers on the x-axis indicate the specific test case, the first number is the target value (e.g. 140); the second 

number is the starting value (e.g. 120). Choices predicted on the basis of the correct causal model are indicated by dashed borders.  
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number of choices matching to the actual choices was 

counted. The resulting distribution of matches was again 

compared to a binomial distribution modeling random 

choices (binom(n = 4, p = .25)). Fig. (9) shows the distribu-

tions of the strategies and the random choice model. For  

the original system, all strategies achieved a better fit  

than the random choice model (
2

mean_change = 1565.4, 

p < .001; 
2

exemplar = 1846.2, p < .001; 
2

causal_normative = 1252.3, 

p < .001; 
2

causal_subjective+decay = 1675.4, p < .001; 
2

causal_ 

subjective+no_decay = 371.5, p < .001). This was also true for the 

modified causal system: 
2

mean_change = 56.0, p < .001; 
2 

exemplar =106.0, p < .001; 
2

causal_normative = 142.5, p < .001, 
2

causal_subjective+decay = 280.9, p < .001; 
2

causal_subjective+no_ 

decay = 113.1, p < .001. Looking at the distribution and the 
2

 -

values, the subjective causal model with decay strategy 

seems to have done best. It predicted at least 3 out of  

the 4 choices for 16 of the participants; the subjective  

causal model without decay did the same for 8 participants, 

the mean change heuristic for 7, and the exemplar based 

strategy for 4. For the remaining participants the models  

either did not yield differential predictions or were not  

able to account for at least 3 out of the 4 predictions. These  

results indicate that participants probably used a variety of 

strategies. However, most seem to have preferred a causal 
strategy.  

 In a second step, we also evaluated the models’ predic-
tions for the predicted value estimates. We again computed 
normalized root mean squared errors (NRMSE). The results 
mirror the findings obtained for the intervention choices, 
NRMSEmean_change = .393, NRMSEexemplar = .304, NRMSE-

causal_normative = .229, NRMSEcausal_subjective+decay = .214, NRMSE 

causal_subjective+no_decay = .261. The subjective causal model with 
decay strategy fitted participants’ ratings significantly better 
than the mean change heuristic (t(60) = 5.85, p < .01), the 
exemplar-based strategy (t(60) = 3.25, p < .01), and the sub-
jective causal model without decay (t(60) = 2.80, p < .01). 
There was no difference to the normative causal strategy 
(t(60) = 1.18, p = .24).  

Summary 

 Participants were confronted with the same causal system 

in both Experiment 1 and 2. The only difference was that in 

Experiment 2 information about the causal impact of the 
decay was provided when decision makers intervened on the 

system. As before, the majority of participants was able to 

correctly infer the structure of the underlying causal system. 
In contrast to the results of Experiment 1 we now found that 

participants systematically adapted their choices and esti-

mates when the structure of the causal system was modified. 
In accordance with the predictions of a causal model ap-

Table 2. Mean Estimates of Effects Resulting from Interventions in Experiment 2. Numbers in Italics are Predictions Derived 

from a Correctly Parameterized Causal Model, Numbers in Brackets are Standard Errors 

 Target & Start =140 Target & Start = 280 

  Before After Before After 

230 150 300 220 

199.8 155.6 315.2 274.8 

(4.82) (4.98) (5.18) (8.57) 

do Alpha 

F(1, 59) = 66.5; p <.001**  F(1, 59) = 32.4; p <.001** 

150 70 220 140 

150.9 111.0 248.4 215.1 

(4.37) (5.07) (6.03) (8.51) 
do Beta 

F(1, 59) = 53.8; p <.001** F(1, 59) = 14.3; p <.001** 

190 190 260 260 

163.3 156.4 269.1 266.1 

(4.17) (3.92) (4.77) (5.29) 

do Gamma 

F(1, 59) = 4.33; p =.04  F(1, 59) < 1; p =.58  

70 70 140 140 

74.3 76.2 155.2 156.6 

(1.81) (2.22) (4.69) (4.63) 

do Nothing 

F(1, 59) = 1.79; p =.19 F(1, 59) < 1; p =.44 

Note. For all interventions and target values separate ANOVAs were calculated with counterbalancing condition (causal structure test first vs. causal structure test last) as a between-

participants variable and modification (before vs. after) as a within-participants variable. To correct for accumulation of type 1 error the significance level was set to  = .00645. It 

turned out that neither the counterbalancing condition nor the interaction of the two factors reached significance. Therefore only the main effects of the modification of the causal 

system are reported in Table 2. Results marked with an asterisk are significant. 
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proach, decision makers switched their choices away from 
the previously preferred option towards the option that leads 

to the best outcome for the modified system. In addition, 

participants revised their estimates of predicted values and 
took into account the fact that the removal of area B reduced 

the impact of options ‘do Beta’ and ‘do Alpha’. The model-

ing results confirmed that the subjective causal model  
with decay fitted participants’ answers best. These findings 

show that participants learned about the causal structure and 

the parameters of the actual system they were confronted 
with.  

GENERAL DISCUSSION 

 Most research on the control of dynamic causal systems 
claims that decision makers acquire only limited knowledge 
about the structure and the parameters of the system [1, 2]. 
By contrast, studies on causal learning and reasoning suggest 
that people have the capacity to learn about causal relations 
when sufficient information is available (e.g., temporal de-
lays, statistical relations, interventions) [7, 8]. Based on the 
latter findings, we hypothesized that decision makers would 
induce causal models during control tasks, as long as the 
environment and experienced learning input provides suffi-
cient information. In particular, we proposed that people 
would induce causal models even when they were not  
explicitly asked to do so, and were instead required to 
achieve and maintain a specific goal state. 

 In the two experiments reported in this paper, we pre-

sented participants with a control task that in principle al-

lowed them to infer the underlying causal system. Although 

participants were only instructed to achieve and maintain a 

certain goal state, which they successfully did, in both ex-

periments a clear majority of participants acquired substan-

tial knowledge about the underlying causal structure. By 

contrast, more precise knowledge about the system’s pa-

rameters depended on the transparency of the underlying 

causal processes. When the causal impact of the decay and 

the chosen intervention were not perceptually separated (Ex-

periment 1), only a few participants inferred the causal sys-

tem’s parameters. Given that they nevertheless correctly se-

lected the causal chain model, the most parsimonious expla-

nation for this finding is that many participants assumed that 

their interventions would eliminate the decay. Strictly speak-

ing, this assumption is in accordance with the experienced 

feedback. In the first experiment they never saw a separate 

decay process when they intervened upon the causal system, 

but only the final value of the outcome variable resulting 

from both causal processes. This interpretation also receives 

support from other research on causal learning showing that 

people in general seem to understand interventions as causal 

variables that render the variable intervened upon independ-

ent of all other causal influences [9, 10, 11, 25, 26]. How-

ever, when the causal impact of the decay was explicitly 

presented to the participants (Exp. 2), the differential contri-

butions of the chosen interventions and the decay became 

transparent. In consequence, more participants differentiated 

between the decay and the causal impact of the intermediate 

cause variables. Thus, it seems that participants inferred 

causal models in both experiments, but made different as-

sumptions about the interplay of interventions and the decay 

due to differences in the transparency of the causal proc-

esses. We would like to emphasize that in our view the dis-

tinction is not a qualitative one between causal and non-

causal learning, but rather a quantitative one in terms of how 
elaborate the acquired causal representations are.  

 The current findings challenge alternative theoretical 
models. Models that assume that decision makers only ac-
quire situation-decision-outcome associations (e.g., the mean 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (9). Results of strategies modeled in Experiment 2: Mean change heuristic, normative causal model, subjective causal model with decay, 

subjective causal model without decay. Depicted is the distribution of the number of correctly predicted choices for each participant. As a 

benchmark the predictions of a random choice model are depicted (binomial distribution with n=4 and p=.25). 
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change heuristic) or base new decisions on memory retrieval 
(e.g., the exemplar based strategy) cannot account for our 
results. These approaches cannot explain how people made 
correct causal model judgments about the intermediate vari-
ables, nor why they changed their choices and estimates sys-
tematically after the structure of the system had been modi-
fied. The modeling results showed that these alternative 
models can account for participants’ choices from the first 
experiment, but not from the second. Moreover, participants’ 
estimates of the values resulting after the modification were 
best predicted by a causal model strategy in both experi-
ments (without decay in Exp. 1 and with decay in Exp. 2). 
Thus, although some participants probably employed alter-
native strategies, the induction of causal models seems to be 
the strategy favored by the majority of participants. 

 Consistent with the findings presented here is a set of 
recent studies showing that people tend to induce causal 
model representations when repeatedly intervening on a 
static causal system in order to maximize a specific payoff 
[15, 16]. For example, using a non-dynamic causal system 
Meder and Hagmayer showed that participants spontane-
ously induced causal models from probabilistic data and 
made appropriate inferences for both novel options and the 
removal of variables [16]. The experiments were designed to 
pit causal model theory against instrumental learning mod-
els, which entails that decision makers only acquire action-
outcome contingencies. The results showed that decision 
makers induced a causal model representation of the choice 
task and acquired causal knowledge that went beyond mere 
action-outcome contingencies.  

Conditions Promoting Causal Learning During Control 

Tasks 

 The present experiments indicate that decision makers 

have the capacity to engage in causal learning during control 
tasks. What are the conditions that enable and support such 
learning? Generally, it has been argued that the lack of evi-
dence for causal learning found in previous studies results 

from methodological rather than psychological factors [18]. 
This argument also receives empirical support. For example, 
when decision makers are probed about their structural 
knowledge during the control task, they show improved  

insight into the underlying causal structure and capitalize  
on this knowledge for regulating the system [18]. Thus, in 
contrast to the traditional view on control learning, it seems 
that decision makers can go beyond solely procedural skills 

and acquire explicit causal knowledge. 

 Another factor that might promote causal learning is the 
kind of system acted upon. The simulated environments used 
to study control tasks often comprise several continuous in-
put variables that are connected to several continuous out-
puts. Typically, inputs and outputs are linked by complex, 
nonlinear functions. In such situations, the precise form of 
the functional relations may simply be underdetermined by 
the observable data. In this case, knowledge of previously 
successful actions with respect to certain circumstances al-
lows for better decisions. Unfortunately, this strategy may 
further constrain the observed data. For example, once a 
learner has achieved a specific equilibrium and knows how 
to maintain it, she will probably refrain from exploring other 
actions that may lead her away from the goal state [27]. As a 

consequence, the chosen inputs and observed outputs are 
likely to stay in a certain range of values, thereby making it 
even more difficult to reveal the underlying functions.  A 
particular kind of underdetermination of causal relations by 
data is also found in our studies. Although decision makers 
knew that a decay took place when they did not intervene on 
the system, the feedback they received in Experiment 1 did 
not allow them to infer whether the decay still maintained its 
influence once they acted upon the system. As a conse-
quence, they learned little about the causal parameters. By 
contrast, when participants were provided with information 
about the impact of the decay while learning to control  
the system (Experiment 2), they acquired more causal 
knowledge.  

 Finally, it is probably crucial that the number of causal 
hypotheses is constrained by cues to causality, such as back-
ground knowledge about causal mechanisms, and the time 
course of events. The more knowledge a person can bring to 
bear, the easier it is to pinpoint the underlying causal system 
[8, 28, 29]. In addition, the feedback provided to participants 
is critical for causal induction. For example, if in our studies 
the status of the intermediate variables subsequent to an in-
tervention had not been observable, it would have been im-
possible to infer the structure of the system and to evaluate 
any structural changes. In such a situation causal learning 
would be restricted to mere action-outcome contingencies. 
Imagine you turn the key of your car and it does not start. 
Without further information about the state of the intermedi-
ate causal variables (e.g., fuel, battery, ignition) you will be 
unable to identify the problem.  

 When these prerequisites are met, other conditions may 

further enhance causal induction. First, free exploration of 

the causal system without any specific goal has been shown 

to improve structure learning [20]. While in control tasks the 

acquisition of knowledge about the system conflicts with 

keeping the system in a particular state, free exploration al-

lows the system’s behavior to be scrutinized under a wide 

range of circumstances. The empirical evidence shows that 

participants who are instructed with a specific goal (i.e., 

maintaining a certain equilibrium state) perform worse than 

participants who are allowed to freely explore the dynamic 

system [20]. Second, motivation may also affect causal 

learning. Personal involvement and high stakes create the 

motivation to scrutinize information more carefully [30]. 

Third, personality factors like “need for cognition” and intel-

ligence contribute to successfully controlling a system and 

learning about its structure [31, 32]. Fourth, expertise can 

both hamper and promote causal induction. Expertise is in 

general connected to elaborate background knowledge, 

which constrains possible causal hypotheses, so that causal 

learning becomes easier. On the other hand, experts have a 

huge knowledge base of previously encountered cases, 

which often allows for exemplar-based decision making. 

Research on naturalistic decision making has shown that 

experts tend to use their exemplar knowledge when a given 

case resembles previously encountered situations, but rely 

more on causal induction and mental simulations when they 

cannot retrieve an appropriate case from memory [33]. Fi-

nally, knowing in advance about possible changes of the 

causal system may create additional motivation to engage in 

causal learning. As pointed out before, causal representa-
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tions, but not other forms of knowledge, allow people to 

quickly react to changes in the causal system, including the 

arrival of new options [15, 16].  

CONCLUSION 

 The findings reported in this paper indicate that people 

spontaneously induce causal models when they make judg-

ments and decisions about a dynamic system. They do this 

even when simpler learning and decision making strategies 

would have sufficed for the control task assigned to them. 

We take this as evidence that people prefer to induce causal 

models so long as the situation allows for causal learning.  

Only when the task structure does not allow them to engage 

in causal learning will they resort to simpler strategies. 

Hence, we do not claim that when people control a dynamic 

system they will always succeed in learning the underlying 

causal model, but we suspect that they will often try.  
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