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Abstract

To investigate people’s ability to update memory in a dy-
namic task environment we use the experimental card game
TRACS™ (Burns, 2001). In many card games card count-
ing is a component of optimal performance. However, for
TRACS, Burns (2002a) reported that players exhibited a base-
line bias: rather than basing their choices on the actual num-
ber of cards remaining in the deck, they chose cards based on
the initial composition of the deck. Both a task analysis and
computer simulation show that a perfectly executed memory
update strategy has minimal value in the original game, sug-
gesting that a baseline strategy is a rational adaptation to the
demands of the original game. We then redesign the game
to maximize the di↵erence in performance between baseline
and update strategies. An empirical study with the new game
shows that players perform much better than could be achieved
by a baseline strategy. Hence, we conclude that people will
adopt a memory update strategy when the benefits outweigh
the costs.

Introduction
Optimal performance in dynamic environments requires that
we base our decisions on the current state of the world, not on
past states. Radar operators must act on the basis of continu-
ously changing variables such as plane altitude and heading.
Drivers constantly need to monitor the current speed limit,
posted road signs and the tra�c behind and in front of them.
Failure to mentally update these types of information can lead
to dangerous decisions and catastrophic behavior. Even our
chances to win at card games like Blackjack or Bridge are
closely tied to our ability to count cards and update memory.
Previous research suggests that human ability to monitor

and adjust to change is limited and dependent on various fac-
tors. Yntema (1963) found that people are better at tracking a
small number of variables with a large range of values each,
than a large number of variables with a small set of possi-
ble values each. In addition, reducing the frequency of up-
date can improve performance. Other manipulations, such
as increased predictability of a sequence, provide little or no
advantage in remembering the current state of the environ-
ment. Venturino (1997) distinguished the memory capacity
for static information from that for dynamically changing in-
formation and showed that the latter is highly limited, par-
ticularly when the to-be-remembered attributes are similar.
Hess, Detweiler and Ellis (1999) added that update perfor-
mance is improved when spatial invariants constrain where
di↵erent data values are presented on a visual display.
In general, human rational behavior is constrained by the

structure of task environments and the computational capa-

Table 1: Baseline distribution of cards in the deck. The back
of every card shows only its shape, whereas the front shows
both its shape and color.

Shape: N � ⌅ N � ⌅
Color: red red red blue blue blue

Initial deck: 6 4 2 2 4 6

bilities of the actor (Simon, 1990). To capture functional
relationships of complex tasks while abstracting away from
domain specific details we advocate the use of synthetic task
environments, or microworlds (Gray, 2002). If the properties
of the synthetic task environments are known and manipula-
ble, the scope and limits of human rationality can be assessed.
Moreover, the e↵ects of environmental changes are tractable.

Straight TRACS
TRACS™ is a ‘Tool for Research on Adaptive Cognitive
Strategies,’ designed and developed by Kevin Burns (2001,
2004). Being both entertaining card game and experimental
research tool, TRACS provides a microworld which promises
to bridge the gap between mathematical rigor and real-world
relevance. We will limit our discussion to Straight TRACS,
which is the simplest version of an entire family of games.1
TRACS is played with a deck of 24 cards. The back of each

card shows one of three shapes—circle, triangle, or square—
filled in with black. The front of each card shows both its
shape, and one of two colors (red or blue). Table 1 shows
the initial deck distribution for each of the six possible card
types. This baseline information is always available to the
player. As hands are played the number of cards remaining
in the deck decreases, and the odds for each shape change
accordingly.
At the start of a game, three cards are dealt in a row. The

middle card is dealt face up (showing both its shape and
color), while the left and right cards are dealt face down,
showing their shape not their color. The task for the player
is to choose the card, either left or right, most likely to match
the color of the middle card. The chosen card is then turned
over, revealing its color. If the chosen card matches the color
of the middle card, a hit is credited to the player’s score. A
mismatch is scored as amiss. The two face up cards (the mid-
dle and the chosen card) are then removed from the game. On

1Online versions are available at www.tracsgame.com.
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the next turn, the unchosen card is flipped over and becomes
the new middle card, and two new cards are dealt face down
to the left and right. A game lasts 11 turns, at which point
there are not enough cards in the deck to deal another hand.
A player’s objective in TRACS is to maximize the number of
hits.
As a probe of the player’s assessment of odds at each turn,

Burns (2002a, 2002b) added a confidence meter to the task.
On each turn, players were presented with a red to blue color
gradient for each of the two face-down cards. Prior to choos-
ing a card, the participants used the gradient to indicate the
likelihood of each candidate card to be red or blue. In an-
other condition, Burns used a scale of nine buttons rather than
a continuous spectrum. For consistency reasons all gradient
estimates were rounded to the nearest button, corresponding
to the nearest 12.5%.
Burns (2002a) characterized players’ likelihood estimates

as exhibiting a baseline bias; i.e., their judgments of odds
deviate systematically from the actual odds in the direction
of the initial card distribution. There are six types of color–
shape combinations. Burns (2002b) reports that players could
only monitor 2–4 types of cards with reasonable reliability.
He concludes that the dual tasks of concurrently counting and
normalizing numbers ‘are naturally hard’ and that continu-
ously updating odds exceeded the cognitive capacity of the
‘unaided mind’ (Burns, 2002a, p. 159).
In the following sections, we will challenge this claim both

theoretically and empirically. To preview our conclusions,
we find that subtle constraints in the task environment can
have profound e↵ects on the strategy adopted by participants.
The reported baseline bias is revealed as both rational and
adaptive when considered in light of a cost-benefit analysis of
the environment. We then demonstrate that players will adopt
a more e↵ortful memory strategy if the cost-benefit structure
of the environment rewards this.

Tracking TRACS
Given the original finding that players find it challenging to
succeed at TRACS, a natural starting point for our investiga-
tion is a task analysis. What specifically makes this game so
di�cult to play?

Task Analysis
In describing TRACS as a game of ‘confidence and conse-
quence’ Burns (2001, 2002b) distinguishes two subtasks of
diagnosis and decision. On each turn, a player first provides
an odds judgment for each face-down card and then chooses
one on the basis of these estimates.
Extending Burns’ analysis, we suggest that each turn in-

volves a minimum of three distinct cognitive tasks: a mem-
ory retrieval task, an odds conversion task, and a decision
task (see Figure 1). The first subtask on each turn consists
in remembering how many cards of each candidate shape and
color remain in the deck. As the initial card distribution is
provided in terms of frequencies and players encounter card
instances through a process of natural sampling, we assume
that this retrieval is framed in terms of natural frequencies.
Secondly, the retrieved frequencies need to be converted into
odds, which is a non-trivial process involving Bayes’ rule for
natural frequencies (Gigerenzer, 2000). For example, to de-

Initial deck 
of cards

1. Memory retrieval task:
Recall frequencies

2. Conversion task:
Compute probabilities
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Figure 1: Subtasks and memory updates required on each turn
of Straight TRACS.

termine the likelihood of a red triangle, a player has to divide
the number of red triangles currently left in the deck by the
sum of red and blue triangles left in the deck. As people
are notoriously bad at dealing with probability information
(see Gigerenzer, 2000, and Koehler, 1996, for reviews) it is
conceivable that this translation process incurs a loss of accu-
racy. If so, merely asking for likelihood estimates confounds
memory updates with probability judgments and may under-
estimate players’ true memory capacity. As a third subtask, a
player needs to integrate all estimates and decide which can-
didate card is more likely to score a hit on the current trial.
In addition to these three subtasks, each turn requires two

distinct updates of memory. The first update is necessary as
soon as the middle card is revealed. If the middle card hap-
pens to be a red triangle, the player needs to realize that there
now is one less red triangle left in the deck. The second up-
date ought to occur at the end of a turn when the chosen card
is revealed. This second update is critical, as at this point in
the game, players may be distracted by focusing exclusively
on the correctness of their choice and ignoring the additional
information revealed.
This task analysis reveals both the complexity and sim-

plicity of TRACS. On one hand, multiple subtasks and mem-
ory update requirements make the game quite challenging.
Even if frequency information on card types was readily
available, the conversions into probabilities, comparisons be-
tween odds, and selection of cards introduce potential sources
of error. On the other hand, remembering and updating a list
of six numbers (representing the current frequency of each
card type) does not in itself seem beyond the capacity of hu-
man memory.

The Impact of Memory
At first glance, it seems that TRACS is a ‘memory game’
(Burns, 2001, 2002a) in which players can succeed only by
remembering which cards have left the deck. However, our



experience playing TRACS casts some doubts on the impor-
tance of memory. Due to the random card selection process a
typical game contains many knowledge-indeterminate turns.
For example, whenever both face-down cards show the same
shape, a player has no choice but to guess. Likewise, both
face-down cards frequently have the same color, so that the
player scores a hit or miss regardless of knowledge or choice.
Even when the cards di↵er in shape, color, and odds, it is pos-
sible that selecting the card with higher actual odds results in
a miss, whereas choosing the ‘wrong’ card scores a hit.
These concerns raise questions about whether memory

really matters. To what extent can poor performance be
blamed on failures of memory? Would better memory im-
prove performance? The non-deterministic nature of the
game makes it hard to answer these questions analytically;
thus, we implemented the game as a computer simulation.
Simulation As Allen Newell and Herbert Simon famously
stated, “Just as a scissors cannot cut paper without two blades,
a theory of thinking and problem solving cannot predict be-
havior unless it encompasses both an analysis of the structure
of task environments and an analysis of the limits of rational
adaptation to task requirements.” (1972, p. 55). In this spirit,
we created a simulation in MATLAB™ in which ‘pure’ cog-
nitive strategies could be formalized and implemented. By
running these artificial agents for thousands of trials, we were
able to determine precise performance levels, despite the dy-
namic and nondeterministic aspects of the game.
We compared four cognitive agents that di↵ered in their

memory resources and strategies, but did not make any errors
in odds translation or judgment. A baseline agent has perfect
knowledge of the initial deck distribution, but is amnesic with
regards to the cards played during a game. In contrast, the
update agent enjoys perfect memory of every hand played,
and bases all choices on the actual odds at any given moment.
Two additional agents bracket the performance of baseline

and update agents: random agent has neither memory nor
knowledge of the initial distribution, and hence is forced to
blindly guess at every turn. On the other end of the scale, om-
niscient agent e↵ectively enjoys X-ray vision and can observe
the colors of both candidate cards, allowing for optimal card
selections without the need for memory or odds estimates.
The mean score for the random agent across 10,000 simu-

lated games was 5.24 (out of 11 possible) hits per game. To
our surprise, baseline and update agents performed about the
same, scoring 6.57 and 6.79, respectively. Thus, the aver-
age performance di↵erence between the baseline and update
agents was roughly two tenths of one point per game. Fur-
ther, both strategies achieved only marginally better scores
than the random strategy.
Figure 2 shows the mean percentage of hits per turn for

each agent. It is obvious that the performance of baseline
and update agents are very similar, except for an increasing
benefit of update strategy late in a game. The entire range
between random and omniscient performance scores is only
25%, which is essentially due to 25% of all turns not allowing
for a hit.
While an optimal update agent acts to maximize perfor-

mance regardless of the e↵ort involved, humans have limited
cognitive resources and are required to negotiate cost–benefit
tradeo↵s (Anderson, 1990; Simon, 1990, 1992). Given these
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Figure 2: Simulation results for four artificial agents playing
10,000 games of original TRACS.

constraints and the minimal benefits of an update strategy,
participants might well have adopted a baseline strategy for
good reasons. Thus, our analysis suggests a re-interpretation
of Burns’ original findings: In Straight TRACS, memory up-
date yields no performance benefit over adopting a much eas-
ier baseline strategy. Hence, adopting the baseline strategy is
both adaptive and rational.

TRACS*
The simulation results suggest that—by not o↵ering an incen-
tive to a memory update strategy—Straight TRACS is inad-
equate for investigating people’s willingness and capacity to
monitor and update changing environmental circumstances.
In this section we introduce TRACS*, which provides a clear
benefit for adopting an update strategy, as well as introduces
additional probes of memory performance.
In designing TRACS*, we sought to create a variant of the

game for which a memory update strategy clearly benefits
performance. We achieved this by carefully controlling the
cards dealt to the players. While cards were selected ran-
domly, they were selected from a card space constrained by
two rules. First, only pairs of face-down cards that would not
have equal odds of matching the target color would be dealt.
By eliminating ties, this rule eliminates the need to guess.
Second, pairs were not selected if the card with the lower
odds resulted in a hit, or if the card with the higher odds did
not. This rule aimed to reduce the influence of luck by elimi-
nating win-win and lose-lose situations, thus driving a wedge
between the baseline and update strategies.
Figure 3 illustrates the e↵ects of these changes. The mean

score for the random agent in TRACS* remained stable, at
5.49 (out of 11) hits per game across 10,000 games. How-
ever, baseline and update scores rose to 8.22 and 10.83, re-
spectively. Hence, our game modifications were successful
in introducing a substantial benefit of the update strategy over
the random and baseline strategies. Given that baseline and
update strategies now yield unique performance signatures, it
should be possible to determine which strategy our partici-
pants actually adopt in the game.
Our second alteration in TRACS* was procedural. In addi-
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Figure 3: Simulation results for four artificial agents playing
10,000 games of modified TRACS*.

tion to using continuous color gradients to assess our partici-
pants’ odds calculations, we introduced memory recall boxes
to judge the accuracy of their memory. In this way we hoped
to elucidate whether Burns’ findings indicated an actual base-
line bias, or merely just di�culty in converting accurately re-
called frequencies into points along a likelihood gradient.

Experiment
Method
Twenty-five undergraduates from Rensselaer Polytechnic In-
stitute participated in partial fulfillment of a course require-
ment. They ranged in age from 18 to 22 years, with an aver-
age of 19.6 years. Participants were tested individually.
The experimenter spent about ten minutes instructing each

participant on the rules of original TRACS. Each participant
played a total of 10 games of 11 turns each. On every turn,
players had to complete the recall task, provide odds esti-
mates, and choose a card.
On the newly added recall task participants were asked,

for each face-down card, to report the number of red and
blue cards of that shape which remained in the deck. An-
swers were typed into text boxes immediately below each
face-down card. Players then estimated the odds of each face-
down card being red or blue by placing a marker on a continu-
ous color gradient. Gradients were red on the left and blue on
the right, and 300 pixels wide (⇡10 cm), allowing for a pre-
cision below one percent (see Figure 4 for a screenshot). Fi-
nally, participants chose a card by clicking on it. Feedback on
correctness was then provided by a thumbs-up/thumbs-down
image and the next turn was initiated by clicking on the feed-
back image.
The game was implemented in Macintosh Common Lisp

5.0 running on OS 10.2 with a 17” flat panel display set to a
1024⇥768 screen resolution. The initial card distribution and
a hit/miss counter were shown to the left of the game window.

Results
We will assess participants’ performance before turning to
more detailed analyses of various error types.

Figure 4: Screenshot of the TRACS* interface requesting
odds estimates (after the completion of the recall task).

Performance TRACS* allows for a straightforward corre-
spondence between a player’s awareness of the current game
state and his or her outcome score. Thus, scores reliably
exceeding the expected values of a simulated baseline agent
would signal a memory update strategy.
On average, participants scored 9.3 hits per game with 22

out of 25 players (88%) exceeding the theoretic baseline score
of 8.2 hits. This strongly suggests that memory updates con-
tributed to task performance.
To allow for a statistical assessment of these di↵erences,

we let our simulated baseline and update agents both play the
same number of games as human participants. A compari-
son of mean scores over the sequence of ten games per player
showed that human players scored significantly more points
than baseline agents [9.3>8.2, t(26)=2.1, p<.001], and sig-
nificantly fewer hits than update agents [9.3<10.8, t(25)=2.1,
p<.001]. Figure 5 contrasts the performance of human par-
ticipants with that of simulated agents on a within-game res-
olution. It is obvious that human players did not perform on
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Figure 5: Participants’ mean percentage of hits by turn com-
pared to those of simulated baseline and update agents. (Error
bars indicate 95% confidence intervals.)
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Figure 6: Average errors of odds by turn. (Error bars indicate
95% confidence intervals.)

the level of an ideal update agent, but did reliably better than
a baseline agent.
To assess possible e↵ects of learning we conducted an

ANOVA with game number as a within-subjects factor. A
significant main e↵ect [F(9,216)=3.0, p<.01] indicated that
players improved their scores reliably from an average of 8.8
hits in earlier to about 9.7 hits in later games. Subsequent
comparisons showed that human participants outperformed a
pure baseline agent in all but the initial two games.
Errors Even though human participants performed better
than a baseline agent, their performance was worse than that
of an ideal update agent. In this section, we examine this dis-
crepancy by first considering erroneous frequency and likeli-
hood estimates before assessing errors of internal consistency.
As participants estimated card frequencies as well as likeli-

hoods we were provided with two distinct indices of memory.
To allow for direct comparisons of both indices on a single
scale, we converted reported frequencies into ‘recall odds’.
For both recall odds and likelihood estimates (as indicated on
the gradient scales) we then calculated and summed up the
absolute di↵erence from the actual odds.
Figure 6 illustrates that both recall-odds and gradient-odds

errors increase over the course of a game, but errors in fre-
quency recall (with a mean of 8.0%) are significantly lower
than the errors in likelihood estimates provided on gradient
scales (12.6%). The third line in Figure 6 shows the mean
size of the ‘baseline-odds’ error (16.5%) which would result
if participants had adopted a baseline strategy on the given
trial. Even though the mean gradient-odds error exceeded the
baseline-odds error on the first three trials, the general trend
indicates that participants’ actual errors on both scales were
lower than suggested by a baseline bias.
Taking into account the direction of deviations rather than

just error magnitudes, we can also ask whether empirical re-
call and gradient odds are closer to the baseline or to the ac-
tual odds. Whenever the actual odds value deviates from the
baseline value there are two possible attractors: Participants
might specify odds closer to the baseline odds, or they might
select odds closer to the actual odds. A bias is defined by a
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Figure 7: Percentage of odds selections closer to the baseline
vs. closer to the actual value (based on n=4404 estimates).

systematic preference. If participants—due to update failure
or memory decay—were more likely to choose odds closer to
the baseline than to the update value this would constitute a
baseline bias. Likewise, an “update bias” could be diagnosed
if participants were more likely to select odds in the vicinity
of the actual value. Figure 7 shows that, in TRACS*, the evi-
dence for an update bias clearly outweighs the evidence for a
baseline bias. Participants’ preference for actual values seems
particularly pronounced when odds are based on recall fre-
quencies (77.1% vs. 22.9%). In contrast, the same preference
is weaker when odds estimates are measured by probability
gradients (57.6% vs. 42.4%). As the baseline attractor seems
to exert less gravitational pull when providing frequency es-
timates than when responding on a gradient scale, examining
only the latter (e.g., Burns, 2002a, 2002b) might overestimate
the size of a baseline bias.
All errors reported so far were deviations of empirical es-

timates from either true or baseline values. Our finding that
participants’ frequency estimates are closer to the actual val-
ues than to the initial baselines makes it implausible that
participants’ frequency estimates are governed by a baseline
bias. At the same time, it raises questions about alternative
breakdowns in performance. On the basis of our initial task
analysis, the complexity of TRACS allows for a variety of
non-memory related errors. In the following and final sec-
tions we consider conversion errors and errors of choice as
examples of errors of internal consistency.
Due to our sequential procedure of first requiring frequency

information and then asking for probability estimates, partic-
ipants’ responses on the likelihood gradients ought to be a
direct function of recall performance. Nonetheless, people’s
notorious problems with probabilities can cause conversion
errors when transforming recalled frequencies into odds on
continuous scales. To assess the occurrence of such errors, we
compared subjective recall odds (based on the card frequency
entries of each participant and turn) with the likelihood es-
timates provided on the same turn. An average deviation of
6.6% indicates that this translation process was indeed non-
trivial and error-prone. The magnitude of this error is striking
not only as it is almost as large as the average error in fre-



quency recall (8.0%, see Figure 6), but also when considering
that players reported their subjective frequencies immediately
before indicating their judgment of odds and had all relevant
frequencies displayed directly above the gradient scales (see
Figure 4). Thus, we conclude that a large proportion of par-
ticipants’ error-prone responses on likelihood scales were due
to errors in odds conversion.
Two curious errors of internal consistency address the re-

lation between odds estimates and card selections. Recall-
choice errors can be defined as instances in which the card
with lower recall odds (based on the subjective card fre-
quency estimates) is selected by the participant. Similarly,
gradient-choice errors occur whenever the card with lower
likelihood odds (based on probability estimates) is chosen.
There were 4.3% (119 out of 2750 choices) recall-choice

errors, but 8.3% (229) gradient-choice errors. Given that any
conflict between judgment and choice is relatively bizarre,
both errors are more frequent than we would have expected.
As the gradients are evaluated immediately before a choice
is made, we interpret the relative size of both errors as evi-
dence that players were more likely to base their choices on
perceived frequencies than on perceived odds.

Discussion
Our first result is of a methodological nature: When creating
artificial task environments to assess the scope of human ra-
tionality, the cost–benefit structure of the task must provide
an incentive to display the behavior in question. Our simula-
tion of Straight TRACS revealed that the original game pro-
vides only minimal benefits for adopting an e↵ortful memory
update strategy. This led us to re-interpret Burns’ (2002a,
2002b) original finding of a ‘baseline bias’ as an adaptive and
rational response to the properties of the task environment.
Our critique, however, does not imply that TRACS is not

an interesting game and valuable research paradigm—quite to
the contrary! We now believe that TRACS is both more com-
plex and more interesting than it at first appeared. Our task
analysis has suggested the need to distinguish three cognitive
components: retrieving numbers of cards from memory, con-
verting frequencies into probabilities, and mapping frequency
or probability estimates to choices.
We are particularly intrigued by the errors our players

made when converting natural frequency information to like-
lihood estimates. Players who had to provide the same in-
formation in two di↵erent formats within seconds and saw
the frequencies displayed in front of them while computing
probabilities still made substantial errors when coming up
with simple likelihood estimates. Interestingly, our analysis
of choice errors revealed that players seemed less likely to
act on their inaccurate probability estimates than on their per-
ceived frequencies even though the former just preceded their
choice.
A potential caveat of our study is that by altering the cost-

benefit structure of the task and assessing players’ memory
for card frequencies we introduced two changes to the origi-
nal game. It is conceivable that the mere query for frequen-
cies made the necessity to count cards more explicit, whereas
it remains rather implicit in the original game. The extent
to which each of our modifications contributed to the im-
proved performance and to which a procedural task demand

may have inadvertently prompted di↵erent memory strategies
is an empirical question to be addressed in future studies.
Finally, the performance results of our modified version

TRACS* provide a more optimistic view of the human ca-
pacity for concurrent memory updates than do previous stud-
ies. As our players were able to reliably exceed baseline per-
formance, we conclude that the previously reported ‘baseline
bias’ may be an artifact of the original game.
Despite our criticisms, our results agree with those of

Burns (2002a, 2002b) that people are able to take baserate
information into account. However, we additionally demon-
strate that—when memory matters—people are also able to
dynamically update their memory while being engaged in a
highly demanding task.
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