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Several researchers have recently claimed that higher order types of learning, such as categoriza-
tion and causal induction, can be reduced to lower order associative learning. These claims are
based in part on reports of cue competition in higher order learning, apparently analogous to
blocking in classical conditioning. Three experiments are reported in which subjects had to learn
to respond on the basis of cues that were defined either as possible causes of a common effect
(predictive learning) or as possible effects of a common cause (diagnostic learning). The results
indicate that diagnostic and predictive reasoning, far from being identical as predicted by
associationistic models, are not even symmetrical. Although cue competition occurs among
multiple possible causes during predictive learning, multiple possible effects need not compete
during diagnostic learning. The results favor a causal-model theory.

Tasks as different as classical conditioning, category learn-
ing, and causal induction can be viewed as examples of
multiple-cue contingency learning. In each of these tasks, a
number of cues, which might represent conditional stimuli,
features, or causes, are combined to elicit a response. Because
of this apparent formal similarity between different types of
multiple-cue learning situations, it is tempting to postulate a
common learning mechanism. Indeed, a number of research-
ers have recently claimed that higher order types of learning,
such as categorization and causal induction, can be explained
by principles that govern lower order learning in animals,
such as classical conditioning. Gluck and Bower (1988), for
example, suggested that adaptive associative networks can
provide powerful models of human categorization. These
connectionist networks consist of an input layer that repre-
sents potential cues, such as symptoms of possible diseases
observed in a patient, and an output layer that might represent
classification responses, such as diagnoses of alternative dis-
eases. The responses of the network are computed by a linear
function of the weighted cues. The weights are learned using
the least mean squares (LMS) learning rule (Widrow & Hoff,
1960), in which the weights are incrementally updated in
proportion to the response error they produce. Gluck and
Bower showed that a simple model of this sort compares
favorably with other models of human categorization (see also
Estes, Campbell, Hatsopoulos, & Hurwitz, 1989; for a critique
see Shanks, 1990a, 1990b). Because the LMS rule is formally
equivalent to Rescorla and Wagner’s (1972) theory of classical
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conditioning (Sutton & Barto, 1981), these findings suggest
that categorization can be viewed as a special case of associa-
tive learning. Similarly, Shanks and Dickinson (1987) argued
that learning of causal relationships can be reduced to asso-
ciative learning (see also Wasserman, 1990). In the associative
framework, cues typically correspond to potential causes, and
responses correspond to predictions of potential effects.
Weights representing the strengths of the relationships be-
tween causes and effects are learned in an incremental fashion.

Cue Competition in Associative Models of Multiple-
Cue Contingency Learning

All modern associative learning theories emphasize the
competitiveness of cues; indeed, cue competition can be
viewed as the single most important feature of current asso-
ciative learning theories (see Gallistel, 1990). The classic
evidence for cue competition involves the phenomenon of
blocking, first observed by Kamin (1969) in experiments on
aversive conditioning in rats. Such blocking experiments typ-
ically consist of two learning phases. In Phase 1, a rat learns
to associate an initial conditioned stimulus (CS,), for example,
a tone, with an unconditioned stimulus (US), for example,
shock. In Phase 2, the previously conditioned CS, (tone) is
presented together with a new, redundant CS, (e.g., light), and
the compound is reinforced by the US. In the critical test
phase, the rat sees each CS by itself. As expected, when
presented with CS, (tone) alone, the rat still shows fear reac-
tions. However, CS; (light) typically does not elicit fear reac-
tions, even though the light was constantly paired with the
US in Phase 2, and during this period, the shock never
occurred in the absence of the light. Learning about the CS,
seems to have blocked acquisition of associative strength for
the CSZ

Rescorla and Wagner (1972) developed their theory of
associative learning to account for blocking and other findings
involving cue interactions. Within the Rescorla-Wagner the-
ory, blocking is viewed as the result of the failure of the
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second, redundant cue to acquire associative strength. This
failure is an inevitable consequence of their proposed learning
rule,

AV = ai(r; — ZV), (1

which states that the change in associative strength on a trial
for each presented cue i, AV, is proportional to the difference
between the outcome concerning US; that should have been
predicted, A;, and that predicted by the sum of all current
cues, ZV, weighted by learning rate parameters «; and g, that
are specific to the particular CS and the US, respectively.
When there is no discrepancy between the actual and pre-
dicted outcomes, no learning will occur. In blocking experi-
ments, by the end of Phase ! the animal has already learned
that CS, predicts the US perfectly (i.e., \; — 2V = 0). Accord-
ingly, no learning will occur for the compound in Phase 2,
because changing the (initially 0) associative strength for CS,
cannot improve the already-perfect predictability of the US.
Because of their close formal similarities, the same explana-
tion of blocking is implied by current connectionist learning
theories that use the LMS rule or conceptual extensions of it,
such as back-propagation algorithms (Rumelhart, Hinton, &
Williams, 1986).

Although Rescorla and Wagner’s (1972) theory remains
influential, other associative accounts of blocking phenomena
have also been proposed. Mackintosh (1975) suggested that
blocking resuits from decreases in the associability of cues. In
his theory, the learning rate parameter associated with CS;,
declines to the extent that the cue is a worse predictor of the
outcome of each compound trial than CS,. Because CS, starts
with low associative strength at the beginning of Phase 2, its
predictive value compares unfavorably with CS,, which leads
to a decrease in the associability of the new cue during the
following trials. In contrast, Pearce and Hall (1980) claimed
that a cue loses associability to the extent that its consequences
are fully predicted. Because the US is fully predicted by CS,
as well as by the compound at the beginning of Phase 2, both
cues lose their associability, thus preventing further learning.
Other theories suggest that blocking is not due to acquisition
failure at all, but rather to comparisons between the associa-
tive strengths of cues that are made during retrieval of asso-
ciative knowledge (Miller & Matzel, 1988; Shanks & Dickin-
son, 1987). Regardless of where the exact locus of blocking is
claimed to be, however, all associative theories of multiple-
cue contingency learning predict cue competition, with pre-
viously acquired strong cues diminishing the impact of later,
redundant cues.

Because blocking can be seen as one of the empirical
hallmarks of modern associative learning theories, a number
of researchers interested in demonstrating the associative un-
derpinnings of causal induction have tried to produce block-
ing in higher order learning tasks. Shanks and colleagues
(Dickinson & Shanks, 1985; Dickinson, Shanks, & Evenden,
1984; Shanks, 1985; Shanks & Dickinson, 1987) conducted
experiments in which subjects played a video game requiring
them to fire artillery shells at tanks moving through a mine
field. One group of subjects went through an observation
phase in which they learned that the tanks sometimes explode
because they presumably hit a mine in the mine field. Subjects

were later allowed to fire at the tanks, after which they rated
the effectiveness of their firing. The results indicated that the
pretrained group generated lower ratings than did a control
group that did not receive preexposure to the mine field.
Learning that the mine field was a potent cause of explosions
apparently tended to block learning about the artillery shells.

Chapman and Robbins (1990) also demonstrated blocking
in predictive causal induction. In their study, subjects had to
learn to predict the behavior of a fictitious stock market based
on information about individual stocks. Chapman and Rob-
bins used a within-subjects design, in which the trials for each
subject were divided into two phases. In the first phase,
whenever one stock (P) rose in price, the market rose in value
as well. Whenever a second stock (N) rose in price, however,
the market failed to increase in value. Thus, P was established
as a positive predictor (a leading indicator of change in the
stock market), whereas Stock N was nonpredictive. Two other
stocks (B and C) never changed during Phase 1. In the second
phase, increases in P were paired with increases in B as a
second redundant predictor. B never rose by itself, but each
time P and B rose together, the market rose. On different
trials increases in N were paired with increases in C, and
together these cues also predicted the rise of the market value.
As predicted, P blocked learning about the contingency be-
tween B and market value (as measured by ratings of the
predictiveness of the individual cues). Cue C received much
higher predictiveness ratings than did B, even though individ-
ually B and C were equally perfect predictors. It should be
noted, however, that Chapman and Robbins (Experiment 1)
obtained only partial blocking of the B cue, whereas without
additional assumptions the Rescorla-Wagner model predicted
complete blocking in their experimental situation. Wasser-
man (1990) has also reported evidence of cue-competition
effects in human causal induction.

Blocking has rarely been investigated in the context of
category learning. Trabasso and Bower (1968) found that
subjects disregarded a new redundant cue when they previ-
ously had learned to sort stimuli using one single, valid cue.
However, their research used artificial concepts (categories of
geometric figures) that had no clear causal basis, so the
relationship (if any) of their findings to causal induction
remains unclear. Gluck and Bower (1988), although they did
not use a blocking design, performed a cross-experiment
comparison indicating that ratings of the predictiveness of
symptoms as cues for a disease were reduced when other
highly predictive cues were present. However, Chapman and
Robbins (1990) have pointed out that Gluck and Bower’s
finding may have reflected a change in subjects’ use of the
rating scale rather than blocking. Shanks (1991) found that
subjects’ ratings of how strongly associated an individual
symptom was with a disease were reduced if a co-occurring
symptom was more predictive of the disease for the training
examples. The interpretation of these results is unclear, how-
ever, because of the vagueness of the question subjects were
asked. It might have been interpreted by some subjects as a
request to rate the relative predictiveness of symptoms instead
of their causal relationship to the diseases.

Other work provides evidence that in some category-learn-
ing situations the presence of redundant cues actually pro-
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duces not blocking but mutual facilitation of learning. Bill-
man (1989), in experiments on category learning and on
acquisition of the syntax of an artificial language, found that
subjects learned a positive correlation between a pair of cues
more readily if each of the cues was involved in other predic-
tive relationships rather than being related only to each other.
The conditions that lead or do not lead to cue competition in
human category learning are thus not yet well understood.

Learning Within Causal Models

We would like to contrast the associative view of causal
learning described earlier with a more mentalistic approach.
According to this latter view, people use meaningful world
knowledge, often of a highly abstract sort, to guide their
learning about new domains. One major example of abstract
world knowledge is knowledge about the basic characteristics
of causal relations, such as the temporal precedence of causes
to their effects. The experiments we report here demonstrate
that human causal induction depends on the learner’s causal
model of the situation and, hence, that causal induction
cannot be reduced to associative learning.

The causal-model theory we are advocating embodies three
basic assumptions about human causal induction: (a) People
have a strong predisposition to learn directed links from
causes to their effects, rather than vice versa, even in situations
in which they receive effect information prior to cause infor-
mation; (b) the perceived strength of a causal connection is
related to the contingency between the possible cause and the
effect; and (c) although the links in a causal model are
asymmetric {directed from cause to effect), people are none-
theless able to make both predictive inferences (from a cause
to its likely effects) and diagnostic inferences (from effects to
their likely causes); furthermore, these two types of inferences
have important structural differences. We now consider each
of these assumptions in turn.

Directionality of Causal Links

A fundamental psychological constraint on causal reason-
ing is the assumption that causes must precede their effects.
Often, of course, temporal order is directly observable, as
when a fire starts and then produces smoke. Even when cues
are observed simultaneously or in the reverse of their causal
order, however, as when one sees smoke and infers there must
be a fire, the natural causal model will still be based on links
directed from causes to their effects. The fact that order of
observation can be decoupled from temporal precedence
within a causal model provides the basis for our experimental
dissociations between causal and associative learning. In sim-
ple associative models, connections are learned between pre-
sented cues (the input layer of an adaptive network) and
predicted outcomes (the output layer). In what we term a
predictive causal model (Figure 1, panel A), the input is
interpreted as a cause (e.g., fire), and the output, as an effect
(e.g., smoke). In this predictive case—which fits most of the
causal-induction experiments in which cue competition has
been reported—the temporal order within the causal model

A. Predictive Learning Task

O——>© Causal Model

Cause Effect

@——»Q Associative Level

1 Cue Response

1

B. Diagnostic Learning Task

Q‘-O Causal Model

Effect Cause

Q-——-»O Associative Level

Cue Response

Figure 1. In a predictive learning task (panel A), temporal order
within the causal model corresponds to input-output order at the
associative level; in a diagnostic learning task (panel B), temporal
order within the causal model is opposite to input-output order at
the associative level.

coincides with the input-output sequence at the associative
level. In a diagnostic causal model (Figure 1, panel B), how-
ever, temporal order is reversed from the causal model to the
associative level. Here the input is interpreted as an effect
(e.g., smoke), which is understood to occur after its cause
(e.g., fire), even though the effect is presented prior to the
cause. In associative models, however, it is the cause that
would be assigned to the output layer.

The assumption that people preferentially learn links from
cause to effect, rather than vice versa, is supported by exper-
imental evidence as well as intuition. For example, Tversky
and Kahneman (1980) found that people estimated that it is
more likely that a blue-eyed mother will have a blue-eyed
daughter than vice versa, even though the corresponding
conditional probabilities are necessarily equal (assuming that
the prevalence of blue eyes in the population does not differ
across generations). Tversky and Kahneman interpreted their
findings as evidence that people have directional causal sche-
mata and that people focus on learning relationships between
causes {e.g., mother’s eye color) and effects (e.g., daughter’s
eye color). Similarly, Eddy (1982) reviewed evidence that
doctors tend to use disease-to-symptom (i.e., cause-to-effect)
conditional probabilities even in situations in which symp-
tom-to-disease (i.e., effect-to-cause) conditionals would be
normatively appropriate (see also Einhorn & Hogarth, 1986).
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Causal Contingency in Multiple-Cue Situations

Causal-model theory provides an alternative to association-
ist accounts of cue competition, based in part on the statistical
concept of contingency. It has long been argued that the
normative statistical evidence for a causal link between a
possible cause and an effect is observing that the proportion
of occasions on which the effect is observed is greater in the
presence of the possible cause than in its absence. The contin-
gency between a potential cause C and an effect E is given by
the so-called Ap rule,

ap = p(E|C) — p(E|~C), 3]

where ~C signifies the absence of the cause (e.g., Shaklee &
Tucker, 1980; Ward & Jenkins, 1965; for a review of research
on covariation detection, see Alloy & Tabachnik, 1984). Note
that Ap depends not only on the proportion of cases in which
the effect and cause co-occur but also on the proportion of
cases in which the effect occurs in the absence of the possible
cause. Contingency is thus distinct from the simple condi-
tional probability of the effect given the cause. For the case
of a single potential cause, the contingency specified by the
Ap rule is equivalent to the asymptotic predictive strength of
the cue as determined by the Rescorla-Wagner learning rule
given in Equation 1, assuming the context is represented as
an additional cue that is constantly present (Chapman &
Robbins, 1990).

One of the central claims of supporters of associationist
theories has been that evidence for cue competition in causal
induction contradicts a contingency account (e.g., Chapman
& Robbins, 1990; Shanks, 1991; Shanks & Dickinson, 1987).
This claim is based on the assumption that the generalization
of the Ap rule to multiple-cause situations is simply to derive
Ap for each potential cause in isolation (hence failing to
predic®blocking). However, this assumption is normatively
incorrect. In fact, when normatively generalized to the
multiple-cause situation, contingency not only provides a
qualitative account of the blocking effects reported in the
literature on human causal induction but also predicts bound-
ary conditions on when such effects will be observed.

The normative generalization of the contingency concept
to situations involving multiple potential causes has a long
history in philosophy (Reichenbach, 1956; Salmon, 1984;
Suppes, 1970) and artificial intelligence (Pearl, 1988). It has
also been proposed as a descriptive model in psychology
(Cheng & Novick, 1990, 1992; Kelley, 1967). As indicated by
the statistical method of analysis of variance, in multifactorial
designs the effects of potential causes (independent variables)
have to be cross-tabulated with each other so that interactions
among factors can be detected. Although many investigators
have reported apparent deviations of human covariation de-
tection from the pattern predicted by the single-factor Ap rule,
Cheng and Novick (1990, 1992) presented evidence that when
contingency is generalized to the multifactorial case, and the
set of events over which subjects are computing contingency
is considered, human judgments of causal efficacy are directly
related to an unbiased computation of contingency.

Often, in naturalistic situations as well as in the blocking
paradigm, one factor has clearly been established as a cause,

and the question arises as to whether a second, correlated
factor that also has a nonzero contingency (i.e., a nonzero
Ap) is also a cause. It is then necessary to test for the condi-
tional independence of the effect from the second potential
cause (Reichenbach, 1956; Salmon, 1984). That is, does the
effect vary with the second factor when the known cause is
held constant? If not, then the effect is conditionally inde-
pendent of the second factor, and any apparent unconditional
contingency between the latter factor and the effect can be
attributed to the correlation of the second factor with the
known cause. The second factor, then, is a spurious rather
than a genuine cause. The effect is independent of the second
causal factor (C,) conditional on the first causal factor (C,) if
both

ME|C,.Co) — HE|C,.~C;) =0 and (3a)
p(E|~C1.C2) - p(E|~C1.~Cz) =0, (3b)

where the dot between C, and C, denotes and.

For example, suppose that smoking (C,) is known to cause
heart disease, and it is found that coffee drinking (C,), which
is correlated with smoking, has an unconditional contingency
(i.e., a nonzero Ap) with heart disease (E). If it is then
determined that the prevalence of heart disease does not vary
among coffee drinkers who smoke (Equation 3a), or among
coffee drinkers who do not smoke (Equation 3b), then the
conditional-independence criterion will absolve coffee drink-
ing of any causal link to heart disease. This occurs despite the
observed unconditional contingency between the two (which
is attributable to the correlation between coffee drinking and
the genuine cause of heart disease, smoking).

Figure 2 gives a contingency table representation of the
blocking design for a predictive causal model of the sort that
would be invoked in experiments such as those reported by
Shanks and Dickinson (1987) and Chapman and Robbins
(1990), in which one causal factor, C,, is introduced in Phase
1 and then a second, redundant causal factor, C,, is added in
Phase 2. In Phase 1, subjects learn that the effect E occurs
when C, is present, but not when it is absent. The Ap for C,
is large (in fact, it equals 1), and hence C, is established as a
cause. In Phase 2, an incomplete factorial design with missing
cell information is created. The new cue, C,, is constantly
paired with the previously established predictive cue, C,.
Although C, will also have a large AP, it is unclear whether
C; is an independent cause of E. Accordingly, a test of
conditional independence is required.

The blocking design allows a test of Equation 3a. Subjects
receive information about the effect of the joint presence of
C, and C; (Phase 2), and the effect of the presence of C, in
the absence of C, (Phase 1). In such a deterministic situation,
in which p(E|C)) is 1, the blocking paradigm yields potential
overdetermination of the effect. That is, because the effect is
already deterministically caused by C,, another cause cannot
possibly increase the probability of the effect. Accordingly,
testing Equation 3a cannot establish C, as an independent
cause, since the ceiling effect renders the test inconclusive.
This situation calls for a test of Equation 3b. In particular, it
is necessary to check whether the new factor C, changes the
probability of the effect in the absence of the established cause



226 MICHAEL R. WALDMANN AND KEITH J. HOLYOAK

Phase 1

C1 ~C1

E ~E

Phase 2

G

Figure 2. The blocking paradigm within a predictive causal model:
Contingency analysis. (C, and C; are possible causes, and E is the
effect. Each cell indicates whether E was observed to be present or
absent for some combination of the presence and absence of C,; and
C,. A question mark indicates a cell for which no information is
available because the relevant combination of causes was never
presented.)

C,. However, the cell required for this information (~C,.C,)
is missing in blocking designs. It is therefore impossible to
determine whether the observed unconditional contingency
between the new cue, C,, and the effect is genuine or spurious.
In particular, the crucial missing cell makes it impossible to
determine whether the effect is simply overdetermined in
Phase 2; whether the second cue, C,, is correlated with C,
without having any causal impact by itself (i.e., C, is a spurious
cause); or whether the two factors produce a causal interac-
tion. This uncertainty should lead to a lowering of confidence
in the predictiveness of C; (i.e., blocking). Note, however, that
unlike the Rescorla-Wagner model, the contingency account
predicts that subjects will learn that C, is unconditionally
correlated with the effect but will be uncertain whether the
relationship is causal. Blocking may therefore be incomplete.

A more dramatic decoupling of the predictions of the
associative and the causal-model theories is obtained if the
blocking paradigm is used with two cues that are interpreted
as multiple possible effects of a single cause, instead of mul-
tiple possible causes of a single effect. This situation, in which

the blocking paradigm is used in the context of a diagnostic
causal model, is depicted in Figure 3. In Phase 1, the subject
now learns that an effect E, is obtained when cause C is
present, but not when C is absent. Hence, C is established as
a cause of E;. In Phase 2, a new effect, E,, which is redundant
with E,, is introduced. That is, when C is present the event
Ei.E; occurs, and when C is absent ~E,.~E, occurs. Different
effects, like different dependent measures obtained in an
experiment, do not compete with one another; rather, each
effect, as well as any interaction among the effects, provides
information about the consequences of the cause. In the
blocking paradigm, the learner simply learns a new main-
effect contingency between C and E,: C causes E, as well as
E,. Thus, when the causal model is diagnostic rather than
predictive, no blocking is expected under the causal-model
theory (assuming, as it will prove important in Experiment 2,
that only one potential cause of the effects is apparent). In
general, causal-model theory predicts a basic difference be-
tween the impact of redundancy for causes versus effects:
Causes compete, and effects collaborate.

Another way to view the difference in information across
predictive and diagnostic contexts, as provided by the block-
ing paradigm, involves the distinction between absence of
observation (specifically, lack of knowledge as to whether a
causal connection exists) and observation of absence (knowl-
edge that a causal connection does not exist). If a combination

Phase 1

Phase 2

C ~C

E.E, ~E,.~E,

Figure 3. The blocking paradigm within a diagnostic causal model:
Contingency analysis. (C is a cause, and E, and E, are possible effects.
Each cell indicates which effects are observed to be present or absent
in the presence or absence of C. A period denotes and.)
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of causes is never presented, the learner has no opportunity
to observe the consequences of that combination, yielding
lack of knowledge concerning its causal efficacy (as in the
cells with a question mark in Figure 2). In contrast, if a
combination of effects does not occur, the learner is licensed
to conclude that none of the presented cause or causes produce
the missing effect combination, yielding knowledge that
causal efficacy is absent. It follows that whereas the blocking
paradigm leads to missing information in a predictive context,
and hence uncertainty about the causal status of the redun-
dant cue, there is no parallel uncertainty in the diagnostic
context. In the latter case, although observations of the redun-
dant cue, E;, were not made available in Phase 1, Phase 2
provides all the information required for the learner to decide
that C causes E, as well as E,.

In contrast, associative theories provide no basis for distin-
guishing between predictive and diagnostic causal-induction
tasks. Associative theories, regardless of whether they see
associative learning as a low-level process (e.g., Gluck &
Bower, 1988) or as modification of higher order beliefs
(Shanks & Dickinson, 1987), share the fundamental assump-
tion that cues, which are defined as the given information on
the basis of which responses are to be predicted, correspond
to information obtained prior to outcomes. The semantic
distinction between causes and effects cannot be represented
in purely associative terms. Associative learning theories,
therefore, imply that otherwise identical predictive and diag-
nostic learning tasks should yield identical learning behavior.
In particular, blocking should be obtained regardless of the
interpretation of the redundant cues as causes or as effects.

Predictive Versus Diagnostic Inferences

The causal-model theory assumes that although people
learn directed contingencies linking causes to their effects,
rather than vice versa, they nonetheless can use their knowl-
edge to make both predictive and diagnostic inferences (e.g.,
Carlson & Dulany, 1988). Crucially, diagnostic inferences,
which go from observed effects to possible causes, require
mechanisms that do more than assess cause-to-effect contin-
gencies.! As Pearl (1988) pointed out, there are important
structural differences between diagnostic and predictive rea-
soning, which neither simple associative models nor contin-
gency computations alone can capture. For example, if you
know from past experience that rain causes grass to become
wet and to look green, then knowing that it rained licenses
you to predict that the grass should be greener and wetter
than yesterday. Subsequent observation that the grass is in
fact greener than it was yesterday would actually lend addi-
tional support to the prediction that the grass should be wet.
Thus, multiple effects of a common cause actually support
each other in predictive inference (from causes to potential
effects). On the other hand, if you see wet grass and have
additional evidence that points to a sprinkler as the cause,
then rain, as an alternative potential cause of wetness, be-
comes less plausible than before. Multiple alternative causes
thus compete in diagnostic inference (from effects to potential
causes). Note that even if the contingency between a cause
and its effect is very high, it is not necessarily the case that

observing the effect provides strong evidence for the cause
(because some alternative cause might actually have produced
the effect). Diagnostic reasoning thus requires adjudication
among competing causal theories, in addition to knowledge
of cause-to-effect contingencies.

Theory competition in diagnostic learning is structurally
different from cause competition in predictive learning. If the
information available is insufficient to allow testing for inter-
actions or conditional independence, it will be impossible to
establish with certainty the status of a redundant potential
cause (leading to partial blocking). If the information neces-
sary to calculate independent multifactorial contingencies is
provided, however, it is possible for multiple factors to emerge
as strong individual causes. Once a factor has been established
as an independent cause, predictive inferences can be made
on the basis of knowledge of the state of that factor alone.
Here the prediction of individual effects does not depend on
other effects that also might be predicted by the cause. In
contrast, even after the essential contingencies have been
learned, diagnostic inferences remain sensitive to knowledge
about alternative causes. Even if the contingencies between a
cause and each of its multiple effects are equated, the individ-
ual effects may be better or worse diagnostic cues for that
causal theory depending on the extent to which each of them
might also be accounted for by alternative theories. Assess-
ments of the diagnostic implications of effects should therefore
prove to be sensitive to background knowledge about poten-
tial alternative causal theories. Furthermore, the diagnostic
quality of individual effects is not independent of the presence
of other effects in diagnostic reasoning. Indeed, the ranking
of theories potentially accounting for some initial evidence
might actually reverse depending on which additional effects
are added to the evidence.

We performed three experiments to determine whether
competition among redundant cues varies across predictive
and diagnostic learning contexts in ways predicted by our
causal-model account but not by associative learning theories.

Experiment 1|

The general design of our experiments was to create two
learning situations that were identical at the associative level,
differing solely in a cover story that established either a
predictive (Figure 1, panel A) or a diagnostic (Figure 1, panel
B) causal model. Subjects in the predictive and diagnostic
conditions received identical cues and had to learn to give
identical responses; hence, the two conditions did not differ
at the associative level. However, the conditions differed when
analyzed in terms of causal models. In the predictive condi-
tion, the cues represented causes of a common effect, whereas

! Realistic diagnostic reasoning in complex domains such as med-
icine often involves a combination of what we call diagnostic and
predictive inferences. For example, a doctor might observe both
possible effects of a disorder (e.g., abnormal pulse) and possible causes
of a disorder (e.g., puncture wounds in the patient’s skin) and then
make inferences based on both causal directions, which must be
integrated to arrive at a diagnosis (e.g., Patel & Groen, 1986).
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in the diagnostic condition, they represented effects of a
common cause.

In the predictive learning task used in Experiment 1, sub-
Jjects saw descriptions of features of fictitious persons and had
to learn to predict whether people with these features (possible
causes) elicit a new kind of emotional response (a common
effect) in observers. In contrast, in the diagnostic learning task
subjects saw the same features redefined as symptoms (i.e.,
effects) of a disease caused by a virus (i.e., a common cause).
Analyzed within an associationistic framework, both tasks
were thus identical. Subjects saw identical cues and had to
learn to give identical responses ( yes or no). In the predictive
context, the order of presentation of information was iso-
morphic to the order of events that represents causes and
effects: Cues preceded responses just as causes precede their
effects. However, this order was reversed in the diagnostic
context: Cues here represented events (effects) that occur in
the real world after the events (causes) that map onto re-
sponses. Experiment | thus tested whether subjects treated
both tasks as equivalent, as predicted by associative learning
theories, or as different with respect to cue competition, as
predicted by the causal-model theory. The major hypothesis
was that cue competition would only occur when the cues
represented causes (predictive condition) but not when they
represented effects {(diagnostic condition).

A two-phase blocking paradigm was used to examine cue
competition. In Phase 1, one of the features (Cue P) used for
the descriptions of the persons was established as a perfect,
deterministic predictor of the disease or the emotional re-
sponse. In Phase 2, this feature was paired with a new redun-
dant predictor (Cue R). Even though this new feature individ-
ually was also a perfect predictor, it was completely redundant
with the previously established predictor. In both the predic-
tive and the diagnostic conditions, subjects were periodically
requested to give causal ratings to individual cues. In the
predictive context, subjects rated whether each cue caused the
emotional response; in the diagnostic context, they were asked
to rate whether each cue was affected by the disease. Note
that both of these questions (for the diagnostic as well as the
predictive condition) were intended to assess the perceived
strength of causal relations in the cause-effect (i.e., predictive)
direction. Causal-model theory predicted that cue competi-
tion would be observed in the predictive context (in which
the redundant cue was interpreted as a possible cause) but not
in the diagnostic context (in which it was interpreted as a
possible effect).

Subjects also saw two additional irrelevant cues, one (Cue
C) that was always set to a constant, normal value, and
another (Cue U) that vanied but was uncorrelated with the
target event (as in the design used by Chapman & Robbins,
1990). These two cues allowed additional tests of the adequacy
of associative learning theories. The Rescorla-Wagner learning
rule, for example, would predict that no associative strength
should accrue to the varying, uncorrelated Cue U. Ratings for
this cue should therefore be similar to ratings for the blocked,
redundant Predictor R in the predictive context. In contrast,
the causal-model theory predicts that subjects should be much
more certain about the lack of causal status for the U cue
than for Cue R. In terms of contingencies, the U cue has a

zero main-effect contrast and is excluded by the conditional
independence test; hence, subjects can be certain it is not a
cause. In contrast, the R cue has a large main-effect contrast,
but the requisite information for testing conditional inde-
pendence is lacking. Thus, subjects simply do not have enough
information to determine whether this cue is a cause. We
would therefore expect that the average causal rating in the
predictive context would be higher for the R cue, for which
the causal status is uncertain, than for the U cue, which is
clearly not a cause. Such a difference was in fact observed for
the predictiveness ratings obtained in Experiment 1 by Chap-
man and Robbins, who used a task similar to that of the
present predictive condition.

We make a further differential prediction for ratings of the
constant C cue across the predictive and diagnostic condi-
tions. Associative learning theories predict that ratings for the
constant cue should not differ across the two learning condi-
tions (and should in both cases be equal to the ratings given
to the redundant and the varying, uncorrelated cues). In
contrast, sensitivity to causal direction should manifest itself
in distinctly different ratings. In the disease context (diagnostic
condition), subjects should learn that the C cue never changes
regardless of whether the person has the disease. The contin-
gency between the disease and this cue is thus zero, so it
should be clear that the C cue does not represent an effect of
the disease. In the emotional-response context (predictive
condition), however, the C cue is interpreted as a possible
cause. Because this cue never varies, its contingency cannot
be calculated (because the cells representing cases in which
the C cue is abnormal are missing). Accordingly, subjects
should be uncertain whether the C cue is a cause (rather than
certain it is not). In contrast, the varying uncorrelated U cue
should receive equally low ratings in both the diagnostic and
predictive conditions, yielding an interaction between type of
nonpredictive cue and condition. Causal-model theory there-
fore predicts that the C cue should be rated lower in the
diagnostic condition (where it is clearly not an effect) than in
the predictive condition (where its causal status is in doubt).

Method

Subjects

The subjects were 24 female and male students from the University
of Frankfurt/Main, Federal Republic of Germany. They either re-
ceived course credit or were paid DM 5 for their participation in this
experiment. Half of the subjects were randomly assigned to the
diagnostic context, and the other half were assigned to the predictive
context.

Procedure and Material

Subjects were run in individual sessions. The material was prepared
and presented on IBM PC microcomputers, using the software pack-
age APT (Poltrock & Foltz, 1988). Before subjects started to work on
the computers, they received typed instructions. Subjects in the
diagnostic condition were told that they were going to learn about a
new disease that is caused by a virus. The virus cannot be observed
directly; however, it affects the person’s appearance. The subjects
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were informed that they were going to see descriptions of people on
the computer screen and that half of the people had contracted the
new disease. If they thought a person had the disease, subjects were
to press the yes key; otherwise, they were to press the no key. They
were told that after each decision they would receive corrective
feedback. To make sure that subjects paid attention to each feature
they were told that they should focus on each because they were
expected to rate it periodically as to whether it was affected by the
disease. Subjects were also told that speed of responding was unim-
portant,

Subjects in the predictive condition were told that a series of recent
psychological studies had found that some people’s appearances elicit
a new emotional response in their observers, This emotional response
cannot be observed directly, but it can be measured with psycho-
physical instruments. Except for necessary adjustments to the emo-
tional-response cover story, the rest of the two sets of instructions was
identical. In the predictive condition, subjects were informed that
they would be asked periodically to rate whether the individual
features were causes of the emotional response.

After reading the instructions, the subjects started the learning task.
Descriptions of persons were displayed on the computer screen one
after another. To emphasize that the descriptions referred to different
persons unique initials were displayed for each person being de-
scribed. In Phase | (pretraining), three features were listed in the
descriptions, one below the other, in the following sequence (trans-
lated here from German): perspiration (Cue C), skin (Cue P), and
posture (Cue U). Perspiration was set to normal for each person, skin
could have the values pale or normal, and posture varied between
stiff and normal. After the subjects hit one of the two response keys,
they received correct or incorrect as feedback.

Phase 1 consisted of 48 learning trials in which skin was established
as the sole predictor. Thus, 24 persons were pale and had the disease
(or elicited the emotional response), and the rest had normal skin.
Twelve persons in each of these groups had stiff posture, and 12 had
normal posture. All persons had normal perspiration. The descrip-
tions were presented in a random order.

After Phase 1, subjects were handed typed sheets with rating
instructions and rating scales. In the diagnostic condition, subjects
were told that they were to rate each feature individually as to whether
it was an effect of the new disease, independent of whether the feature
was affected by other diseases they knew about. Subjects were in-
structed to rate how confident they were in their attributions. The
rating scale ranged from definitely not an effect (—10) to definitely an
effect (+10), with 0 meaning do not know. Subjects in the predictive
condition received similar instructions, except that they were told to
rate whether each feature was a cause of the emotional response.

After the ratings, Phase 2 trials began on the computer screen.
Subjects were again reminded that they were supposed to form
hypotheses and to focus on each individual feature. Phase 2 consisted
of two blocks of 48 trials, with ratings after each block. The two
blocks had the same trial structure as Phase 1. The only difference
was that weight (Cue R) was included as a fourth, redundant feature:
Each person who was pale also was underweight, and each person
with normal skin also had normal weight. After each block, subjects
received the same rating instructions as after Phase 1, except for the
inclusion of the fourth feature in the list of features to be rated.

Results and Discussion

Figure 4 depicts the mean ratings for the three features
presented in Phase 1 (panel A) and for the four features
presented in Phase 2, averaged over the two measurements
within Phase 2 (panel B). All subjects but one (who chose +8)
rated Cue P +10 after Phase 1. These results demonstrate that
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Figure 4. Mean cause ratings (predictive condition) and effect rat-
ings (diagnostic condition) obtained in Phase 1 (panel A) and Phase
2 (panel B) of Experiment 1 for the initial predictive cue (P), the
redundant predictive cue (R), the constant uncorrelated cue (C), and
the varying uncorrelated cue (U).

Cue P was in fact established as a clear predictor during
pretraining, as is required to test for blocking of the redundant
cue in Phase 2.

The most important analysis involves the comparison of
ratings for cues P and R (the redundant cue introduced in
Phase 2) across the two causal conditions within Phase 2. An
initia] analysis including the two blocks of ratings as a factor
yielded no significant qualifications of our conclusions in this
or subsequent experiments; accordingly, all results were col-
lapsed across the two sets of ratings obtained in Phase 2. A 2
(cues) X 2 (causal conditions) analysis of variance with the
two predictive cues (P and R) as a within-subjects factor
yielded a reliable effect of causal condition, F(1, 22) = 9.82,
MS. = 1341, p < .01, and of cue, F(1, 22) = 35.5, MS. =
14.0, p < .001. Most important, the interaction proved highly
significant, F(1, 22) = 8.94, MS, = 14.0, p < .01. As can be
seen in Figure 2, panel B, only in the predictive condition did
the ratings for the redundant R cue indicate blocking by the
previously acquired P cue, F(1, 11) = 67.5, MS. = 16.6, p <
.001. In the diagnostic condition, the difference between the
P cue and the R cue fell short of statistical significance, F(1,
11) = 3.14, MS. = 39.4, p > .10. The two predictive cues
competed only when they represented causes, not when they
represented effects.
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In a further analysis, the two irrelevant cues were compared
with the R cue within the predictive condition. Ratings were
again averaged over the two measurements obtained in Phase
2. Planned comparisons revealed that the R cue received a
significantly higher causal rating than did the two uncorrelated
cues, F(1, 11) = 21.6, MS, = 13.5, p < .01. This finding
indicates that subjects differentiated between the R cue, for
which they simply lacked conclusive positive evidence for
attributing causal status, and uncorrelated cues for which
there was no evidence supporting a causal status. This inter-
pretation is further supported by anecdotal reports provided
by the subjects in the predictive condition, most of whom
mentioned spontaneously that they could not really make a
firm decision about the weight cue (R) because they never
saw an underweight person with normal skin. In contrast,
without additional assumptions the Rescorla-Wagner model
would predict equal ratings for the R cue and for the two
uncorrelated cues.

Finally, Phase 2 ratings for the two irrelevant cues were
analyzed in a 2 (cues) X 2 (causal conditions) analysis of
variance, with the cues constituting a within-subjects factor.
This analysis yielded a reliable interaction effect, F(1, 22) =
5.45, MS, = 23.2, p < .05. Further analyses indicated that the
interaction was mainly due to the significantly lower ratings
given to the constant C cue in the diagnostic than the predic-
tive condition, F(1, 22) = 5.74, MS, = 15.7, p < .05. Ratings
for the varying, uncorrelated U cue did not yield a significant
difference across the two conditions. The same pattern is
apparent in the results obtained in Phase 1, where only the
ratings for the C cue varied across the two conditions, F(1,
22) = 5.12, MS. = 20.8, p < .05. This pattern is predicted by
the causal-model theory. The U cue should be seen as causally
rrelevant in both the diagnostic and the predictive contexts,
because the corresponding main-effect contrasts were zero in
both cases. In contrast, subjects should have been more con-
fident that the C cue was irrelevant in the diagnostic condi-
tion, where it was a noncontingent effect, than in the predic-
tive condition, where it was a potential cause for which neither
the main-effect contrast nor the conditional-independence
test could be computed, due to missing cells in the contin-
gency table.

To summarize, the results of Experiment 1 clearly demon-
strate that causal induction is guided by causal models that
differentiate between predictive and diagnostic learning tasks,
even when the cue response relationships are identical at the
associative level.

Experiment 2

In Experiment I, we demonstrated that the blocking effect
interacted with causal directionality when cause ratings ob-
tained in the predictive condition were compared with effect
ratings obtained in the diagnostic condition, providing evi-
dence that subjects in the diagnostic condition were able to
form cause-to-effect representations and to assess the strength
of effects conditionalized on a hypothetical cause. In true
diagnostic reasoning, however, people must reason in the
opposite direction, from given effects to hypothetical causes.
Categorization studies based on fictitious diseases typically

have asked subjects to use symptoms to predict diseases (e.g..
Gluck & Bower, 1988). a task that would seem to involve
diagnostic inference. In Experiments 2 and 3, we asked sub-
jects to rate the predictiveness of cues (Chapman & Robbins,
1990), regardless of whether the cues represented causes or
effects. Thus, both predictive and diagnostic ratings were to
be based on strength assessed in the cue-to-response direction
as defined at the associative level.

In Experiment 2, we used a learning task identical 1o that
of Experiment 1, with the sole difference that subjects were
instructed to give predictiveness ratings in both conditions.
Thus, subjects in the diagnostic condition of Experiment 2
were asked questions intended to elicit diagnostic inferences
(from effects to a hypothetical cause), whereas the comparable
subjects in Experiment | were asked questions intended to
elicit predictive inferences (from a given cause to its effects).

Method

Subjects

Subjects were 20 female and male students from the University of
Frankfurt/Main who either received course credit or were paid DM
5 for their participation. Half of the subjects were randomly assigned
to the diagnostic condition, and the other half were assigned to the
predictive condition.

Procedures and Material

The procedures and material in Experiment 2 were virtually iden-
tical to those used in Experiment 1. The only difference was that all
subjects received instructions to rate the predictiveness of each cue
individually. As a clarification, subjects were told that they were
expected to rate each cue independent of the other cues they had seen
together with it. Because no negative contingencies were presented,
the rating scale ranged from not a predictor (0) to perfect predictor
(+10).

Results and Discussion

Figure 5 presents the subject’s mean ratings, calculated in
the same manner as those for Experiment 1 (see Figure 4). In
Phase | (Figure 5, panel A), subjects learned that cue P was
the single valid predictor.

The most interesting analysis involves a comparison of the
two predictive cues in Phase 2 (Figure 5, panel B). As in
Experiment 1, the two measurements within Phase 2 were
averaged for this analysis. A 2 (cues) X 2 (causal contexts)
analysis of variance, with the P and R cues constituting the
two levels of a within-subjects factor, revealed that the cue
that was valid in both Phase 1 and Phase 2 (P) was rated as
significantly more predictive than the redundant valid cue
introduced in Phase 2 (R), F(1, 18) = 15.4, MS. = 10.6,p <
.01. In contrast to Experiment 1, the interaction was clearly
nonsignificant (F < 1).

At first blush, the clear attenuation of predictiveness ratings
in the diagnostic context poses a puzzle. This aspect of the
results is exactly what would be predicted by an associative
theory of causal induction. As we pointed out in the intro-
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Figure 5. Mean predictiveness ratings for predictive and diagnostic
conditions obtained in Phase 1 (panel A) and Phase 2 (panel B) of
Experiment 2 for the initial predictive cue (P), the redundant predic-
tive cue (R), the constant uncorrelated cue (C), and the varying
uncorrelated cue (U).

duction, however, low predictiveness ratings for single cues
could be due to theory competition as opposed to cue com-
petition. The attenuation of the ratings in the diagnostic
condition of Experiment 2 can actually be interpreted as a
normative result of diagnostic reasoning. Let us assume that
subjects in the diagnostic conditions of both Experiments 1
and 2 learned a causal structure in which the virus was a
common cause of both being pale and being underweight. In
Experiment 1, subjects were asked to rate whether each of
these two cues represented effects of the common cause. As
would be expected from a normative account, effects did not
compete when subjects reasoned from a hypothetical cause to
its effects, and so subjects gave high effect ratings to both cues.

The subjects’ situation was quite different in Experiment 2,
however: They had to reason in the reverse direction, from
given effects to hypothetical causes. No attenuation would be
expected if there were only one possible theory explaining the
evidence; however, this is seldom the case in realistic diag-
nostic tasks. There is potential competition if multiple causal
theories might account for a given effect. More specifically, if
subjects bring to bear prior knowledge of alternative possible
causes of an abnormal body sign, they may lower their rated
predictiveness of the sign as an indicant of the fictitious disease
being taught in the experiment. Thus, even though subjects

learned in Phase 2 that being underweight (Cue R) is an effect
of the virus, they presumably also knew that there are many
other reasons a person might be underweight. These alterna-
tive causes may have competed with the newly acquired cause
as a possible explanation of the single cue underweight, caus-
ing subjects to give the single cue a relatively low predictive-
ness rating. The fact that the R cue was introduced only in
Phase 2, and was always presented in compound with Cue P,
may have made it more likely to evoke extraexperimental
knowledge of alternative causes than was the case for Cue P,
which had been established as a separable effect of the virus
from the outset of the experiment. If this interpretation of the
apparent blocking observed in the diagnostic condition of
Experiment 2 is correct, then such attenuation of predictive-
ness ratings should be eliminated if prior knowledge does not
provide alternative, extraexperimental causes. We tested this
prediction in Experiment 3.

Asin Experiment 1, and contrary to the apparent prediction
of the Rescorla-Wagner model, in both causal conditions the
redundant Cue R received much higher ratings than did either
of the uncorrelated cues. As in Experiment 1, the constant C
cue tended to yield higher ratings in the predictive condition
than in the diagnostic condition. However, because both
irrelevant cues were rated 0 by all subjects in Phase 2 of the
diagnostic condition (thus yielding 0 variances for these cells),
meaningful statistical analyses could not be performed on
ratings for these cues.

Experiment 3

The results for the diagnostic condition in Experiment 2
suggested that subjects may tend to consider prior known
causes of familiar abnormal symptoms when evaluating the
predictiveness of individual symptoms. To eliminate the pos-
sible effects of prior knowledge, in Experiment 3 we investi-
gated predictive and diagnostic causal induction in a relatively
unfamiliar context. If we are correct in our suggestion that
the attenuation of ratings observed in the diagnostic condition
of Experiment 2 was a consequence not of cue competition
but of true diagnostic reasoning, in which prior knowledge
played an important role, then the interaction between ratings
and causal context that was obtained in Experiment | should
surface again in Experiment 3 when prior knowledge is elim-
inated. In contrast, associative accounts predict cue competi-
tion regardless of whether subjects have background knowl-
edge about alternative theories. Note that in experiments on
classical conditioning in animals, including those using the
blocking paradigm, cues are almost always chosen so as not
to have a prior associative history.

Method

Subjects

The subjects were 24 female and male students from the University
of Frankfurt/Main, who either received course credit or were paid
DM 5 for their participation. Half of the subjects were randomly
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assigned to the diagnostic condition, and the other half were assigned
to the predictive condition.

Procedure and Material

We attempted to construct material that was maximally parallel in
structure to that used in Experiments 1 and 2, but for which subjects
would lack pror causal knowledge. In Phase I, subjects received
information about the states of three buttons. Button 1 (Cue C) was
always constant and set to the value of off Buttons 2 and 3 were on
in half of the trials and off in the rest of the trials. Analogous to the
previous experiments, Button 2 (Cue P) was perfectly positively
correlated with the correct yes-no response, and Button 3 (Cue U)
was uncorrelated. As a reminder of the location of the buttons, the
label Room A was placed next to the three buttons on the computer
screen on which they were displayed. In Phase 2, Button 4 (Cue R)
was added to the display: 1t was always on when Button 2 was on and
off when Button 2 was off. Button 4 was displayed below the other
three buttons and separated by a line. Also, the label Room B appeared
next to this button, providing additional information to make it clear
that Button 4 was located in a different room. As in Experiment 2,
subjects were periodically asked to rate the predictiveness of each cue
individually, using a rating scale ranging from 0 to 10. The trial
structure and the procedure were otherwise wdentical to thosc used in
the previous experiment.

Predictive condition. In this condition, subjects were told that
Peter W. had started to work at a bank in Room A. In the evening,
he was expected to switch on the alarm, but unfortunately nobody
told him which button turned on the alarm. so he tried out several
buttons. The subjects’ task in Phase | was to learn how to switch on
the alarm. Before Phase 2 began, subjects were told that Mary B. had
also started to work at the bank on the same day. She was working
in a different room (Room B), and because she did not know about
Peter’s attempts, she also tried to switch on the alarm simulianeously.
It was mentioned that several buttons were located in her room. but
subjects only received information about one button. During Phase
2. Mary, by some accident, only tried Button 4 when Peter switched
Button 2, which had been established as the crucial button to activate
the alarm.

Diagnostic condition.  The cover story in the diagnostic condition
was very similar to that used in the predictive condition. The only
difference was that in the diagnostic context, Peter and later Mary
were trving to figure out whether the alarm was on. They were told
that the state of the alarm was signaled by light buttons, which could
be either on or off. As no one remembered to tell Peter and Mary
which buttons signaled whether the alarm was on, Peter experimen-
tally switched the alarm on and off. and he and Mary checked which
signal lights went on or off. As in the predictive condition, subjects
saw only the state of the buttons; however, the buttons were redefined
as potential effects of a common cause (the alarm). Because the
stimuli were identical in both causal conditions, subjects learned in
Phase 1 that Button 2 was the crucial signal in Peter’s room. In Phase
2, they saw Button 4 (from a different room) as an additional signal
for Mary. (In both conditions, two different rooms were introduced
to make it more plausible that there may have been more than one
crucial button.) The learning task was thus virtually identical in both
conditions. In both conditions. subjects received information only
about the states of the buttons and had to learn to predict whether
the alarm was on or off. making a yes or no response.

One attractive property of these cover stories is that the cause in
the diagnostic condition was identical to the effect in the predictive
condition (i.e.. the state of the alarm). Thus, the only feature that
varied between the two conditions was the causal direction hinking
the cues and the criterial outcome.

Results and Discussion

Figure 6 presents the mean predictiveness ratings. Subjects
clearly learned during Phase | that Cue P was a perfect
predictor for the alarm. whereas Cues C and U were irrelevant
(Figure 6, panel A). The most important analysis, based on
the data for Phase 2 (Figure 6, panel B), was a 2 (Cucs) X 2
(Causal Conditions) analysis of vaniance, with ratings for Cues
P and R (averaged over the two measurements within Phase
2) constituting a within-subjects factor. This analysis vielded
significant main effects of the causal condition, F([. 22) =
11.3, MS,. = 4.90. p < .01, and of the cue factor, F{(!. 22) =
19.4. MS. = 6.14. p < .01. Most crucial, a reliable interaction
was obtained, F(1, 22) = 9.72. MS. = 6.14_ p < .01, with the
R cue receiving much higher ratings in the diagnostic than in
the predictive condition. In fact, significant blocking was
obtained only in the predictive condition. F(1, 11) = 22.5.
MS,. = 15.4. p<.01. In contrast. no cue competition between
the P cue and the R cue was observed in the diagnostic
condition, F(1, 11) = 1.10. MS, = 9.13, p > .30. These
findings support our suggestion that the low ratings for the
redundant cue obtained in the diagnostic condition of Exper-
iment 2 were due not to blocking in an associationistic sense
but rather to competition between a newly learned causal link
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Figure 6. Mean predictiveness ratings for predictive and diagnostic
conditions obtained in Phase | (pane¢l A) and Phase 2 (pane¢lB) of
Experiment 3 for the initial predictive cue (P), the redundant predic-
tive cue (R). the constant uncorrelated cue (C), and the varying
uncorrelated cue (U).
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and preexperimental causal theories. The unfamiliarity of the
material used in the present experiment excluded or reduced
the impact of prior causal knowledge; accordingly, the ratings
reflect the causal strength connecting the cues and the cause
presented in the learning phase. In accord with the prediction
of the causal-model approach, cue competion was observed
between co-occurring possible causes but not between co-
occurring possible effects.

As in the previous experiments, the ratings given to the R
cue in the predictive condition, while attenuated, were con-
siderably higher than those given to either of the two uncor-
related cues, F(1, 11) = 16.6, MS. = 5.17, p < .01. Probably
due to cellar effects, analyses involving the two uncorrelated
cues did not yield significant results.

General Discussion

Summary

The results of the present study clearly demonstrate that
people learn by constructing causal models; furthermore,
regardless of the cause-effect order in which the relevant
information is presented, these models consist of links di-
rected from causes to their effects. Our results also indicate
that people are able to flexibly access this knowledge to
generate either predictive or diagnostic inferences. The exper-
iments support the view that diagnostic and predictive reason-
ing are fundamentally different processes. Far from being
identical, as predicted by associationistic accounts of causal
induction, the two inferential directions are¢ not even symmet-
rical. In a predictive learning task, the assignment of causal
status to a redundant possible cause is attenuated to some
extent, not because of associative blocking per se but rather
because of lack of information about cells in the factorial
contingency table involving the presence of the second pos-
sible cause in the absence of the known cause. In diagnostic
learning, by contrast, multiple effects of a common cause do
not compete. Knowledge about the presence of a cause licen-
ses the inference of each of its specific effects, independent of
other effects that might also emanate from the same cause
(Experiment 1). Apparent blocking may occur after diagnostic
learning when people use effect cues to predict the cause, not
because of competition directly among effects but because of
competition among alternative causal theories that might
explain the effects, including theories based on prior knowl-
edge (Experiment 2). If alternative causes derived from prior
knowledge are ruled out, so that only one possible cause of
the observed effects is available, apparent cue competition is
eliminated in diagnostic learning (Experiment 3).

Thus, diagnostic inferencing is structurally distinct from
predictive inferencing. Diagnosis requires abductive reason-
ing, or inference to the best explanation, a process that has to
deal with potential theory competition (Harman, 1986; Pearl],
1988; Peng & Reggia, 1990; Thagard, 1989). Even determin-
istic effects of a particular cause may not be perfectly valid
diagnostic cues for it, depending on how the cues are related
to competing theories. Furthermore, the diagnostic value of a
single effect need not be independent of other co-occurring
effects. Single cues are rarely sufficient for generating unam-

biguous diagnoses. Indeed, the relative plausibility of two
theories potentially accounting for the evidence might reverse,
depending on which second effect cue is added to an initial
cue.

Given the dependence of diagnosis on multiple effect cues,
we might expect that people will be more sensitive to patterns
of cues in diagnostic as opposed to predictive learning. We
(Waldmann & Holyoak, 1990) recently presented evidence
that supports this prediction. In these experiments, we showed
that subjects are more or less sensitive to within-category
correlations, depending on the causal context they are pro-
vided. Correlated evidence is a natural consequence of com-
mon-cause contexts, which are typical for diagnostic task
domains and for which use of patterns of cues provides an
effective means to constrain the search and evaluation space.
The situation is very different in predictive reasoning, in
which sensitivity to patterns of causes would require learning
about interacting causes. A number of empirical studies have
demonstrated that people have a preference for linear arrange-
ments of cues (Dawes, 1982; Mellers, 1980). Given the com-
plexities of the computation of interaction contrasts in a
multifactorial contingency table, the cognitive basis for this
preference seems obvious. Unlike the case of diagnostic rea-
soning, where the use of patterns is crucial for constraining
diagnoses even for competing linear theories, predictive rea-
soning favors inferring common effects from their causes in
a monotonic fashion. This is only possible if the causes
combine in a linear rather than an interactive fashion to
produce their effects.

Causal Models and Connectionist Learning Theories

The results presented in this article clearly refute connec-
tionist learning theories that subscribe to an associationistic
representation of events as cues and responses. One response
to the evidence presented here and elsewhere that learning
makes use of directed causal models (e.g., Waldmann &
Holyoak, 1990) is to develop network models that embody
the assumptions of causal-model theory. For example, cues
that are interpreted as causes could be represented on the
input layer, and cues that are interpreted as effects could be
represented on the output layer, regardless of the temporal
order in which the cues are received. Links would then
represent directed causal relations (see Pearl, 1988, and Peng
& Reggia, 1990, for causal network theories with this general
character). Of course, the generation of responses would be-
come much more complicated than in standard associative
networks because the responses could not simply be elicited
by the cues presented first. Rather, in diagnostic tasks the
inputs would have to be assigned to the output level of the
causal network. The observable pattern on the output layer
would then have to be interpreted as being caused by an
unseen input, which would have to be induced by diagnostic
learning. Although it may be possible to develop a connec-
tionist model of causal induction along these lines, it should
be clear that a number of problems must be solved to account
for diagnostic learning. Diagnostic and predictive learning
would have to be modeled by structurally different network
models. Such models would go far beyond simple association-
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ism and, in fact, would instantiate the causal-model approach
we advocate.

Causal Models and Categorization

According to the causal-model approach, categorization is
closely linked to causal induction. A number of philosophers
and psychologists have recently argued against similarity-
based categorization theories, which fail to posit a role for
causal knowledge in categorization. Murphy and Medin
(1985), for example, claimed that the coherence of real-world
concepts is derived from theoretical knowledge they embody
(also see Medin, 1989). Putnam (1975) argued that natural-
kind concepts are organized around identities of theoretically
induced hidden commonalities, which he distinguished from
observable features that only provide indirect cues to concep-
tual identity (also see Gelman, 1988). Keil (1989) extended
this view, arguing that conceptual knowledge frequently em-
bodies information about underlying causal as opposed to
associative relationships. The relevance of causal knowledge
is particularly plausible in tasks involving disease classifica-
tion, which are frequently used in categorization research
(e.g., Gluck & Bower, 1988). Most diseases are defined by
hidden causes, such as viruses, which are not directly observ-
able. Here, categorization has to rely on indirect indicators,
such as symptoms, which are probabilistic effects of the
hidden causes. In such cases, category learning can be viewed
as a diagnostic learning task, in which potential causes have
to be inferred from given effects.

However, not all categories seem to conform to the causal
structure of diagnostic categories. Artifact categories and ad
hoc categories frequently seem to be based on features that
correspond to causes of a common effect (see Barsalou, 1983;
Gelman, 1988; Keil, 1989). For example, refrigerator is de-
fined by features that are causally linked to achievement of
its intended function of keeping food or other items cool.
Such categories are analogous to a class of persons that cause
a specific emotional response, the cause category acquired in
the predictive condition of Experiments | and 2 in this article.
Our experiments thus imply that learning about such predic-
tive categories differs from the induction processes involved
in learning about diagnostic categories. A causal-model analy-
sis may help to explain the apparent discrepancies between
categorization experiments that yield apparent cue competi-
tion (e.g., Trabasso & Bower, 1968) and those that actually
yield mutual facilitation among correlated cues (Billman,
1989). In general, competition among cues should be expected
if they are interpreted as causes, the effect of which is identified
by the category label. Neutral or facilitatory cue interactions
should be expected, however, if cues are interpreted as com-
mon effects, the hidden cause of which is identified by the
category label. That is, causes compete, but effects collaborate.

Our research is broadly consistent with the notion that the
adaptive goal behind categorization is to learn to predict
features (Anderson, 1990; Billman, 1989; Holland, Holyoak,
Nisbett, & Thagard, 1986). However, the causal-model theory
subordinates this goal to the overarching goal of learning
about the causal structure of the world. Causal models, which
attempt to enforce conditional independence among represen-

tations of otherwise correlated events, constrain the vast num-
ber of potential predictive relationships about which we might
in principle attempt to learn (Pearl, 1988). Causal models
therefore provide an effective means to constrain inductive
learning. Medin, Wattenmaker, and Hampson (1987) pre-
sented empirical evidence that people are more sensitive to
predictive relationships between features when prior knowl-
edge provides causal links underlying these regularities.

Possible Changes in Diagnostic Reasoning With
Expertise

The experiments in this article involved essentially novice
subjects acquiring knowledge about simple causal relation-
ships in predictive or diagnostic contexts. Qur results provide
support for the assumption that even in the diagnostic task,
in which the cues correspond to effects and the responses
correspond to causes, people nonetheless represent the links
in their mental models in the cause-to-effect direction. Might
this pattern of representation change for more expert subjects
who learn more complex diagnostic tasks, such as actual
medical diagnosis? Patel and Groen (1986) found evidence,
based on verbal protocols obtained during a task involving
explanation of medical cases, that the overall direction of
reasoning may reverse from less skilled to expert diagnosti-
cians. The protocols of less experienced subjects tended to
refer first to diseases and then to the symptoms they might
account for (i.e., following the cause-to-effect direction),
whereas the protocols of experts tended to move directly from
symptoms to a diagnosis (i.e., following the effect-to-cause
direction).

There are at least two possible explanations of such direc-
tional shifts in protocols. One possibility is that the shift
simply reflects the experts’ greater speed in performing the
same basic reasoning process, which for subjects at all levels
of expertise may make use of links directed from causes to
effects. That is, diagnostic inferences based in part on cause-
to-effect relationships may simply be omitted in the protocols
of experts’ more fluent reasoning processes. Eddy’s (1982)
report of preferential use of cause-to-effect conditional prob-
abilities by practicing physicians performing diagnostic tasks
might be interpreted as support for this possibility. A second
possibility is that with expertise the diagnostic task is actually
restructured, with directed effect-to-cause links being learned
as a consequence of practice in diagnosing cases. Clearly the
role of expertise in predictive and diagnostic inference requires
further investigation.

Does Conditioning Involve Causal Inference?

Given that the presented experiments clearly refute recent
attempts to reduce higher order types of learning to associative
learning, one can of course raise the question of whether even
lower order types of learning, such as classical conditioning,
are explained adequately by associative learning theories. For
example, despite the impressive range of findings accounted
for by the Rescorla-Wagner model, the model has a variety
of well-known empirical shortcomings (Gallistel, 1990; Hol-
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yoak, Koh, & Nisbett, 1989). The present findings for human
causal induction raise the question of whether animals may
also differentiate between predictive and diagnostic learning.
Although we are unaware of any direct evidence for this
possibility, some research indicates that animals can separate
the temporal order of events from that of presented cues. For
example, Matzel, Held, and Miller (1988) showed that rats
can form representations of temporal orderings of events,
even in situations where the order of presentation of the
relevant information does not conform to the temporal or-
dering of the events within the mental model the rats seem to
acquire. In Matzel et al.’s study, rats first learned that a
5-s click immediately preceded the onset of a 5-s tone. Then,
in a second learning phase, the rats learned that a 5-s shock
immediately preceded a 5-s tone. Interestingly, the results of
the experiment suggested that the rats were able to synthesize
these two learning experiences into a unified temporal repre-
sentation. As expected, the rats did not show any signs of
backward conditioning: When presented with the tone cue,
they did not show any fear reactions. However, they seemed
to expect shock when presented with the click cue. Although
the rats never directly experienced clicks being paired with
shocks, the clicks could be expected to predict the shock when
both learning phases are integrated. Such findings indicate
that some lower animals are able to dissociate the associative
level from a higher order mental-model level. Is it possible,
after all, that lower-order associative learning should be re-
duced to higher order causal induction, rather than vice versa?

References

Alloy, L. B., & Tabachnik, N. (1984). Assessment of covariation by
humans and animals: The joint influence of prior expectations and
current situational information. Psychological Review, 91, 112~
149.

Anderson, J. R. (1990). The adaptive character of thought. Hillsdale,
NJ: Erlbaum.

Barsalou, L. W. (1983). Ad hoc categories. Memory & Cognition, 11,
211-227.

Billman, D. (1989). Systems of correlations in rule and category
learning: Use of structured input in learning syntactic categories.
Language and Cognitive Processes, 4, 127-155.

Carlson, R. A., & Dulany, D. E. (1988). Diagnostic reasoning with
circumstantial evidence. Cognitive Psychology, 20, 463-492.

Chapman, G. B., & Robbins, S. J. (1990). Cue interaction in human
contingency judgment. Memory & Cognition, 18, 537-545.

Cheng, P. W., & Novick, L. R. (1990). A probabilistic contrast model
of causal induction. Journal of Personality and Social Psychology,
58, 545-567.

Cheng, P. W., & Novick, L. R. (1992). Covariation in natural causal
induction. Psychological Review, 99, 365-382.

Dawes, R. M. (1982). The robust beauty of improper linear models
in decision making. In D. Kahneman, P. Slovic, & A. Tversky
(Eds.), Judgment under uncertainty: Heuristics and biases (pp. 391-
407). Cambridge, England: Cambridge University Press.

Dickinson, A., & Shanks, D. (1985). Animal conditioning and human
causality judgment. In L. G. Nilsson & T. Archer (Eds.), Perspec-
tives on learning and memory (pp. 167-191). Hillsdale, NJ: Erl-
baum.

Dickinson, A., Shanks, D., & Evenden, J. (1984). Judgment of act-
outcome contingency: The role of selective attribution. Quarterly

Journal of Experimental Psychology, 364, 29-50.

Eddy, D. M. (1982). Probabilistic reasoning in clinical medicine:
Problems and opportunities. In D. Kahneman, P. Slovic, & A.
Tversky (Eds.), Judgment under uncertainty: Heuristics and biases
(pp. 249-267). Cambridge, England: Cambridge University Press.

Einhorn, H. J., & Hogarth, R. M. (1986). Judging probable cause.
Psychological Bulletin, 99, 3-19.

Estes, W. K., Campbell, J. A., Hatsopoulos, N., & Hurwitz, J. B.
(1989). Base-rate effects in category learning: A comparison of
parallel network and memory storage-retrieval models. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 15,
556-571.

Gallistel, C. R. (1990). The organization of learning. Cambridge, MA:
MIT Press.

Gelman, S. A. (1988). The development of induction within natural
kind and artifact categories. Cognitive Psychology, 20, 65-95.

Gluck, M., & Bower, G. H. (1988). From conditioning to category
learning: An adaptive network model. Journal of Experimental
Psychology: General, 117, 227-247.

Harman, G. (1986). Change in view. Cambridge, MA: MIT Press.

Holland, J. H., Holyoak, K. J., Nisbett, R. E., & Thagard, P. R.
(1986). Induction: Processes of inference, learning, and discovery.
Cambridge, MA: MIT Press.

Holyoak, K. J., Koh, K., & Nisbett, R. E. (1989). A theory of
conditioning: Inductive learning within rule-based default hierar-
chies. Psychological Review, 96, 315-340.

Kamin, L. J. (1969). Predictability, surprise, attention, and condi-
tioning. In B. A. Campbell & R. M. Church (Eds.), Punishment
and aversive behavior (pp. 276-296). New York: Appleton-Cen-
tury-Crofts.

Keil, F. C. (1989). Concepts, kinds, and conceptual development.
Cambridge, MA: MIT Press.

Kelley, H. H. (1967). Attribution theory in social psychology. In D.
Levine (Ed.), Nebraska Symposium on Motivation (Vol. 15, pp.
192-238). Lincoln: University of Nebraska Press.

Mackintosh, N. J. (1975). A theory of attention: Variations in the
associability of stimuli with reinforcement. Psychological Review,
82, 276-298.

Matzel, L. D., Held, F. P., & Miller, R. R. (1988). Information and
expression of simultaneous and backward associations: Implica-
tions for contiguity theory. Learning and Motivation, 19, 317-344,

Medin, D. L. (1989). Concepts and conceptual structure. American
Psychologist, 44, 1469-1481.

Medin, D. L., Wattenmaker, W, D., & Hampson, S. E. (1987). Family
resemblance, conceptual cohesiveness, and category construction.
Cognitive Psychology, 19, 242-279.

Mellers, B. A. (1980). Configurality in multiple-cue probability learn-
ing. American Journal of Psychology, 93, 429-443.

Miller, R. R., & Matzel, L. D. (1988). The comparator hypothesis: A
response rule for the expression of associations. In G. H. Bower
(Ed.), The psychology of learning and motivation: Advances in
research and theory (Vol. 22, pp. 51-92). San Diego, CA: Academic
Press.

Murphy, G. L., & Medin, D. L. (1985). The role of theories in
conceptual coherence. Psychological Review, 92, 289-316.

Patel, V. L., & Groen, G. J. (1986). Knowledge based solution
strategies in medical reasoning. Cognitive Science, 10, 91-116.

Pearce, J. M., & Hall, G. (1980). A model of Pavlovian learning:
Variations in the effectiveness of conditioned but not of uncondi-
tioned stimuli. Psychological Review, 87, 532-552.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Net-
works of plausible inference. San Mateo, CA: Morgan Kaufmann.

Peng, Y., & Reggia, J. A. (1990). Abductive inference models for
diagnostic problem-solving. New York: Springer-Verlag.

Poltrock, S. E., & Foltz, G. S. (1988). APT PC and APT II: Experi-



236 MICHAEL R. WALDMANN AND KEITH J. HOLYOAK

ment development systems for the IBM PC and Apple 11. Behav-
ioral Research Methods, Instruments, and Computers, 20, 201-
205.

Putnam, H. (1975). The meaning of “meaning.” In H. Putnam (Ed.),
Mind, language, and reality: Philosophical papers (Vol. 2, pp. 215~
271). Cambridge, England: Cambridge University Press.

Reichenbach, H. (1956). The direction of time. Berkeley: University
of California Press.

Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian
conditioning: Variations in the effectiveness of reinforcement and
non-reinforcement. In A. H. Black & W. F. Prokasy (Eds.), Clas-
sical conditioning II: Current research and theory (pp. 64-99). New
York: Appleton-Century-Crofts.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning
internal representations by error propagation. In D. E. Rumelhart,
J. L. McClelland, & the PDP Research Group (Eds.), Parallel
distributed processing (Vol. 1, pp. 318-362). Cambridge, MA: MIT
Press.

Salmon, W. C. (1984). Scientific explanation and the causal structure
of the world. Princeton, NJ: Princeton University Press.

Shaklee, H., & Tucker, D. (1980). A rule analysis of judgments of
covariation between events. Memory & Cognition, 8, 208-224.

Shanks, D. R. (1985). Forward and backward blocking in human
contingency judgment. Quarterly Journal of Experimental Psy-
chology, 37B, 1-21.

Shanks, D. R. (1990a). Connectionism and human learning: Critique
of Gluck and Bower (1988). Journal of Experimental Psychology:
General, 119, 101-104,

Shanks, D. R. (1990b). Connectionism and the learning of probabi-
listic concepts. Quarterly Journal of Experimental Psychology, 424,
209-237.

Shanks, D. R. (1991). Categorization by a connectionist network.
Journal of Experimental Psychology: Learning, Memory, and Cog-
nition, 17, 433-443.

Shanks, D. R., & Dickinson, A. (1987). Associative accounts of
causality judgment. In G. H. Bower (Ed.), The psychology of
learning and motivation: Advances in research and theory (Vol. 21,
pp. 229-261). San Diego, CA: Academic Press.

Suppes, P. (1970). A probabilistic theory of causality. Amsterdam:
North-Holland.

Sutton, R. S., & Barto, A. G. (1981). Toward a modern theory of
adaptive networks: Expectation and prediction. Psychological Re-
view, 88, 135-170.

Thagard, P. (1989). Explanatory coherence. Behavioral and Brain
Sciences, 12, 435-467.

Trabasso, T. R., & Bower, G. H. (1968). Attention in learning: Theory
and research. New York: Wiley.

Tversky, A., & Kahneman, D. (1980). Causal schemas in judgments
under uncertainty. In M. Fishbein (Ed.), Progress in social psy-
chology (pp. 49-72). Hillsdale, NJ: Erlbaum.

Waldmann, M. R., & Holyoak, K. J. (1990). Can causal induction
be reduced to associative learning? Proceedings of the Twelfth
Annual Conference of the Cognitive Science Society (pp. 190-197).
Hillsdale, NJ: Erlbaum.

Ward, W. D., & Jenkins, H. M. (1965). The display of information
and the judgment of contingency. Canadian Journal of Psychology,
19, 231-241.

Wasserman, E. A. (1990). Attribution of causality to common and
distinctive elements of compound stimuli. Psychological Science,
1, 298-302.

Widrow, G., & Hoff, M. E. (1960). Adaptive switching circuits.
Institute of Radio Engineers, Western Electronic Show and Con-
vention, Convention Record, 4, 96-194.

Received December 31, 1990
Revision received September 3, 1991
Accepted September 10, 1991 =



