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Melioration—defined as choosing a lesser, local gain over a greater longer term gain—is a behavioral
tendency that people and pigeons share. As such, the empirical occurrence of meliorating behavior has
frequently been interpreted as evidence that the mechanisms of human choice violate the norms of
economic rationality. In some environments, the relationship between actions and outcomes is known. In
this case, the rationality of choice behavior can be evaluated in terms of how successfully it maximizes
utility given knowledge of the environmental contingencies. In most complex environments, however,
the relationship between actions and future outcomes is uncertain and must be learned from experience.
When the difficulty of this learning challenge is taken into account, it is not evident that melioration
represents suboptimal choice behavior. In the present article, we examine human performance in a
sequential decision-making experiment that is known to induce meliorating behavior. In keeping with
previous results using this paradigm, we find that the majority of participants in the experiment fail to
adopt the optimal decision strategy and instead demonstrate a significant bias toward melioration. To
explore the origins of this behavior, we develop a rational analysis (Anderson, 1990) of the learning
problem facing individuals in uncertain decision environments. Our analysis demonstrates that an
unbiased learner would adopt melioration as the optimal response strategy for maximizing long-term
gain. We suggest that many documented cases of melioration can be reinterpreted not as irrational choice
but rather as globally optimal choice under uncertainty.
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Daily life consists of an uninterrupted sequence of choices.
Many of these choices concern the relative allocation of behavior
between competing alternatives. For example, after a long day of
work, we may face a choice between exercising versus collapsing
on the couch, or cooking a meal versus ordering takeout. Com-

pared to most laboratory tasks on decision making, real-life deci-
sions such as these possess two important properties. First, many
real choices have immediate, as well as delayed, consequences.
Second, not only do our actions have delayed consequences, they
can also interact in nontrivial ways with the perceived value of
competing alternatives or even the same alternative on later deci-
sions. For instance, adopting a sedentary lifestyle can not only
harm our long-term health and happiness but can also render the
immediate prospect of physical exercise more unappealing.

How do humans navigate decisions with delayed and indirect
consequences? Despite its simplicity, this question encom-
passes over a century of research in human and animal learning
(Thorndike, 1911) and is encountered at multiple levels of
analysis—from understanding the computations of individual neu-
rons (Gold & Shadlen, 2007) to studying higher level faculties like
mental representations and goal-directed cognition (Daw & Frank,
2009). Lying dormant in much of this work is the key assumption
that human choice is at its core largely consistent with the frame-
work of rational choice theory (M. Friedman & Savage, 1948; Von
Neumann & Morgenstern, 1944). According to this framework, the
driving force behind our actions is the overall maximization of
expected utility—that is to say, we seek our betterment as we each
have defined it.
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Although intuitively appealing, the notion that behavior is ulti-
mately governed by utility maximization is not without its critics.
Over the past several decades, numerous instances have been
documented where human behavior seemingly deviates from the
predictions of rational choice theory (for a review, see Shafir &
LeBoeuf, 2002). Not content to build a psychological theory of
human choice on what was viewed as an unsound foundation,
Richard Herrnstein and colleagues (Herrnstein & Vaughan, 1980)
instead advocated an empirical basis for describing and predicting
choice behavior. This alternative, known as melioration theory,
asserts that human (and nonhuman animal) choice is governed by
a myopic tendency towards alternatives with higher local rates of
reward (Herrnstein, 1982; Herrnstein & Prelec, 1991; Herrnstein &
Vaughan, 1980; Vaughan, 1981). Critically, melioration deviates
from rational choice by ignoring the consequences of actions on
future utility. In basing choice on the consideration of local
rates of reward rather than the global maximization of utility,
melioration has been characterized as a kind of temporal myo-
pia (Herrnstein, Loewenstein, Prelec, & Vaughan, 1993; Her-
rnstein & Prelec, 1991).

In this article, we critically reexamine human performance in a
repeated choice task known as the Harvard game (Rachlin &
Laibson, 1997) that directly pits the predictions of melioration
theory against rational choice accounts of behavior. Previous em-
pirical results from this paradigm have widely been taken to
indicate either generic irrationality (Herrnstein, 1991) or funda-
mental impulsivity (J. R. Gray, 1999; Kudadjie-Gyamfi & Rachlin,
2002; Otto, Markman, & Love, 2012; Tunney & Shanks, 2002;
Warry, Remington, & Sonuga-Barke, 1999) in human choice,
consistent with melioration theory. A key feature of this paradigm,
common to many complex decision environments, is that actions
have both immediate and delayed consequences, and selecting one
alternative has nontrivial effects on the utility of competing alter-
natives on future choices. However, an additional feature of this
paradigm is that participants must learn the consequences of their
actions through experience.

As we demonstrate, a critical factor in judging the rationality of
any behavior lies in one’s understanding of the relationship be-
tween actions and their consequences. The economist Frank
Knight (1921) distinguished between the concepts of risk and
uncertainty. Risk is involved whenever outcomes are not guaran-
teed but the relevant factors and possible outcomes are known and
can be quantified. By contrast, uncertainty implies that not all of
the possible consequences of an action are known, or even know-
able, before a decision is made. The optimal decision strategy
under risk may be very different from the optimal decision strategy
under uncertainty (cf. Gigerenzer, Hertwig, & Pachur, 2011). As
we argue here, previous examinations of melioration theory have
failed to differentiate these two concepts and, as a result, have
drawn unfounded conclusions about the rationality of human
choice behavior.

From the perspective of an experimenter who has accurate and
complete knowledge of the dependencies inherent in the task
environment, human behavior in the Harvard game exemplifies
suboptimal choice under risk. However, for an experimental par-
ticipant, the relationship between actions and consequences is
uncertain and must be learned from experience. In the face of this
uncertainty, it is not immediately evident that human behavior is
suboptimal.

Historically, melioration as a theory of behavior has relied on
two key assumptions: (a) The empirical occurrence of meliorating
behavior is evidence for generic irrationality in human decision
making, and (b) the origin of this behavior is a myopic tendency to
favor alternatives with higher immediate rates of reinforcement at
the expense of overall utility. In this article, we unmask both of
these assumptions to show that, quite to the contrary, melioration
frequently represents optimal choice behavior, even when optimal-
ity is defined as global, rather than local, utility maximization. In
other words, what appears to be irrational choice under risk is in
fact rational choice under uncertainty.

Melioration and Maximization

Melioration was originally proposed as the behavioral mecha-
nism to explain the matching law (Herrnstein, 1961, 1979), which
states that, at equilibrium, the relative proportion of responses
made to an alternative will equal the proportion of rewards re-
ceived from that alternative. The matching law, or its subsequent
extension known as the generalized matching law, has been suc-
cessful in accounting for human and nonhuman animal choice
behavior across hundreds of experiments (for a review, see Davison &
McCarthy, 1988). Whereas the matching law characterizes an aggre-
gate property of behavior, melioration purports to describe the local,
dynamic process that results in matching. Given the widespread
occurrence of approximate matching behavior across species, match-
ing has been hypothesized to reflect an innate decision strategy
(Gallistel, 2005), and Herrnstein (1991) offered the speculative pos-
sibility that “people are, in fact, always following the principle of
melioration and that, when they are being rational, they are being
rational only incidentally” (p. 364).

Melioration theory has been offered as an explanation for phe-
nomena as diverse as impulsivity and self-control (Herrnstein,
1981), delayed reinforcement (Chung & Herrnstein, 1967), and
natural selection (Dawkins, 1999; Vaughan & Herrnstein, 1987).
In the area of skill acquisition and training, Yechiam, Erev,
Yehene, and Gopher (2003) argued that melioration may lead
novice typists to abandon their touch-typing training, as methods
such as visually guided typing have higher immediate payoff,
despite lower global utility. Similarly, W. D. Gray and Fu (2004)
found that small differences in the effort required to access infor-
mation can lead to behavior that is locally efficient but globally
suboptimal. In the clinical domain, melioration has been proposed
as a tool for understanding the cognitive aspects of delinquency
(J. Q. Wilson & Herrnstein, 1985) and addiction (Herrnstein &
Prelec, 1992; Heyman, 1996; Heyman & Dunn, 2002). Thus, the
impact of melioration theory has been broad, and its implications
are of practical importance across a wide range of domains.

In most simple decision environments without delayed or indi-
rect consequences, melioration theory predicts behavior that is
similar to or indistinguishable from global utility maximization. To
experimentally distinguish between global maximization and me-
lioration, Herrnstein and others have devised decision environ-
ments in which both mechanisms are pitted directly against each
other. Figure 1 illustrates the mechanics of one such environment,
known as the Harvard game (Rachlin & Laibson, 1997). In this
environment, the participant must make a series of choices be-
tween two alternatives, which we refer to as the maximization and
melioration alternatives (the alternatives are not labeled as such for
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the participants in the experiment). After each choice, the partic-
ipant may receive a small monetary reward. The participant’s task
is simply to collect as much money as possible over a series of
choices in this environment.

The y-axis in Figure 1 plots the probability of receiving a
monetary reward for choosing either of the two alternatives. The
x-axis plots the proportion of choices among the previous 10 that
were allocated to the maximization alternative. Importantly, the
probability of receiving a reward for either alternative depends on
this history of choices. If the participant has chosen the maximi-
zation alternative on the last 10 choices, then another maximiza-
tion response will have a 66% chance of reward, but a melioration
response leads to a reward with 100% certainty. In fact, the
melioration response always yields a higher immediate probability
of reward. But the more this alternative is chosen (moving to the
left along the abscissa), the worse both alternatives become on
future choices. In other words, the highest global reward is
achieved when the participant always chooses the alternative that
has the lower immediate probability of reward.

If the goal is to maximize total monetary winnings, the optimal
strategy in this environment is to select the maximizing alternative
on every trial (ignoring an end-of-game effect where the optimal
strategy shifts to melioration for the last few trials). By contrast,
melioration theory predicts that people will choose the alternative
with the highest immediate reward probability but lowest global
utility. When human participants have been tested in this environ-
ment (Gureckis & Love, 2009b; Herrnstein, 1991; Neth, Sims, &
Gray, 2006; Tunney & Shanks, 2002), the modal finding is that
behavior settles into a stable suboptimal pattern approximately

conforming to the predictions of melioration theory. Indeed, hu-
mans appear to suffer from the same apparent irrationality as
pigeons performing the same task (Herrnstein, 1982; Herrnstein &
Vaughan, 1980; Vaughan, 1981).

Given the provocative result that humans are apparently no
more rational than pigeons, a large number of empirical and
theoretical studies have attempted to either disprove or further
elucidate the role that melioration plays in human choice. One
approach has been to explore a richer space of utility functions to
account for the observed behavior (Staddon, 1992) by assuming
that subjects seek to maximize some quantity other than total
accumulated reward. However, assuming rational maximization of
utility functions that severely discount or neglect the long-term
consequences of actions only blurs the distinction between rational
choice and melioration theory. Experimentally, it has been dem-
onstrated that individuals recovering from drug addiction were
more likely to favor the meliorating alternative in the Harvard
game compared to control subjects (Heyman & Dunn, 2002).
Similarly, individuals who rated higher on a psychological assess-
ment of impulsivity were found to be more likely to meliorate
(Otto et al., 2012). Numerous other studies have also concluded
that melioration in the Harvard game results from impulsivity in
choice or failures of self-control (J. R. Gray, 1999; Kudadjie-
Gyamfi & Rachlin, 1996, 2002; Warry et al., 1999).

While the empirical results described so far generally support
the theory of melioration, here we reinterpret these results by
emphasizing another aspect of the Harvard game that has received
little attention, namely, that people playing this game must learn
the contingencies between actions and their consequences. It is
clear that learning this relationship requires some amount of cog-
nitive effort, and it may be the case that meliorating individuals
attempt to maximize global utility but fail due to imperfect mem-
ory, lack of attention or understanding, or other cognitive limita-
tions. In support of this view, it has been found that adding
perceptual cues to disambiguate the state of the task environment
or consequences of actions can facilitate global maximization
(Gureckis & Love, 2009b; Herrnstein et al., 1993; Otto, Gureckis,
Markman, & Love, 2009; Stillwell & Tunney, 2009). Worthy,
Otto, and Maddox (2012) recently demonstrated that adding a
concurrent working memory load leads to increased preference for
local versus global rewards, again implicating a cognitive con-
straint on performance.

Similarly, if the primary impediment to globally optimal per-
formance is learning, then providing subjects with more informa-
tion about the task environment (in terms of additional instructions
or hints about the reward contingencies) should increase the like-
lihood of maximizing behavior. While several studies have ma-
nipulated the amount of explicit information given to participants
regarding the reward contingencies (Herrnstein et al., 1993;
Kudadjie-Gyamfi & Rachlin, 1996; Warry et al., 1999), in no case
has the occurrence of meliorating behavior been fully extin-
guished. As one study concluded, “even under conditions when all
the factors favored global choice, participants did not respond
optimally in terms of the global contingency. Perhaps this indicates
a fundamental tendency to choose immediate gratification, at least
occasionally, despite ‘knowing better’” (Warry et al., 1999, p. 71).
In summary, despite considerable experimental and theoretical
effort, a basic question remains yet unanswered: Is human behav-
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Figure 1. Reward contingencies of a decision environment designed to
discriminate between global maximization and melioration. The participant
faces a repeated choice between two alternatives. Irrespective of the choice
history, the local probability of reward for choosing the meliorating alter-
native always exceeds that for choosing the maximizing alternative. For
both alternatives, the probability of reward varies as a function of the
proportion of choices in the recent history made to the maximizing alter-
native. The dashed line indicates the overall average reward associated
with adopting any mixture of maximization and melioration choices. The
highest point along this line yields the globally optimal strategy. Thus, the
maximal payoff is achieved by always choosing the locally inferior
alternative.
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ior in sequential choice tasks fundamentally at odds with the
normative ideals of rational choice theory?

On the Rationality of Melioration

The goal of the present article is straightforward: Whereas all
previous experiments on melioration theory have examined human
choice behavior and found varying degrees of suboptimality as
assessed from the perspective of the experimenter, none have
addressed the question of whether experimental participants
should rationally have been expected to meliorate, even assuming
the goal of maximizing global utility. This missing piece of infor-
mation is of critical importance, since the long-standing claim that
meliorating behavior is evidence for generic irrationality requires
that a rational agent would not also meliorate. To date, this
analysis is lacking.

Our approach is therefore to examine what an optimal learner
should rationally believe about the relationship between choices
and future rewards in a melioration experiment. Since the problem
facing human participants is essentially one of uncertainty regard-
ing the structure of the environment, our analysis takes the form of
a Bayesian learning model, which we label the rational learner
model. This approach builds on the rational analysis framework
(Anderson, 1990), which states that a greater understanding of
human cognition can be gained by examining the structure of the
external environment as well as the goals of the cognitive system
and proposes that cognition is intricately adapted to this structure
in achieving its goals. In the present application, it is assumed that
a primary goal of the cognitive system in an uncertain choice
environment is discovering how actions relate to their conse-
quences. The structure of the environment is such that each deci-
sion is unique, as the same environmental context is never exactly
repeated. This lack of stable context is a serious impediment to
generalizing past experience to future decisions. However, by
abstracting across irrelevant features, it is possible for the cognitive
system to gain an understanding of a task environment in terms of its
functionally equivalent states (Redish, Jensen, Johnson, & Kurth-
Nelson, 2007; R. C. Wilson & Niv, 2011). A key piece of the learning
challenge for our model is therefore to discover this latent structure in
the environment.

Previous theoretical results have demonstrated that adopting an
incorrect representation of the task environment will lead to me-
liorating behavior under a fairly broad class of learning and deci-
sion rules (Sakai & Fukai, 2008). However, to date, no one has
examined whether a rational decision maker could, in principle,
learn an appropriate representation of the task environment in a
melioration experiment. Without this key piece of information, it is
not clear whether documented instances of melioration reflect
irrationality in human decision making under risk or whether they
point to a rational agent acting optimally in the face of significant
environmental uncertainty. To address this limitation, our rational
learner model was designed with the explicit goal of inferring the
structure of the task environment, without placing strong restric-
tions on what structures are possible a priori. Thus, the model is
free to entertain incorrect hypotheses of the task environment, just
as human participants in a melioration experiment are free to do.
One limitation of the present analysis is that it is primarily con-
cerned with whether people’s behavior is rational given what they
have observed. We do not explicitly address the question of

whether people optimally explore a decision environment
(Steyvers, Lee, & Wagenmakers, 2009). Importantly, the rational
learner model is also not intended as a process-level model of
human learning (in fact, it is rather implausible in this regard).
Rather, it is intended as a bound on what could potentially be
learned by human participants, assuming the absence of cognitive
limitations. If a fully rational learning agent meliorates, then
the claim that meliorating behavior indicates irrationality must be
discarded.

In the next section, we briefly describe the results from an
experiment using the Harvard game in which humans predomi-
nantly fail to learn the globally maximizing decision strategy.
After presenting the basic results, we derive our rational learner
model and apply it to the empirical data from each individual. To
preview our results, the analysis uncovers some rather surprising
facts about our data. These results include the finding that even an
unbiased rational learner could be led to believe that melioration
will be of higher long-term value than the supposedly optimal
strategy, despite extensive experience in the task environment.
Based on these results, we conclude that melioration can be inter-
preted not as irrational behavior under risk but instead as rational
choice under uncertainty.

Experiment

Method

Participants. Twelve undergraduate students from Rensselaer
Polytechnic Institute (Troy, New York) participated in the exper-
iment in exchange for monetary compensation. The amount of
money earned by each participant depended on his or her perfor-
mance in the task.

Apparatus. On each trial of the experiment, participants faced
a choice between two alternatives. The alternatives were presented
as two buttons labeled Left and Right on a computer screen. After
each decision, the task interface indicated whether or not the
choice resulted in a reward, as well as the participant’s cumulative
winnings for the experiment. Rewards were given probabilistically
such that the reward on any trial was either 0 or 2 cents. The
probability of receiving a reward depended on the participant’s
choice on the most recent trial, as well as his or her previous 9
choices in the experiment, as illustrated in Figure 1. In general, the
probability of receiving a reward for one of the alternatives
(the melioration alternative) was always higher than the other (the
maximization alternative). Specifically, the probability of receiv-
ing a reward following a choice of the maximization alternative
was given by p(reward max) � (2/3) � (nmax/10), while the
probability of reward for the melioration alternative was p(reward
mel) � 1/3 � (2/3) � (nmax/10), where nmax indicates the number
of choices made to the maximization alternative during the previ-
ous 10 choices. Since the choice history is ill-defined for the first
10 choices of the experiment, we initialized each participant’s
history with a sequence of 10 alternating meliorating and maxi-
mizing choices.

Over the course of the entire experiment, consistently choosing
the maximization alternative would earn the participant an ex-
pected cumulative reward of $10.67, while consistently meliorat-
ing would earn an expected payoff of $5.33. The maximization and
melioration alternatives were randomly mapped to the left and
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right buttons for each participant. Participants indicated their re-
sponse on each trial using a standard computer mouse, and there
were no time constraints on their decision.

Procedure. Before beginning the experiment, each participant
received instructions on the task interface. Participants were told
that the amount that they won in the experiment depended on their
choices and that they could win between approximately $5 and
$11. Beyond this, participants were not informed about the specific
dependencies between choices and outcomes but were instructed
to maximize their earnings over the course of 800 experimental
trials. Each participant completed all 800 trials in a single session
lasting approximately 45 min. At the end of the experiment,
participants were paid the amount of money gained during the
study.

Results and Discussion

On average, participants chose the maximizing alternative on
46.4% of trials, and earned an average of $7.72 (minimum �
$6.42, maximum � $9.92). Figure 2 shows a raster plot of the
history of choices made by each participant. Black line segments
indicate choices allocated to the maximizing alternative, while
white indicates melioration. As can be seen, participants exhibited
large individual differences in their allocation of choices. As a first
characterization of participants’ choice behavior, a binomial test
was performed in order to determine if each participant favored the
maximization or melioration alternative at a greater-than-chance
level. The results indicated that seven of the 12 participants dem-
onstrated a significant bias towards melioration, while just three
participants favored the maximizing alternative (all ps � .01;
corrected for multiple comparisons using Holm’s method). To
examine whether mean choice behavior changed over the course of
the experiment, trials were grouped into blocks of 100, and a
one-way within-subject analysis of variance was performed on the
proportion of maximizing choices, using block number as a factor.

The results of this analysis indicate that no significant shifts in
overall choice behavior occurred across all participants, F(7, 77) �
1.17, p � .34, ns, though clearly at least two individuals (11 and
12) increased their allocation to the maximizing alternative. Figure
3a shows the mean proportion of maximization and mean reward
rate for each participant, where each plot marker indicates a
different participant. It is notable that even the participant showing
the strongest degree of melioration (indicated by the left-most plot
marker in Figure 3a) exhibits undermatching, or behavior closer to
indifference as compared to a complete bias towards melioration.
Undermatching has been shown to be fairly common in studies of
choice behavior (Baum, 1979) and, as we demonstrate later, is also
predicted by a rational learner model for this task.

In summary, the majority of participants failed to exhibit the
globally optimal choice strategy. Indeed, seven of the 12 partici-
pants favored the melioration alternative at above-chance levels,
and the overall proportion of maximization did not increase across
blocks of the experiment. This finding echoes results in other
studies that have used a similar or identical paradigm (Gureckis &
Love, 2009a; Tunney & Shanks, 2002).

A Rational Learner Model

In this section, we derive a rational learner model for the
inference problem facing individuals in uncertain sequential deci-
sion environments such as the Harvard game. The goal for our
analysis is to determine, for a given person’s history of choices and
rewards, what he or she should rationally believe about the task
environment with regard to the relationship between past choices
and future rewards. This analysis allows us to examine whether an
individual’s decisions are rational on the basis of the evidence
available to the participant, rather than judging optimality from
the perspective of the experimenter. If all the evidence available
to a participant suggests that melioration is a better long-term
alternative, then the claim that consistent melioration consti-
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tutes evidence of generic irrationality in human decision mak-
ing becomes untenable.

The learning challenge facing participants in the experiment is
discovering the unknown function that relates past choices to
future rewards. The process of learning this function further in-
volves three subproblems that must each be overcome by the
learner. First, participants are not told that reward probabilities
depend on the past 10 trials but must somehow infer this history
window from experience. Second, even assuming knowledge of
the relevant history window, there are a large number of different
possible choice histories of length 10 but only a small number of
functionally distinct states in the environment. In particular, all choice
sequences that have five maximizing choices in the most recent 10 are
functionally equivalent. For example, the two choice sequences of
length 10—{XXXXXLLLLL} and {XLXLXLXLXL}, where X �
maximization, L � melioration—would both lead to a situation
where the probabilities of reward on the very next choice are
identical. Thus, these two very different choice sequences cor-
respond to just a single underlying state of the task environ-
ment, and a rational learner should somehow infer this from its
limited experience. As we show, the process of learning which
choice histories map onto which states of the environment is
essentially a problem of categorization, and the implementation
of our learning model closely mirrors existing rational models
of categorization (Anderson, 1990; Sanborn, Griffiths, & Na-
varro, 2010). Finally, even if the participant knows how differ-
ent choice histories map onto different states of the task envi-
ronment, he or she must still learn the reward probabilities for
each state (i.e., the numerical values plotted in Figure 1). Only
by overcoming all three of these learning challenges will a
decision maker be able to accurately predict the consequences
of each choice in the environment.

Since the learning problem is characterized by uncertainty
regarding the environment, the optimal solution takes the form
of a Bayesian learning model. We formalize the learning prob-
lem as one of inferring a posterior distribution over three
quantities: w, the relevant history window for the task environ-
ment; f, the function that maps each choice history of length w
onto one of a discrete number of states; and �, which indicates
the probability of obtaining a reward for pressing either of the
alternatives in each possible state of the environment. The

posterior distribution over these three quantities can be written
using an application of Bayes’ rule:

p(�, f, w�X) �
p(X��, f, w) � p(��f, w) � p(f�w) � p(w)

p(X)
.

(1)

The denominator is a normalizing constant to ensure that proba-
bilities sum to 1 and can be ignored in the present case. The first
term in the numerator of Equation 1 indicates the likelihood
function for the observed data X, given knowledge of the three
unknown quantities. Given a sequence of binary choices and
binary outcomes, as well as knowledge of the reward probabilities
and underlying states of the environment, the likelihood of the
observed data is defined by

p(X��, f, w) � �
a

�
s

�(�a, s)
NSa, s (1 � �a, s)

NFa, s)�, (2)

where �a,s indicates the reward probability associated with choos-
ing alternative a (MEL or MAX) in state s. The observed data X
can be compactly summarized by the count of the number of
successes (NS) and number of failures (NF) for each alternative in
each state, where successes and failures indicate rewarded and
non-rewarded outcomes.

The remaining three terms in the numerator of Equation 1 define
the prior belief distribution over the reward probabilities, the prior
over functions assigning choice histories to states, and the prior
over possible history windows. For the reward probabilities, p(� f,
w), the model assumes a uniform prior distribution in the range (0,
1) for each alternative in each state. Similarly, the prior probability
over history windows is assigned a uniform prior over the range of
0 . . . 10 past choices. A history window of 0 trials is equivalent to
assuming that outcomes do not depend at all on past choices,
while a history window of 10 trials captures the true structure of
the environment. Adopting a uniform prior over this range
represents the minimal set of possible history windows that a
learner would need to consider to accurately learn the task. The
only remaining term to specify is the prior distribution over
functions f that map choice histories onto functionally distinct
states of the environment.
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Figure 3. a: Average proportion maximization and average reward rate for each participant, overlaid over the
reward contingencies. b: Performance of 24 simulated rational learners.
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As mentioned above, the challenge of inferring the state struc-
ture of the environment bears striking similarity to a categorization
problem: On each trial, the rational learner will be acting from the
starting point of a particular choice history and must decide if this
history is equivalent to an already experienced state or if the
present situation is functionally distinct from all past experiences.
However, rather than categorizing objects by their perceptual
features, the present approach categorizes choice sequences by
their expected utility in the task environment. Another way of
looking at this problem is deciding whether the two choice histo-
ries {XXLL} and {LLXX} should be assigned to the same cate-
gory (assuming a relevant history window of four previous
choices). If the true environmental structure is such that reward
probability depends only on the count of maximizing choices, then
the two sequences are equivalent and should be assigned to the
same state, despite the fact that each individual choice differs in
the two sequences. However, a priori, it is just as likely that reward
probability depends not on the count of maximizing choices but
rather on some other property of the choice sequence. In the
absence of prior knowledge of the task environment, a rational
learner should consider all possible functions that map choice
sequences onto functionally equivalent states. This is captured by
defining a prior distribution over the space of possible functions f,
where the input to this function is a choice sequence and the output
is the state to which that choice sequence belongs.

One possibility for the learner is to treat each history as a unique
state of the task environment. However, under this assumption, the
learner is unlikely to experience the same state twice and thus
cannot generalize his or her past experience to the present situa-
tion. Therefore, the prior over functions implemented in the ratio-
nal learner model instead assumes that each newly encountered
choice history is likely to be functionally equivalent to a previ-
ously encountered state. However, the model still maintains the
possibility that the choice history should instead be assigned to a
separate state, so that the number of inferred states can grow over
time as the learner acquires more evidence and gains finer distinc-
tions between choice histories. In implementation, this prior over
functions is defined by what is known as a Dirichlet process
(Ferguson, 1973; Neal, 2000), which has also been used to develop
rational models of human categorization (Anderson, 1990; San-
born et al., 2010) and word segmentation (Goldwater, Griffiths, &
Johnson, 2009). Formally, the prior probability of a particular
function f under the Dirichlet process model is given by

p( f �w) �
�(1 � �)

�(n � �)
� �S( f )�1 � �

s�1

S( f )

�ns
( f ) � 1� ! , (3)

where S(f) indicates the total number of distinct states assumed by
the particular function f, n � 2w is the total number of choice
histories, and ns

�f� indicates the number of different choice histories
that are assigned to state s under the given function. The Dirichlet
process introduces one parameter, � 	 0, which in essence deter-
mines the strength of generalization in the model. Large values of
� favor assigning each choice history to a unique state, whereas
small values favor assigning many choice histories to the same
state, such that experience acquired from previous choice histories
will generalize to each newly encountered history. In the present
implementation of the model, this parameter was set to � � 1 as

this value favors a moderate degree of generalization appropriate
for the true reward function.

Note that the choice of a Dirichlet process prior over the space of
possible reward functions defines one possible rational learner model,
but other choices are possible. Alternative choices might place stron-
ger or weaker prior probability on different functions and thus lead to
different predictions for rational behavior. Clearly, priors that assign
high probability to the true reward function would lead to improved
learning performance. While we believe the present approach to be
both general and principled, additional research would be necessary to
fully characterize the consequences of this assumption.

We can apply the rational learner model defined by Equations
1–3 and a given participant’s actual sequence of choices and
rewards to infer what could rationally be known about the task
environment on the basis of a limited set of observations. While
computing the full posterior distribution given by Equation 1 is
intractable, recent Monte Carlo sampling techniques enable Bayes-
ian inference for this model (Gilks, Richardson, & Spiegelhalter,
1998; Neal, 2000). Details regarding the inference procedure are
provided in the Appendix. In the next section, we analyze human
performance according to the rational learner model.

Model Results

For each trial of the experiment, the rational learner model was
provided with the actual sequence of choices and outcomes for an
experimental participant and then used to infer what each partic-
ipant could rationally believe about the task environment given his
or her particular task experience. As a starting point, we first
examine whether participants had enough information to infer the
correct history window (the number of previous choices that
determine the probability of reward).

Figure 4 shows the posterior probability for different history win-
dows in the range of 0 . . . 10 previous choices, estimated according
to the rational learner model. The results shown are averaged across
all 12 participants. The width of each band in Figure 4 reflects the
posterior probability for each history window. On the first trial of the
experiment, all history windows have equal prior probability, and so,
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Figure 4. Posterior probability of different history windows, averaged
across participants. Each band indicates the average posterior probability of
a different history window (ranging from 0 through 10 previous trials). The
width of the band indicates relative probability (total probability sums to
1). The true history window for the experiment is 10 previous trials (band
at top of plot).
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each band is of equal width. As participants accrue evidence in the
experiment by choosing actions and observing outcomes, the relative
probability of different history windows changes. With limited expe-
rience in the task (�200 trials) there is little evidence to support a
complex dependency between rewards and past choices, and so, the
simplest hypothesis, w � 0, has the highest posterior probability. As
participants acquire more evidence, there is more data to support
complex models of the task environment. However, even by the end
of the experiment, there is insufficient evidence to conclude with
certainty that rewards depend on the history of the previous 10
choices.

To explore in further detail what each individual might ratio-
nally believe about the task, we used the rational learner model to
infer the expected value associated with adopting a range of 11
different behavioral strategies in the experiment. A given strategy

chose the maximization alternative on each trial independently
with probability � i/10, where i could range from 0 through 10.
This defines a range of strategies that includes pure maximization
(i � 10, or choosing maximization with probability 1) through
pure melioration (i � 0). The predicted value of each strategy was
determined as its expected reward rate (average probability of
reward per trial) over a sequence of 100 choices. The model was
also used to assess the predicted reward rate for the participant’s
subsequent 100 choices in the task (i.e., predicting the value of the
empirical choices before they are taken). When fewer than 100
trials remained in the experiment, the predicted values were ex-
trapolated to the end of the experiment.

Figure 5 shows the inferred value functions for each participant
after completing half of the experiment (400 trials). Each panel
shows the predicted long-term reward rate (defined as the average
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number of rewards per trial over a span of 100 trials) for a single
participant across the range of behavioral strategies. The dashed
line indicates the true value function for the task, while the solid
line indicates the subjective value inferred by a rational learner.
The predicted value of the empirical policy is indicated by a
diamond-shaped marker. What is immediately apparent from Fig-
ure 5 is that for many participants, the value function inferred by
the rational learner is markedly different from the true value
function. While in reality maximization has the highest global
reward rate, for approximately half of participants, the task envi-
ronment has provided misleading evidence that maximization has
the lowest global value, while a strategy of pure melioration would
be expected to maximize global winnings.

Participants 1 and 12 reflect the experimental participants with
the least and most maximizing choices in the experiment, respec-
tively. According to the standard interpretation of melioration
theory, Participant 12 exhibited rational behavior, while Partici-
pant 1 was fundamentally irrational, due to a myopic tendency to
focus on immediate rewards. The results in Figure 5 prove this
interpretation to be misguided. For both participants, the empirical
sequence of choices actually adopted in the task would be pre-
dicted by a rational learner to be near optimal in terms of maxi-
mizing global utility. In other words, both participants were ratio-
nal in their choices given their experience.

While Figure 5 considers human performance at a single point
in the experiment (after completing 400 trials), it is also possible
to examine the rationality of empirical behavior over the course of
the entire experiment. The line with square markers in Figure 6a
plots the average reward rate predicted for the choices made by
participants. This line represents what a rational learner would
predict for the outcomes of participants’ subsequent 100 choices,
given their observed sequence of choices and outcomes up to a
given trial. For comparison, the predicted values of pure meliora-
tion and maximization strategies are also shown. With limited
experience in the task (�200 trials), a strategy of exclusive me-
lioration would be expected to have the highest overall utility.
Over time, as participants acquire more evidence in the experi-
ment, the predicted value of melioration decreases, while the value
of maximization increases. Importantly, however, the actual se-
quence of choices made by participants would be predicted (by a
rational learner) to be superior to pure maximization. Thus, the
environment provided insufficient evidence for participants to
recognize that their behavior was suboptimal relative to the sup-
posedly rational maximization strategy.

If participants allocated their choices in a rational manner, then
those who observed more evidence that maximization had higher
value should also exhibit more maximizing behavior in their
subsequent choices. To assess whether this in fact was the case, the
rational learner model was used to compute the relative value of
maximization (defined as the predicted value of maximization
minus the predicted value of melioration) for each participant
on each trial of the experiment. The relative value of maximization
was then correlated with the percent of maximizing choices ob-
served for each participant over the subsequent 100 trials. If
participants are in fact sensitive to their experience in a manner
approximating the rational learner model, then a positive correla-
tion would be expected. Figure 6b shows the results of this
analysis. For most of the experiment, the correlation remains
between 0.5 and 0.9, indicating that the rational learner model

offers a fairly accurate prediction of participants’ subsequent
choices. That is to say, participants who had more evidence to
rationally favor the maximization option did in fact maximize
more strongly.

Strategic Exploration of the Task Environment

The results presented so far were obtained by using the rational
learner model to infer what each participant should believe about
the task environment given his or her own past sequence of choices
and observed outcomes. However, it may be misleading to claim
that behavior is rational given what participants observed because
participants largely determined what they observed through their
own sequence of choices. This feature is true of any decision
environment, and so, optimal behavior requires that participants
must simultaneously balance exploration of the task environment
with choices that exploit the knowledge gained. While we have
shown that participants’ choices were largely optimal given what
they observed, it may be the case that they were suboptimal in their
exploration of the environment.

To break any potential circularity between past observations and
predicted value, we performed an additional simulation in which
the choices made by the rational learner model were not tied to the
choices made by experimental participants. Instead, the rational
learner model was allowed to generate its own experience by
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selecting the maximization or melioration alternative on each trial
(in essence, the model was treated as a participant and run through
the experiment in the same manner as human participants).

On each trial, the rational learner model based its decision on
the inferred value function given its past experience. Specifically,
the model computed the predicted value of a range of different
choice strategies. Each such strategy chose the maximization re-
sponse with probability (i/10), where i ranged from 0 through 10.
This defines a space of strategies that includes pure maximization
(i � 10) and pure melioration (i � 0), as well as a number of
intermediate behavioral allocations. Since optimal exploration of
the present decision environment represents a computationally
infeasible problem, the model selected between these strategies
using a heuristic approach known the softmax decision rule. This
same decision rule has been used in numerous existing models of
human choice where individuals must balance exploration and
exploitation in uncertain environments (e.g., Daw, O’Doherty,
Dayan, Seymour, & Dolan, 2006; Fu & Anderson, 2006; Gureckis
& Love, 2009a; Yechiam & Busemeyer, 2005). Accordingly, the
probability of selecting a behavioral allocation strategy ai that
maximizes on [100 � (i/10)]% of its choices is given by

P(ai) �
eU(ai) ⁄


�j�0
10 eU(aj) ⁄


. (4)

The function U(ai) indicates the inferred reward rate for strategy
ai, and � is a noise parameter governing the trade-off between
exploration and exploitation. If on a given trial the selected strat-
egy was ai � 90% maximization, the model chose the maximiza-
tion alternative with probability 0.90 and chose the melioration
alternative with probability 0.10. Figure 3b shows the results of
running 24 simulated participants through the experiment, using a
noise parameter � � 0.01. The behavior of the rational learner
model closely resembles human participants: Both settle on a
behavioral allocation that favors melioration over maximization,
though the model appears to exhibit less between-subject variabil-
ity than humans. It is noteworthy that both the human participants
and the model demonstrate undermatching (Baum, 1979), or a
behavioral allocation closer to indifference than predicted by the
matching law. In the case of the rational learner model, this is
largely controlled by the noise parameter in the softmax decision
rule: Increasing noise tends to predict behavior closer to indiffer-
ence, while decreasing noise increases the strength of meliorating
behavior. Critically, the model accounts for the existence of ap-
parent meliorating behavior by attempting to maximize global,
rather than immediate, reinforcement.

One possible criticism of this result is that both human subjects
and the rational learner model infrequently selected the maximiz-
ing alternative. Given this fact, one might argue that it is not
surprising that they did not discover the true value of the maxi-
mization strategy. First, this argument points to a fundamental
challenge inherent in any complex decision environment—that
exploration requires selecting suboptimal actions according to
current beliefs—but does not point to irrationality on the part of
either human participants or the rational learner model. Second,
and less obvious, is the fact that even if participants exhibited a
strong bias towards maximization, it is unlikely that they would
have acquired an accurate assessment of the relative value of
maximizing and meliorating within the span of 800 trials. To

demonstrate this counterintuitive fact, we conducted simulations in
which the rational learner model selected between the two alter-
natives, but with a biased choice allocation, so that the maximi-
zation alternative was chosen on either 25% of trials (bias towards
melioration) or 75% of trials (bias towards maximization) regard-
less of the inferred value for each alternative. For comparison, an
unbiased choice allocation (50% independent probability of max-
imization on each trial) was also evaluated. Furthermore, we
extended the simulation to one million trials to assess the time
course of learning.

Figure 7 shows the results of this analysis. As expected, when
choice allocation is biased towards melioration (see Figure 7a), the
predicted value of maximization is well below that of melioration,
and the same holds true even when choice allocation is unbiased
(see Figure 7b). More surprisingly, for an unbiased allocation
strategy, it would take a rational learner more than 20,000 trials to
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Figure 7. Inferred value of maximization and melioration for the rational
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infer that maximization is preferable to melioration, an amount of
experience that would require a human participant close to 24 hr in
the laboratory to reach. Even when choice allocation is instead
biased towards maximization (see Figure 7c), this pattern is not
reversed. Rather, in this case, the predicted value of meliorating
would be even higher. The reason is that on the (infrequent) trials
when the melioration alternative is selected, the probability of
reward is close to 1. In other words, the more one maximizes, the
more the environment pulls behavior back towards melioration.

Evaluation of Alternative Choice Allocation Strategies

As an additional index of the difficulty of learning the environ-
mental contingencies, we computed the mean squared error (MSE)
between the actual reward function and the inferred value function
(e.g., computing the MSE between the dashed and solid lines in
Figure 5). We then examined how MSE in the inferred value
function changed as a function of experience with the task. As the
model acquires more evidence and learns the true reward structure,
the MSE would be expected to decrease towards zero. This anal-
ysis also allows us to examine how different strategies for explor-
ing the environment influenced the rate of learning. A 75% bias to

maximization or melioration represents two such strategies. We
also tested a choice strategy where consecutive choices were
highly correlated: This strategy repeated the choice from the
previous trial with probability 0.75 and switched to the other
alternative with probability 0.25. Additionally, we examined per-
formance of the win–stay, lose–shift (WSLS) heuristic (Robbins,
1952): When the previous trial was rewarded, the same choice is
repeated; otherwise, the next choice is made to the other alterna-
tive. As applied to the present paradigm, adopting WSLS would
predict an allocation of around 35% maximizing responses; the
question is whether the resulting observations would be sufficient
to indicate to participants the suboptimality of this strategy. For a
baseline of comparison, we also examined a completely random
(50% independent probability of maximization on each trial) allo-
cation of choices.

The results of this analysis are shown in Figure 8a. Perhaps
surprisingly, three of the choice allocation strategies would be
expected to hinder understanding of the task dynamics compared
to a completely random allocation of behavior (specifically, 75%
bias to melioration, 75% bias to maximization, and the WSLS
strategy). Only the correlated choice strategy would be expected to
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learn the true reward contingencies more quickly. In fact, this
strategy would be able to learn an accurate model of the reward
structure within a time frame comparable to the amount of expe-
rience the experimental participants were given in the task. How-
ever, there is no feature of the task environment that would
indicate to a participant that a correlated choice strategy is likely to
be successful. Thus, if an individual happened to exhibit a ten-
dency to repeat a single choice for many trials, he or she might
learn that maximization had a higher value than melioration (per-
haps accounting for the two participants who exhibited stable
maximization in the experiment).

Intriguingly, the finding that strong correlations in choice be-
havior could lead to improved learning sheds light on a recent
finding from Otto et al. (2012) that participants who rated higher
on a psychological assessment of impulsivity were more likely to
favor the meliorating alternative. Otto et al. attributed this result to
the hypothesis that participants rating higher on impulsivity were
more likely to favor immediate reinforcement over higher long-
term gains (a melioration theory account). However, the present
results suggest an interpretation that may have nothing to do with
a myopic view of rewards: If impulsive subjects are not myopic
but rather are more variable in their behavior (for any reason, even
if they are attempting to maximize long-term gains), they would be
predicted to learn a meliorating strategy. This is due to the fact that
behavior closer to random (independent) choice favors melioration
more strongly than autocorrelated choices distributed to both
alternatives.

Evaluation of Manipulations to the Task Environment

The results presented so far directly challenge the long-standing
assumption that the empirical observation of meliorating behavior
indicates any form of irrationality in human choice. However, a
large number of additional experimental manipulations have been
conducted within the context of the basic melioration paradigm.
Experimentally, it has been found that maximization increases
when rewards depend on a smaller span over previous
trials (Herrnstein et al., 1993). Figure 8b (square plot markers)
shows that when the history window is reduced from 10 to five
previous trials, the rate of learning an accurate model of the task
environment increases by two orders of magnitude. Other experi-
mental manipulations have examined how adding cues to the
underlying state of the task improves learning (Gureckis & Love,
2009b; Herrnstein et al., 1993; Otto et al., 2009), for example, by
adding indicator lights that correspond to the number of maximiz-
ing choices over the relevant choice window. Consistent with the
empirical finding that maximization increases in this case,
the rational learner model predicts an improvement in performance
when the task is modified to give labels that disambiguate the state
that a particular choice history should be assigned to (see Figure
8b, diamond plot markers).

It has also been demonstrated empirically that providing partic-
ipants with explicit hints regarding the dynamics of the task also
improves performance (Herrnstein et al., 1993; Kudadjie-Gyamfi
& Rachlin, 1996; Warry et al., 1999). We tested this manipulation
by running a rational learner model that assumed a priori that
rewards depended on the number of maximizing choices in the
recent history but was not informed that the relevant history span
was 10 previous trials. This manipulation also leads to improved

learning performance (see Figure 8b, triangle plot markers), al-
though even in this case it takes several thousand trials before the
error in the learned value function approaches zero. This demon-
strates two important facts: First, even when given substantial
knowledge of the task, the learning challenge facing participants is
far from trivial. Second, it may be the case that human participants
could outperform the rational learner model presented here without
invalidating the present results. In defining the rational learner, it
was important that it not be biased a priori towards the correct
structure of the environment. However, it is well known that
simple but biased heuristics often outperform more sophisticated
(but unbiased) decision strategies (Gigerenzer & Brighton, 2009;
Katsikopoulos, Schooler, & Hertwig, 2010). More specifically,
experiments in function learning indicate that people possess a
bias favoring linear relationships with a positive slope (Kalish,
Griffiths, & Lewandowsky, 2007); such a bias would be expected
to favor learning a correct model of the task environment (where
reward probability is in fact a linear function of number of max-
imizing choices). Similarly, human participants might assume a
restricted feature space compared to the rational learner model.
Memory limitations (e.g., Stevens, Volstorf, Schooler, &
Rieskamp, 2011) might constrain people to consider only the tally
of maximizing and meliorating choices and thus improve their
performance in the task. A careful assessment of the impact of
cognitive biases and constraints on performance is an important
area for future research.

Summary and Conclusions

In this article, we have considered two basic but competing
accounts of the organizing principles of human decision making:
rational choice theory and melioration. According to rational
choice theory, humans act in a manner that seeks to maximize the
overall achievement of subjective utility. By contrast, melioration
theory asserts that the driving force underlying decision making is
not the attempt to maximize global utility but rather a process of
continually shifting behavioral preferences towards alternatives
with higher local rates of reward. The implications of the debate
between melioration and rational choice theory are both important
and widespread, impacting fields as diverse as training and edu-
cation, criminal justice, and the treatment of substance abuse and
addiction.

An important piece of evidence in this debate comes from a
simple experimental paradigm, known as the Harvard game, in
which participants must make a sequence of repeated choices
between two alternatives. Compared to most laboratory studies of
human decision making, this experiment contains two important
properties that are common in real-life decisions: First, the utilities
of competing alternatives are not independent, and second, the
consequences of actions can be delayed in time without any
obvious indication of this fact. In the past, the results using this
paradigm have been interpreted as evidence that humans are either
fundamentally impulsive (J. R. Gray, 1999; Kudadjie-Gyamfi &
Rachlin, 2002; Otto et al., 2012; Tunney & Shanks, 2002; Warry
et al., 1999) or generically irrational (Herrnstein, 1991) in terms of
their allocation of behavior.

Historically, the interpretation of these results as evidence
against rationality and in favor of melioration theory has relied on
two key assumptions: (a) The empirical occurrence of meliorating
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behavior is evidence for generic suboptimality in human decision
making, and (b) the origin of this behavior is temporal myopia, or
the exclusive consideration of short-term rewards at the cost of
long-term optimality. The primary contribution of this article is to
demonstrate that both of these assumptions are false. It is not the
case that melioration necessarily reflects the behavior of an irra-
tional individual who only considers immediate rewards. Rather,
with limited experience in an uncertain environment, melioration
defines the response strategy that would be predicted by a rational
agent attempting to maximize global utility.

From the perspective of the experimental designer, humans may
indeed appear to act suboptimally. However, for the experimental
participant, the task is more complicated. At the outset of the
typical melioration experiment, the participant may know that
current and future rewards depend on past choices, but this does
little to narrow the vast space of possible relationships between
actions and outcomes. Thus, the problem for a participant in such
an experiment is not merely one of choice but fundamentally also
one of learning. The distinction between these two perspectives is
extremely critical in terms of what one may infer about the
rationality of human choice. If crucial information about the con-
tingency between choices and outcomes needs to be learned under
uncertainty, it may be premature to question the rationality of
human choice in principle. In other words, “irrational choices
arising from incomplete learning do not imply the need to modify
standard choice theory” (D. Friedman, 1988, p. 942).

Critics may point out that the present results only address human
choice behavior in a particular laboratory decision task. In the real
world, many individuals continue to smoke cigarettes despite
being aware of the negative long-term health consequences. Our
results cannot be taken as evidence for the rationality or irratio-
nality of smoking. Instead, we would emphasize that the claim that
addiction is explained by melioration theory (e.g., Heyman, 1996)
relies, in large part, on the misinterpretation of empirical data from
simpler laboratory tasks such as the one considered here. Our
contribution is to show that this misinterpretation stems from a
failure to differentiate human choice under risk from choice under
uncertainty.

Although the experimental paradigm presented here was de-
signed to discriminate between economic rationality and meliora-
tion theory, an alternative framework for understanding the present
results is that of ecological rationality (Goldstein & Gigerenzer,
2002; Todd, Gigerenzer, & the ABC Research Group, 2012). Our
results have demonstrated that learning the true structure of an
uncertain decision environment on the basis of limited experience
may be both computationally and cognitively infeasible. When
optimality is out of reach due to constraints of learning, finding
satisficing solutions, or solutions that are good enough (Simon,
1955), may be the next best thing. Similarly, a narrow view from
the laboratory obscures the fact that human choice in any one
context is not a closed system and may be adapted to other
environments.

Knight (1921) emphasized the distinction between problems
involving risk and problems involving uncertainty: In the former
case, the outcomes of actions may not be certain, but at the least,
the relevant factors and consequences are enumerable and can be
quantified. Similarly, Savage (1954) employed the concept of a
small world: a decision environment in which the consequences of
actions are understood in terms of probability distributions and

numerical utilities over possible outcomes. In small worlds, the
calculus of expected utility theory forms the basis of rational
behavior. However, Savage was careful to point out the limits of
this approach. Outside of small worlds (such as the typical labo-
ratory study of human choice), not all possible outcomes and
probabilities can be considered. In complex environments, people
must use decision strategies that ignore some possibilities. The
rationality of such behavior is based on a match between the
capacities of the agent and the broader structure of the environment.
As a result, mechanisms of choice like melioration, decision strategies
like WSLS (Robbins, 1952), and various cognitive biases (Tversky &
Kahneman, 1981) and simple heuristics (Gigerenzer et al., 2011)
might only appear to be irrational when studied outside of their
ecological niche (Marewski & Schooler, 2011).

Relation to Other Models of Learning and Choice

We believe that our analysis is the first to address the phenom-
enon of melioration from the perspective of what each individual
should rationally believe about the decision environment. Acuña
and Schrater (2010) considered the problem of learning the struc-
ture of a decision environment in a simpler setting, but our analysis
extends their work to more complex environments in which there
are unknown sequential dependencies between past actions and
future outcomes.

In recent years, several reinforcement learning models have
been proposed as process-level explanations of human perfor-
mance in melioration tasks (Gureckis & Love, 2009a, 2009b; Neth
et al., 2006). What have these models contributed to our under-
standing of the mechanisms of human choice, and how do they
differ from the current analysis? At an abstract level, reinforce-
ment learning is designed to provide an approximately optimal
solution to a broad class of environments known as Markov
decision problems (Sutton & Barto, 1998), and thus, any reinforce-
ment learning model might be called an approximately optimal
model of choice. By manipulating parameters of the learning
equations or adding mechanisms such as eligibility traces, the full
range of behavior from exclusive melioration through strong pref-
erence for global maximization can be predicted by such models
(Neth et al., 2006). One important difference between our rational
learner model and existing reinforcement learning models applied
to melioration theory lies in their assumption of a prespecified or
constrained mental representation of the task environment. These
models therefore address the question of learning to act optimally
for an existing representation of the task but do not address the
more difficult challenge of learning the environmental structure.
By contrast, we have emphasized that a critical learning problem
lies in the fact that an appropriate understanding of the task
environment is neither fixed nor given to the learner.

We note that reinforcement learning in general is not restricted
in this manner. Model-based reinforcement learning (Lee, Seo, &
Jung, 2012; Sutton & Barto, 1998) explicitly addresses the chal-
lenge of learning a predictive model of the environmental struc-
ture. For example, Camerer and Ho (1999) developed a simple
learning model for competitive games that combines model-free
reinforcement learning and belief learning. Model-based reinforce-
ment learning has also been offered as an explanation for how
people learn the perceptual consequences of actions in a sequential
action task (Yakushijin & Jacobs, 2011). The rational learner
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model developed here can also be considered a model-based
reinforcement learning system, the first applied to the domain of
melioration.

Perhaps most relevant to the present case is the model developed
by Redish et al. (2007), in which the identification of unique states
of the environment is also viewed as a categorization problem.
Whereas the model developed by Redish et al. proposes a neural
network model of learning to differentiate between states, the
rational learner model developed here is based on a normative
solution to this problem (following existing rational models of
categorization; Anderson, 1990; Sanborn et al., 2010). Compared
to other models of categorization, the present approach is simpler
in that the notion of similarity between different choice sequences
depends only on their utility. The choice of a Dirichlet process
prior in our model defines one possible rational learner model, but
other choices are possible. Alternative choices might place stron-
ger or weaker prior probability on different functions and thus lead
to different predictions for rational behavior. It seems likely that
human participants make stronger assumptions about the environ-
ment, even if the task instructions given to participants do not
warrant such assumptions. For instance, experiments on human
function learning have shown that people possess an a priori bias
towards assuming positive linear relationships among variables
(Kalish et al., 2007). Such a bias would be expected to improve
learning performance in the experiments presented here, since
reward probability was in fact a linear function of the number of
maximizing or meliorating choices in the history. Carefully
documenting how such prior assumptions influence choice be-
havior in various environments represents an important but
difficult challenge.

Also related to the present approach is the idea that decision makers
may use reinforcement learning to select from a repertoire of different
strategies for accomplishing any given task (Erev & Barron, 2005;
Rieskamp & Otto, 2006). Competing strategies may differ in their
assumptions regarding the structure of the environment or relevant
informational variables for basing judgments, and successful behavior
requires learning which strategy is best matched to the current envi-
ronmental structure. This view of learning mirrors the present analysis
by demonstrating that, in complex decision environments, learning
involves more than merely assigning utilities to the physical actions
available to the actor.

Conclusion

The results of the rational learner model indicate that not only
would participants in the Harvard game have little evidence to
favor the correct state representation of the task but many would be
completely rational if they inferred an incorrect representation of
the task, in which meliorating is believed to provide higher long-
term rewards. In the face of significant uncertainty regarding the
structure of the decision environment, there is no automatic equiv-
alence between apparent meliorating behavior and globally sub-
optimal choice. One individual may rationally meliorate, while
another may irrationally maximize. In many cases, people who
exhibit meliorating behavior have a rational reason for doing so.
Arriving at a point where these possibilities can be meaningfully
distinguished requires a dramatic shift in how choice behavior in
uncertain environments is studied. Beyond the concrete task envi-
ronment examined in this article, the rational learner model exem-

plifies a methodology that demonstrates how the learnability of an
uncertain decision environment can be assessed. It is our hope that
rational analysis from an individual’s perspective will play an
increasingly important role in studying the mechanisms of human
choice.
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Appendix

Details of the Bayesian Inference Procedure

The challenge for the rational learner model is to infer a poste-
rior distribution over three quantities, as described by Equation 1
in the main text: the relevant history window, w; the function
assigning choice sequences to unique states of the environment, f;
and the reward probabilities associated with each state, indicated
by �.

If the history window is known, then the conditional posterior
distribution p(�, f X, w) is equivalent to a straightforward appli-
cation of a Dirichlet process mixture model with a conjugate prior
(Neal, 2000). To approximate this posterior distribution, Markov
chain Monte Carlo algorithms (Gilks et al., 1998) can be applied to
generate a large set of samples from this distribution. In particular,
our implementation follows the collapsed Gibbs sampler algorithm
described by Neal (2000, Algorithm 3).

This leaves the challenge of computing the full posterior distri-
bution, p(�, f, w X) � p(�, f X, w)p(w X). Determining the pos-
terior distribution over history windows, p(w X), requires comput-
ing the marginal likelihood, or normalizing constant for the
Dirichlet process. While direct calculation of this quantity is in-

tractable, Blei and Jordan (2006) developed a variational approx-
imation algorithm that computes a lower bound on the marginal
likelihood for Dirichlet process mixture models. This algorithm
was used to compute an approximation to p(w X) for each history
window in the range of 0 through 10 previous choices.

For each possible history window, 1,000 samples were obtained
from the posterior distribution p(�, f X, w), using a collapsed
Gibbs sampling algorithm. These samples were then resampled
according to p(w X) for each history window w � 0 . . . 10,
resulting in a set of 1,000 samples distributed according to the joint
posterior distribution over the three quantities of interest. These
posterior samples were then used to compute the expected value
for various decision strategies (e.g., pure melioration or pure
maximization) given the observed evidence X.

Received August 25, 2011
Revision received August 31, 2012

Accepted September 25, 2012 �

154 SIMS, NETH, JACOBS, AND GRAY

http://dx.doi.org/10.5962/bhl.title.55072
http://dx.doi.org/10.1093/acprof:oso/9780195315448.001.0001
http://dx.doi.org/10.1002/bdm.415
http://dx.doi.org/10.1126/science.7455683
http://dx.doi.org/10.1126/science.7455683
http://dx.doi.org/10.1901/jeab.1981.36-141
http://dx.doi.org/10.1901/jeab.1981.36-141
http://dx.doi.org/10.1006/lmot.1998.1018
http://dx.doi.org/10.1006/lmot.1998.1018
http://dx.doi.org/10.3389/fnhum.2011.00189
http://dx.doi.org/10.3389/fnhum.2011.00189
http://dx.doi.org/10.1037/a0028146
http://dx.doi.org/10.1111/j.1551-6709.2011.01176.x
http://dx.doi.org/10.3758/BF03193783
http://dx.doi.org/10.3758/BF03193783
http://dx.doi.org/10.1518/hfes.45.4.671.27085

	Melioration as Rational Choice: Sequential Decision Making in Uncertain Environments
	Melioration and Maximization
	On the Rationality of Melioration
	Experiment
	Method
	Participants
	Apparatus
	Procedure

	Results and Discussion

	A Rational Learner Model
	Model Results
	Strategic Exploration of the Task Environment
	Evaluation of Alternative Choice Allocation Strategies
	Evaluation of Manipulations to the Task Environment

	Summary and Conclusions
	Relation to Other Models of Learning and Choice
	Conclusion

	References


