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Abstract 

Inductive reasoning allows us to go beyond the target 
hypothesis and capitalize on prior knowledge. Past research 
has shown that both similarity relations and specific causal 
knowledge affect the inductive plausibility of hypotheses. The 
present experiment goes one step further by investigating the 
role of abstract causal schemas about main effects and 
interactions. We were interested in exploring whether the 
functional form of a causal schema influences our inductions 
even when no more specific causal knowledge is available. 
Our experiment shows that reasoners have different prior 
beliefs about the likelihood of main-effect versus interactive 
schemas, and rationally combine these prior beliefs with new 
evidence in a way that can be modeled as Bayesian belief 
updating.  This finding casts doubt on theories which ignore 
the important role of priors in inductions involving causal 
schemas. 
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Introduction 

Inductive reasoning is ubiquitous. In associative learning we 

infer from a set of learning trials to a general regularity 

which probably, or so we assume, also applies in the future. 

In causal learning we use a sample of observations and go 

beyond the information given to induce general causal laws, 

which underlie our predictions, diagnoses, and our action 

plans (see Waldmann, Hagmayer, & Blaisdell, 2006). 

Inductions not only occur at the level of exemplars but also 

on the level of prior knowledge about hypotheses. For 

example, knowing that dogs have hearts allows us to give an 

informed guess about the probable validity of the hypothesis 

that wolves have hearts, as well. The interconnectedness of 

our knowledge is a powerful tool to quickly gain knowledge 

by mining our prior knowledge to yield inductive biases. 

Although inductive inferences have for a long time been 

studied in learning, inductions between hypotheses is a 

fairly recent research goal (see Feeney & Heit, 2007, for an 

overview). Many early studies have focused on categories as 

the basis for inductive inference. For example, the inference 

from dogs to wolves mentioned in the last paragraph is 

probably driven by the similarity of the categories dogs and 

wolves. In their seminal article Osherson, Smith, Wilkie, 

Lopez, and Shafir (1990) proposed a model (“similarity 

coverage model”) that implies that the strength of an 

argument depends on both (i) the similarity between the 

premise categories and the conclusion categories, and (ii) 

the extent to which the premise categories provide good 

coverage of the category to which the conclusion statement 

refers.  

Competing models of category-based induction have been 

proposed. For example, Heit (1998) has proposed a 

Bayesian model of inductive reasoning. According to this 

model, evaluating an inductive argument is conceived of as 

learning about a property. The key assumption is that the 

inductive generalization of a novel property from one 

category to a second category is sensitive to prior 

knowledge about other properties the two categories share. 

Thus, we tend to generalize properties from dogs to wolves 

because they share a lot of properties so that they probably 

also share this novel property. In contrast, we are more 

reluctant to generalize from dogs to parrots because we 

believe them to share few properties.  

The Role of Causal Knowledge 

Similarity-based models have their limits. They typically 

cover cases in which blank predicates that do not invoke 

prior knowledge are used. However, once meaningful 

predicates are used it becomes clear that similarity is not the 

only factor that drives inductive inferences. A number of 

studies have demonstrated that causal relations between 

categories and features become important with meaningful 

predicates. For example, Heit and Rubinstein (1994) have 

shown in an early study that a behavioral property (e.g., 

travels in zig-zag path) was more strongly generalized from 

tuna to whale than from bears to whales. In contrast, a 

biological property (e.g., has a two-chambered liver) is 

generalized more from bears to whales instead. A plausible 

explanation is that in these inductions reasoners consider the 

kinds of common causal mechanisms that could generate 

these properties. Tuna and whales may share a common 

behavioral property because they live in a similar ecology; 

whereas common biological properties are more likely to 

arise in organisms that are taxonomically similar (see also 

Sloman, 1994). Another example of the role of causal 

knowledge is the finding that undergraduates are more 

likely to infer that “monkeys have enzyme X” from the 

premise “bananas have enzyme X” than from “mice have 

enzyme X,” even though mice are more similar to monkeys 

than to bananas (Medin, Coley, Storms, & Hayes, 2003). 

Apparently prior knowledge about the possible causal 

relation between eating bananas and transferring enzymes is 

activated in this case. Based on a variant of causal-model 

theory Rehder (2007) has proposed a theory which treats 
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generalizations as causal reasoning. According to this theory 

we assess the likelihood that a novel feature applies to a new 

category on the basis of our beliefs about the causal 

relations that connect that feature to the category. Finally, a 

Bayesian model integrating a large number of findings 

comes from Tenenbaum, Kemp, and Shafto (2007). In this 

model a Bayesian inference engine is coupled with theory-

based structured priors. Depending on the induction task 

these priors can take the form of taxonomies or can embody 

causal knowledge (e.g., about food chains).  

Causal Schemas 

The examples discussed in the previous section illustrate the 

role of causal knowledge, which can be specific (monkeys 

ingest the ingredients of food) or more abstract (biological 

kinds share essences which give rise to common properties). 

Schematic causal knowledge may be even more abstract. 

Kelley (1972) has proposed schemas for multiple necessary 

or multiple sufficient causes which are domain-general but 

nevertheless aid inferences (e.g., discounting). These 

schemas specify prior assumptions about the way multiple 

causes collaborate when jointly generating or preventing an 

effect. Waldmann (2007) has shown that different domains 

trigger different causal integration schemas. For example, 

when the causal effect is the likeability of objects 

participants tended to average the causal influences. With 

other effects they preferred to add them. In the causal Bayes 

net literature causal schemas have been discussed under the 

label functional form. Tenenbaum and Griffiths (2003) 

argued that domain knowledge not only constrains causal 

structure but also functional forms that specify the relation 

between multiple causes and effects. As an example, they 

modeled Sobel, Tenenbaum and Gopnik’s (2004) findings 

using a Bayes net in which prior knowledge about causal 

schemas is integrated. Sobel et al. had argued that children’s 

performance can be best explained if it is assumed that they 

enter the task with the prior assumption that the individual 

causes do not interact (i.e., “noisy-or” rule). Novick and 

Cheng (2004) have also analyzed the question of how main 

effects (additive integration) can be differentiated from 

causal interactions in the framework of power PC theory. 

Within this model, main effects are considered the default 

causal schema, and interactions are represented as 

deviations from the default. 

Patterning Interactions 

Interestingly, there is a long history of studying interactions 

in associative learning, although they are typically referred 

to as “patterning” interactions in this literature. Positive 

patterning (PP) refers to learning a situation in which two 

cues (e.g. A & B), when presented individually, are not 

paired with the outcome (A- and B- trials), but when 

presented together they are paired with the outcome (AB+ 

trials). In contrast, negative patterning (NP) refers to a 

scenario in which cues A & B, when presented alone, are 

paired with the outcome (A+ and B+ trials), but when 

presented together they are not paired with the outcome 

(AB- trials). Shanks and Darby (1998) found that people can 

learn both of these interactions (PP and NP) concurrently, 

and can form the appropriate abstract schematic 

representations. Consequently, after being repeatedly shown 

two cues (A and B) interacting, they can infer that the same 

interaction will occur between two other cues (C and D) 

which had not previously been shown together. For 

example, participants that underwent NP training with cues 

A and B, and were then shown C+ and D+ trials, could infer 

that the novel compound CD would not be followed by the 

outcome. That is, participants constructed (or selected) a 

causal schema to describe their observations of cues A and 

B, and then inductively inferred that this schema may apply 

to two novel cues, C and D.  

Kemp, Goodman, and Tenenbaum (2007) have recently 

proposed a Bayesian model which can account for Shanks 

and Darby’s (1998) data. The model achieves this by 

learning causal schemas; that is, the model monitors the co-

occurrences of cues and outcomes, and groups together cues 

that behave in a similar manner in training. In the NP case, 

this model groups together cues that co-occur with the 

outcome in isolation, but do not co-occur with the outcome 

when paired with another cue of the same kind. Importantly, 

the model can use these cue groupings to generate 

predictions about novel cue-combinations at test, and thus 

solve the [C+, D+, CD?] test cases.   

In line with the results of Shanks and Darby (1998) the 

model assumes that if a participant is shown two cues 

interacting (A and B), then that participant will generally 

consider this interaction as informative as to whether an 

interaction will occur between two further cues (C and D). 

However, the informativeness or inductive support of an 

instance of an interaction schema also depends upon the 

structure of participants’ prior beliefs regarding the 

likelihood of the various possible causal schemas. Although 

Shanks and Darby’s learners seemed to frequently transfer 

the observed patterning rules to new features, we believe 

that this may not be a general reasoning pattern but rather be 

due to the demand characteristics of the experiment. When 

confronted with a large set of cases of interactions, 

participants may have reasoned that what is expected from 

them is to abstract and transfer a rule. The experiments 

show that participants are able to do this, but this may not 

be what they would do under more natural circumstances. 

There is some research suggesting that participants’ initial 

beliefs about causal schemas are biased against patterning 

interactions. For example, Novick and Cheng (2004) have 

suggested that people treat main-effect causal schemas (e.g. 

A+, B+, AB+) as a kind of default assumption, and thus 

suggest that the initial likelihood of main-effect schemas 

may be high. Consistent with this assumption, studies of 

patterning have shown that participants often demonstrate 

difficulty applying the patterning schemas on the novel test 

cases (Kehoe, 1988). Moreover, studies about cue 

integration in different types of judgments generally reveal 

additive, linear integration (Dawes & Corrigan, 1974). Thus, 
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it is reasonable to expect an initial bias against interactive 

patterns, especially disordinal ones as in the NP case. 

Learning tasks in which participants are repeatedly 

presented with many individual cases, such as that used by 

Shanks and Darby (1998),  may be less suited for revealing 

such biases than inductive reasoning tasks that rely upon 

general hypotheses. Imagine, for example, somebody 

informs you that two drugs A and B which each cure a 

disease generally cancel each other’s effect when taken 

together. Would we really expect two arbitrary different 

drugs C and D behave similarly?  

In the present research we have decided to approach the 

question of how people transfer knowledge about causal 

schemas using a reasoning task in which participants are 

presented with hypotheses rather than individual cases. Our 

main goal was (i) to investigate prior beliefs about novel 

hypotheses embodying different types of schemas (as in the 

drug example), and (ii) to study how hypothetical 

knowledge of the truth of a similar hypothesis conforming 

to the same schema will influence these beliefs.  

Schema-based Priors and Belief Updating 

Participants’ prior schematic beliefs regarding main 

effects and interactions have not previously been assessed 

directly. Thus, the first goal of the present research is to 

examine participants’ prior beliefs regarding causal schemas 

by explicitly asking them to rate how plausible they believe 

NP and PP interactions to be, compared to their 

corresponding main effects (explained below). In the NP 

case, i.e., A and B are paired with the effect when 

independently shown, there are two hypotheses about the 

conclusion that can be drawn with respect to the effect’s 

occurrence when A and B are presented together 

 

The first hypothesis refers to NP: the compound doesn’t 

bring about the effect, although both causes individually do. 

The second hypothesis refers to the corresponding main 

effect (which we call ME+). Obviously, these two 

hypotheses are complementary, i.e.

, because the effect can either occur or not occur. 

The same can be derived for the PP case, i.e. A and B are 

not paired with the effect when presented alone: 

 

Accordingly, the first hypothesis describes PP: the 

compound does bring about the effect whereas both causes 

separately do not. The second hypothesis is the 

complimentary main effect (which we call ME-). 

In these terms our first prediction is that participants will 

consider patterning schemas to be less plausible than the 

corresponding control schemas (i.e., main effects), this can 

be expressed as  as well as 

. 

A second question addresses the extent to which 

participants change their belief in an initial hypotheses Hi in 

response to a conforming instance Di, e.g., when knowing 

that the conclusion  is true for novel 

cues C and D from the same domain as A and B in the case 

of a PP  hypothesis. Bayes’ rule suggests that the 

informativeness of such an instance depends upon the 

structure of participants’ prior beliefs regarding the possible 

hypotheses and the likelihood of the instance given the 

hypotheses: 

 

For the sake of simplicity, we assume that the likelihood 

of an instance Di given main-effect or patterning hypotheses 

is a function of its similarity to the instance addressed by the 

hypotheses, and is therefore independent of the type of the 

schema.
1
 For instances conforming with the schema in the 

hypothesis this assumption can be represented by some 

fixed number larger than 0.5 (i.e., the instance is 

informative) but less than 1 (i.e., the inference from the 

instance to the hypothesis, which is formulated with respect 

to another pair of cues, is tainted with uncertainty). 

If so, then the lower the initial belief in a hypothesis, the 

larger the change in belief will be upon encountering 

evidence consistent with that belief. With respect to the 

present experiment, an instance of an unlikely patterning 

schema ought to be more informative (i.e., provide more 

inductive support) than a confirmatory instance of a likely 

main-effect schema. Thus, prediction (ii) is that participants 

will change their beliefs regarding patterning schemas more 

in response to an observed instance of a patterning 

interaction, than they will for the corresponding main-effect 

schemas: 

 

 

Finally, this framework provides a third prediction 

regarding participants’ posterior belief in main-effect and 

patterning schemas. Although a greater increase in belief is 

anticipated for the patterning schemas in response to a 

patterning instance, than for the main-effect schemas in 

response to a main-effect instance, the posterior belief for 

the patterning schemas cannot exceed that of the main-effect 

schemas as long as the likelihood of a conforming instance 

is independent of the current hypothesis:
2
 

 

 

Thus, it is predicted that after being shown a confirming 

instance, participants’ belief ratings for the patterning 

                                                           
1 So,  
2 This easily follows from our first prediction by backward 

application of Bayes’ rule and , e.g.: 
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conclusion statements will be lower than their belief ratings 

for the main-effect conclusion statements. 

Finally, the domains of the causal scenarios presented to 

participants were manipulated. Participants may have 

different prior beliefs regarding how plausible particular 

causal schemas are in certain domains (e.g. interactions 

between chemical substances may be more plausible than 

interactions between social causes; see Waldmann, 2007; 

Wattenmaker, 1995). The present research also sought to 

provide exploratory data on this issue. 

Method 

Participants. Thirty two undergraduate students, mostly 

from the University of Göttingen, participated. They were 

either given course credit or €3 for participating.  

Design. The scenarios given to participants varied with 

respect to two factors (each with four levels). The first 

factor was the type of schema depicted: PP, ME-, NP or 

ME+. Table 1 summarizes each of these interactions (the 

distinction between Questions 1 and 2 is addressed in the 

Procedure). The second factor was the domain of the causal 

relationship: psychological, biological, physical, or 

chemical.  

Table 1. Design of Experiment.  

 Cue Interaction 

 PP ME- NP ME+ 

First 

Question 

A- 

B- 

AB+ 

 

A- 

B- 

AB- 

 

A+ 

B+ 

AB- 

 

A+ 

B+ 

AB+ 

 

Second 

Question 

C- 

D- 

CD+ 

A- 

B- 

AB+ 

C- 

D- 

CD- 

A- 

B- 

AB- 

C+ 

D+ 

CD- 

A+ 

B+ 

AB- 

C+ 

D+ 

CD+ 

A+ 

B+ 

AB+ 

Note: Letters A – D represent causes, and symbols + and – 

indicate statements in which the cause either produce the 

effect or do not, respectively. Statements above the dashed 

lines are premises, and the statements below the dashed 

lines are conclusions. 

 

A partially confounded within-by-between (Latin Squares) 

design was used. This means that each participant 

experienced 8 scenarios (two of each schema/domain), 

rather than all 16 possible combinations. Sixteen versions of 

an eight-scenario questionnaire were constructed in order to 

counterbalance the assignment of question domain to causal 

schema. Thus, across participants, each relationship (e.g., 

PP, ME-) occurred equally frequently in each domain (e.g., 

psychological, physical). The question order was also 

counterbalanced between subjects, so that an equal number 

of participants saw (i) an NP relationship before a PP 

relationship as vice versa, and saw (ii) a main-effect 

relationship before a patterning relationship or vice versa. A 

similar counterbalancing methodology was applied to the 

scenario domains, but this was performed orthogonally to 

that for causal relationship so as to not produce any 

systematic relationship between the domain of each 

scenario, and the causal schema depicted. Finally, the 

assignment of cues to the premise or conclusion statements 

was counterbalanced between individuals. For example, 

participants were equally often required to infer from a 

premise involving gold and copper to a conclusion 

involving silver and lead, as from a premise involving silver 

and lead to a conclusion involving gold and copper. 

Materials and Procedure. Each participant completed a 

questionnaire that consisted of a short instruction section, an 

explanatory example scenario, and then 8 causal scenarios. 

Each questionnaire was 20 pages long and was presented in 

German. The instructions informed participants that in each 

scenario they would first be given two premise statements, 

and would then have to rate to what extent they believed a 

given conclusion statement to be true. They were told to 

assume that the premise statements were true when judging 

the conclusion statement. Finally, participants were told that 

they would rate each conclusion statement twice, but that 

they would be given more information between the first and 

second rating occasions.  

All 8 scenarios each described four cues (A – D) that 

either did or did not cause the outcome. All scenarios 

involved unfamiliar causal statements, whereby participants 

were told about real items causing fictitious effects. 

Fictitious effects were chosen to ensure that participants did 

not rely on specific prior knowledge about the causal 

relations. The scenarios each followed the same two-

question format. Participants were first shown two premise 

statements, in each of which one cue A or B was shown to 

individually cause the outcome, or not (e.g., Facts A and B 

alone in Table 2). Participants were then given a causal 

statement involving compound AB either causing, or not 

causing, the outcome. They were asked to rate how true they 

believed this conclusion statement to be (referred to as 

Question 1)(e.g., Conclusion in Table 2). To do this, 

participants were provided with an 11-point scale, labeled 

“definitely false” at the left-hand end (0) and “definitely 

true” at the right-hand end (10). 

Table 2. A sample NP trial (Question 2) 

Fact 1: Exposing compound 3X8 to nitrogen gas 

causes the compound to become brittle. 

Fact 2: Exposing compound 3X8 to neon gas causes 

the compound to become brittle. 

Fact 3: Exposing compound 3X8 to both nitrogen 

and neon gases do not cause the compound to 

become brittle. 

Fact A: Exposing compound 3X8 to oxygen gas 

causes the compound to become brittle. 

Fact B: Exposing compound 3X8 to argon gas causes 

the compound to become brittle. 

Conclusion: Exposing compound 3X8 to both oxygen and 

argon gases do not cause the compound to 
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become brittle. 

 

After answering Question 1, participants turned the page 

and were shown Question 2, in which some further 

information about that same scenario was presented. The 

first two facts (Facts A and B) and the conclusion statement 

were repeated. Participants were additionally provided with 

three new premise statements, Facts 1 – 3, positioned above 

the initial two premise statements (as shown in Table 2). 

The three new facts described the causal relationship 

between the outcome and two new cues from the same 

domain (C and D) when those cues were presented 

individually (Facts 1 and 2) and when they were presented 

in compound (Fact 3). Facts 1 – 3 always displayed the 

same causal main effect or interaction as Facts A, B, and 

Conclusion (NP, PP, ME+, ME-). That is, Facts 1 – 3 

together constituted an example of the same causal schema 

(using different cues) that participants were required to 

assess in the conclusion statement. In Question 2, 

participants rated the same conclusion statement as in 

Question 1, and used the same scale as was used in Question 

1. Participants then proceeded directly to the next scenario. 

This process was repeated until all 8 scenarios were 

complete. Participants were not allowed to return to any 

previous questions.  

Results 

Figure 1 depicts participants’ mean responses for Questions 

1 and 2, for each of the four types of causal relationships 

(NP, PP, ME+, ME-). Type I error (α) was controlled at .05, 

andthree planned contrasts were tested using a two-way 

(schema-type and question number) ANOVA. .  

 

 
 

Figure 1. Mean conclusion belief ratings (±SEM) for 

patterning and main-effect schemas. Triangles indicate 

responses to NP and ME+ questions, and circles represent 

PP and ME- questions. Solid lines represent belief-updating 

for patterning interactions, and dashed lines represent belief 

updating for main effects. 

 

As anticipated, participants’ judgments on Question 1 for 

the patterning interactions were lower than for the main-

effect conditions, F(0.05/3,1,31) = 26.25, p < .05. Similarly, 

participants’ judgments on Question 2 were lower for the 

patterning interactions (PP and NP) than for the main-effect 

conditions (ME- and ME+), F(0.05/3, 1,31) = 11.31, p < 

.05. A significant interaction between the two factors 

revealed that the difference between participants’ ratings on 

Questions 1 and 2 was significantly larger for the causal 

interaction conditions (NP, PP) than for the causal main-

effect conditions (ME-, ME+), F(0.05/3, 1,31) = 13.66, p < 

.05. That is, participants changed their belief between 

Questions 1 and 2 more on the trials that depicted a causal 

interaction than on those that depicted a causal main effect.  

Due to the low number of participants in each relevant 

counterbalancing group (N = 8) conclusions about 

individual domains are only tentative. Nevertheless, this 

data were analyzed using two-tailed t-tests. In each domain 

participants initially (on Question 1) rated the patterning 

interactions (averaged across NP and PP) as less plausible 

than the main-effect scenarios, but these differences were 

not significant, maximum t(7) = 2.06. 

General Discussion 

In the experiment we found that prior to being presented 

with data, patterning interactions were considered to be less 

plausible than their respective main-effect schemas both 

before (Question 1) and after (Question 2) a different 

example of that causal schema from the same domain was 

presented. Moreover, the addition of an example of two cues 

demonstrating an NP or PP interaction produced a greater 

increase in belief than an example of two cues 

demonstrating a main-effect relationship. In other words, an 

instance of a patterning interaction provides more inductive 

support than an instance of a main-effect schema, although 

the posterior beliefs about interactive patterns still proved 

well below the belief for main effects. This pattern is in line 

with rational Bayesian reasoning. Additional evidence 

should have more impact on hypotheses that are initially 

deemed implausible than on plausible ones, which are 

already near ceiling.  Our results generally demonstrate the 

role of prior beliefs about abstract causal schemas in the 

inductive evaluation of hypotheses.  

Participants considered interaction schemas to be 

generally less plausible than main effects in all four domains 

(intuitive psychology, biology, chemistry and physics), and 

no differences were seen between these domains. However, 

due to the relative insensitivity of our small sample (N = 8 

in some analyses) potential domain effects could not reveal 

themselves if they exist. It would be interesting to further 

explore whether different domains yield differences in 

biases regarding abstract causal schemas (cf. Wattenmaker, 

1995). 

In the present research we have empirically tested the 

hypothesis that interaction schemas are considered rare 

compared to main effect schemas. It would be interesting to 

investigate where this bias comes from. One possibility is 

that interactions are less frequent in our environments than 

linear relations, and that our beliefs about causal schemas 

simply reflect differential frequency. We believe that this 

account oversimplifies the situation. Our causal 

representations are not only determined by the structure of 
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the world but also by the categories we acquire in our phylo- 

and ontogeny to represent the world. For example, Clark 

and Thornton (1997) have shown that interactions (e.g., 

XOR structures) can be recoded as linear relations with the 

right choice of features and categories (see also Waldmann 

& Hagmayer, 2006).  

Thus, a more plausible hypothesis is that people have a 

general tendency to favor categories and hypotheses 

yielding simple causal explanations rather than complex, 

interactive ones. Interactions force us to additionally 

represent co-factors when considering an individual cause 

which is more taxing for our information processing 

capacity in reasoning and learning than context independent 

linear relations. Thus, phylogenetically a preference may 

have evolved to induce categories that preferentially yield 

linear relations between multiple causes. Moreover, we may 

have a bias towards representing ordinal interactions as 

linear, even when we slightly distort reality. Dawes and 

Corrigan (1974) have shown that ordinal interactions can 

robustly be approximated by linear relations with no 

substantial loss. Thus, our bias against interactions may be a 

joint product of the world and our mind.   
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