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We argue that conceptual problems arise with the parametric measure fl when above- and below- 
chance data are agsregated or compared. Depending on the interpretation of fl as a likelihood-ratio 
measure or an indicator of strictness or bias toward signal or noise, the original formula for fl should 
be retained or modified. The response bias measure fl can be retained only if it is interpreted as a 
likelihood-ratio measure. If it is interpreted as an indicator of strictness or bias toward signal or 
noise, the original formula has to be modified. One possible modified formula is suggested here. 

Aaronson and Watts (1987) recently presented formulas for 
the nonparametric indices A' and W applicable to below-chance 
performance. They argued that in computing Hodos's (1970) 
response bias measure W for below-chance performance, hit 
rate and false-alarm rate must be substituted for one another 
when using Grier's (1971) formula. Otherwise, W can yield bi- 
zarre values: Points to the left of  the equal-bias diagonal may 
be negative rather than positive. As Aaronson and Watts recog- 
nized, parametric indices of  discrimination work well with the 
below-chance case: The accuracy measure d', for example, 
yields negative values, indicating that the mean of  the probabil- 
ity--density distribution of  noise events is located above the dis- 
tribution ofsignal events on the evidence axis. 

Unfortunately, the same is not true for the parametric re- 
sponse bias measure/3 when it is computed for individual sub- 
jects with below-chance discrimination. For example, take 
Point b in Figure 1. Point b is located on the left of  the negative 
diagonal, which implies the use of  a strict criterion. While 
B~'sch) (i.e., the modified W for the below-chance case) in fact 
yields a positive value indicating a strict criterion (i.e., Prob 
(yes) < Prob (no)),/3 has a value less than 1, which usually is 
interpreted as an indicator of  a lax criterion (i.e., Prob (yes) > 
Prob (no)). It should be emphasized, however, that the analogy 
between W and/3 is not precise. Although in the case of  W, 
Grier's (1971) formula yields wrong values for below-chance 
performance, problems with/3 do not primarily arise on the 
computational rather than conceptual level. 

Measure  fl for Above- and  Below-Chance Per formance  

The measure fl is defined as the likelihood ratio of  the densi- 
ties of  the signal and the noise distribution at the decision point. 
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Figure 2 exemplifies this by locating the different decision 
points shown in Figure 1 on the evidence axis (i.e., the abscissa) 
in relation to the underlying signal and noise distributions. The 
measure/3 for Point a, for example, is computed as the ratio of  
the probability density values on the signal and noise distribu- 
tions (i.e., y(signal)/y(noise)). As Green and Swets (1966) 
proved, the slope of  the receiver operating characteristic (ROC) 
curve at any point is numerically equal to the likelihood-ratio 
criterion that generates that point. Given the assumption that 
the signal and the noise distribution are Gaussian with equal 
variance (as in Figure 2), the slope of  the ROC curve (i.e.,/3) 
decreases monotonically with increasing hit and false-alarm 
probability in the above-chance case (see Figure 1). Because the 
likelihood ratio is monotonically related to the location of  the 
decision criterion on the evidence axis,/3 can also be interpreted 
in terms of  strictness of  the criterion or bias toward signal or 
noise. For Point a, for example, the probability density of  a sig- 
nal is less than the probability density of  noise, yielding a likeli- 
hood ratio (i.e.,/3) below 1, a value that indicates a lax criterion 
(see Figure 2). This can also be seen by analyzing the bias to- 
ward a yes or a no response: For Point a the probability of  a yes 
response is greater than the probability of  a no response, which 
also indicates a lax criterion. 

This simple relationship between a likelihood-ratio interpre- 
tation and a strictness interpretation is reversed in the below- 
chance case. As can be seen in Figure 1, the slope actually in- 
creases with increasing hit and false-alarm rates (i.e., increasing 
laxity) in the below-chance case. Consequently, points with 
equal slope lie on different sides of  the negative diagonal (e.g., 
Points a and d or Points b and c in Figure 1). This means that a 
specific likelihood ratio that is equivalent to a lax criterion in 
the above-chance case (e.g., Point a in Figure 1) represents a 
strict criterion in a symmetric below-chance ROC (Point d in 
Figure 1 ). 

This relationship can also be seen in Figure 2. In the above- 
chance ease, Point a, which represents a lax criterion, yields a 
fl value less than 1, whereas Point c, which has an equivalent 
location on the evidence axis, now has a fl value greater than 1. 
The same inverse relationship can be seen for Points b and d, 
which represent strict criteria. 
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Figure I. Decision points on symmetric above- and below-chance 
receiver operating characteristic curves. 

in the same way as is the case for the regular above-chance 
ROCs. In the example ROCs in Figure 1, Points a and c that 
according to their location in relation to the negative diagonal 
are considered equivalent with respect to bias and strictness, are 
now characterized by the same/3 value. The same holds true 
for Points b and d. Note that the flinch) does not represent a 
likelihood-ratio criterion: The slopes of  Points a and c, or b and 
d, are clearly different. 

Discussion 

In summary, if the hypothesis is that subjects base their crite- 
rion setting on a likelihood-ratio decision, the classical formula 
for ~ should be used in both above- and below-chance perfor- 
mances. If, however, the researcher wants the response criterion 
measure to represent the strictness of  the criterion or bias to- 
ward signal or noise response, then the modified formula should 
be used for individuals with below-chance performance, pro- 
vided that the signal and noise distributions are assumed to be 
Gaussian with equal variance. 

Below-chance performance is not the only case in which/~ is 
not simply interpretable as a measure of  strictness or bias to- 
ward signal or noise. In case of  unequal variances of  signal and 
noise probability density distributions, B is not monotonically 
related to the location of the criterion point on the evidence 
axis (Green & Swcts, 1966). In this case, only a likelihood-ratio 
interpretation of/~ is possible. Other bias measures must be con- 

This dissociation of  a likelihood-ratio interpretation and a 
strictness or bias interpretation is especially critical when data 
with above-chance and below-chance performance are aggre- 
gated or compared. The resulting value is interpretable only if 
the aggregated/~ values are conceived of as a measure for likeli- 
hood-ratio eriterion setting but not as an indicator of strictness. 

Alternative Compu ta t i on  of/~ in Below-Chance Case 

An informal overview of  recent work in memory and percep- 
tion shows that researchers using signal detection measures gen- 
erally appear to interpret ~ in terms of  strictness and not as a 
likelihood ratio. Therefore, a modification similar to that of  W 
seems appropriate for the below~chance case when signal and 
noise distributions are Gaussian with equal variance. To extend 
the computation of # (Equation 1) to below-chance perfor- 
mance, one needs to make an adaptation such that the inverse 
of/~ is calculated (Equation 2): 

= y(signal)/y(noise), (1) 

#(,ch) = y(noise)/y(signal). (2) 

Equation 2 is equivalent to 

~<Bch) = 1/~, (3) 
where y(signal) and y(noise) are the probability density values 
corresponding to the areas under the normal distribution func- 
tion that represent the hit rate and the false-alarm rate, respec- 
tively. 

This modification yields criterion values for points on below- 
chance ROCs that are interpretable in terms of  strictness or bias 
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Figure 2. Signal and noise distributions in above- 
and below-chance performance. 
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sidered when the researcher is interested in the strictness or bias 
of  the decision criterion (see Dusoir, 1975, 1983; Snodgrass & 
Corwin, 1988). 

Independent of  the exact computation of  a bias measure in 
the below-chance case, the question remains concerning what 
significance below-chance performance has in discrimination 
tasks. Green and Swets (1966) discussed this "worst-possible 
behavior" (p. 39) in terms of  hypothetical subjects who reverse 
the decisions that are dictated by the likelihood-ratio criterion. 
It is unclear if such an irrational behavior can really be found 
reliably in subjects. Green and Swets argued that such a behav- 
ior occasionally may be seen in psychophysical tasks but usually 
disappears with further practice under conditions with correc- 
tive feedback. 

Swets and Pickett (1982, p. 23) offered another explanation 
for occasional below-chance performance: They thought of  
points or ROC curves below the positive diagonal as chance 
variations of  true discrimination. However, if empirical ROC 
points are conceived of  as chance variations of  true values, then 
estimating the true value will require the aggregation over em- 
pirical ROC points, regardless of  their location above or below 
chance level. Consequently, values above and below chance level 
should represent the same criterion setting type. 

However, true negative discrimination is not entirely implau- 
sible. Although in the classical psychophysical paradigms, re- 
versal of  signal and noise distribution is peculiar indeed--given 
the basic assumption that the signal is physically added to a 
noisy background, yielding a signal-plus-noise distribution and 
a noise distributionmin other signal-detection applications, the 
classical assumption may be unwarranted (e.g., measurement 
of  memory performance). In these cases it seems more appro- 
priate to assume independent signal events and noise events 
without any assumption regarding the relative location of  their 
probability density distributions on the evidence axis. 

In memory experiments, for example, it seems conceivable 
that for some individuals and for some item groups, the evi- 
dence values of  the distractor items surpass the evidence values 

of  the old items, as, for example, when distractor items have a 
higher familiarity or a higher prototypicality than old items. 
One plausible case may involve people with certain memory 
impairments (e.g., amnesic patients) whose recent episodic 
memory representations are poor but for whom episodes dating 
back several decades still have strong memory traces. As an- 
other example, eyewitnesses may systematically misidentify 
specific types of  persons in lineups because the appearance of  
these persons fits the schema of  a criminal much more closely 
than does the person the witnesses actually have observed. In 
such situations, the modified measure suggested here may prove 
useful. 
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