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Abstract

Associationist theories of causal induction model learning as
the acquisition of associative weights between cues and out-
comes.  An important deficit of this class of models is its in-
sensitivity to the causal role of cues. A number of recent ex-
perimental findings have shown that human learners differen-
tiate between cues that represent causes and cues that repre-
sent effects. Our Bayesian network model overcomes this re-
striction. The model starts learning with initial structural as-
sumptions about the causal model underlying the learning
domain. This causal model guides the estimation of causal
strength, and suggests integration schemas for multiple cues.
In this way, causal models effectively reduce the potential
computational complexity inherent in even relatively simple
learning tasks. The Bayesian model is applied to a number of
experimental findings, including studies on estimation of
causal strength, cue competition, base rate use, and learning
linearly and nonlinearly separable categories.

Introduction
The Temporal Order of Information Constraint
A popular approach to causal learning postulates a process
that is associative in nature (e.g., Shanks & Dickinson,
1987). According to this view, learning involves the asso-
ciation of cues and outcomes. An important characteristic of
this class of models is its insensitivity to the semantics of
learning events. Regardless of whether the cues represent
conditional stimuli, features, causes, or effects, the learning
process is always identical. Most notably, the reduction of
causal learning to the association of cues and outcomes
implies the equation of predictive learning and diagnostic
learning. Predictive learning involves the association of
causes (cues) and effects (outcomes), diagnostic learning the
association of effects (cues) and causes (outcomes). As long
as the cues and outcomes in these two tasks have compara-
ble characteristics, learning should be identical. This ap-
proach to learning embodies a temporal order of information
constraint. The information received first in time is assigned
to the cue layer of the associative network. Associative
theories are only one example of a large class of theories
that use this constraint. Multiple-cue integration models,
such as the lens model, and many categorization theories
also assign cues on the basis of temporal order of informa-
tion.

We have conducted a number of experiments which show
that this class of models is inadequate for describing causal
learning (see Waldmann, 1996, for an overview). Our ex-
periments demonstrated that human learners are indeed
sensitive to the causal status of cues and outcomes. In par-
ticular, the experiments showed that a predictive learning
task in which multiple causes are used to predict a common
effect is learned differently from an otherwise identical
diagnostic learning task in which multiple effects are used
as cues to a common cause.

The Temporal Order of Events Constraint
A key feature of our model is the decoupling between the
temporal order of the incoming information and the repre-
sented temporal order of events. Learning events are as-
signed to the causal model on the basis of the temporal order
of events in the real world and not on the basis of the tempo-
ral order of information. Thus, our model honors the tempo-
ral order of events constraint. We assume that learners bring
to bear prior knowledge about the precedence of causes and
effects. Causes occur temporally prior to their effects, re-
gardless of whether the information given first is about
causes (predictive learning) or about effects (diagnostic
learning). In both tasks, the cause information is assigned to
the cause layers of the causal models and the effect infor-
mation to the effect layers.

The Model
The model involves four steps. It starts with initial assump-
tions about the causal model that presumably underlies the
learning data (Step 1). This initial causal model serves two
functions. It guides the process of estimating the causal
power of each cause with respect to its effects (Step 2), and
it suggests schemas for integrating the causal power esti-
mates for multiple cues (Step 3). In predictive learning these
cues represent multiple causes, in diagnostic learning multi-
ple effects. Whenever the initial model fails to represent the
learning data, errors will occur. These errors will suggest a
revision of the causal model (Step 4). Subsequent learning
will be based on the revised model.

Setting up an Initial Causal Model (Step 1)
According to the model, learners make initial hypothetical
assumptions about the causal model underlying the learning
input. In our experiments these assumptions are typically
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manipulated by means of differential initial instructions, but
other cues to causality such as temporal precedence may
also be used (see Waldmann, 1996).

The top-down orientation of our model deviates sharply
from the majority of Bayesian network models (e.g. Pearl,
1988; Spirtes, Glymour, & Scheines, 1993). Such models
are typically developed as normative tools for statistical
analysis, and they often aim at developing strategies to
bootstrap causal structures from covariation data in a bot-
tom-up fashion. These methods are not intended to model
everyday causal reasoning. On the contrary, they are often
motivated by the assumption that causal analysis needs to be
guided by expert systems that embody Bayesian strategies.
In our view, it is unlikely that human learners are good at
inducing the causal relations between several interconnected
events solely on the basis of covariation information.

Causal models have the potential to dramatically reduce
the processing effort during learning. Consider, for instance,
the potential effort involved in a domain with three interre-
lated binary events, entailing dozens of unconditional and
conditional frequencies that a learner might decide to focus
on (see Pearl, 1988).

Figure 1 illustrates three different causal models that can
be generated by three events. The arrows denote direct
causal influences that point from causes to effects. The
computational advantage of such models is that they encode
not only information about direct dependencies, but also
additional structural information about further dependencies
(see Pearl, 1988; Spirtes et al., 1993). For example, a com-
mon cause model with two effects (Fig. 1A) conveys the
information that the two effects are marginally correlated
but become independent conditional upon their common
cause. A common effect model (Fig. 1B), by contrast, im-
plies that the two alternative causes are marginally inde-
pendent of each other, but become dependent conditional
upon their common effect. Finally, a causal chain model
(Fig. 1C) entails that the initial cause becomes independent
of the final effect once the intermediate cause is held fixed.
These are just some examples of the many useful implica-
tions of these models. Whenever these models describe the
learning domain appropriately, they have the potential to
greatly reduce the learning information required.

Estimating Causal Power (Step 2)
One of the primary functions of causal models is that they
specify the information relevant to the assessment of the
strength of causal relations. Not every statistical relation
observed in learning input is relevant for assessing causal
hypotheses; causal models can provide guidance in the se-
lection of relevant information.

Following Cheng (1997), the strength of a direct causal
relation, the causal power of the cause, can be defined as the
probability of the effect in the presence of the cause in the
absence of all alternative influences. Causal power is as-
sessed in the cause-effect direction regardless of the order of
learning events. At this point, the model is restricted to
situations in which information about frequencies is avail-
able (e.g., trial-by-trial learning). We assume that learners
use frequency information, which is updated after each
learning trial, to assess causal power. However, not all the

unconditional and conditional frequencies have to be en-
coded, but only those frequencies which, according to the
initial causal model, are relevant to the estimation process.

Assuming a situation in which all the causal factors are
specified within the causal model (“closed world assump-
tion”), causal power can be directly measured on the basis
of observed conditional frequencies. In the simple case of
one cause and one effect, the causal power of the cause is
represented by the conditional probability of the effect e
given cause c, P(e|c). This estimate is already guided by a
prior causal model that specifies which of the two events is
the cause and which the effect.1

Figure 1: A common cause (A), common effect (B), and
causal chain (C) model.

The role of causal models is even clearer in more complex
situations with three events (see Eells, 1991; Waldmann &
Hagmayer, submitted). In the common cause situation (Fig.
1A), the causal power relation between the cause c and each
of the effects e1 and e2 can similarly be inferred on the basis
of the conditional probabilities P(e1|c) and P(e2|c), because
the model implies conditional independence of the two
effects. The situation is different when the causal arrows are
reversed, yielding a common effect model with two alterna-
tive causes c1 and c2 (Fig. 1B). In this situation, the prob-
ability of the effect in the presence of either cause is also
influenced by the possible presence of the alternative cause.
Thus, in a situation in which the two causes increase the
probability of the effect (generative causes), the appropriate
method of measuring causal power is to focus on situations
in which the alternative causes are absent (for a discussion
of preventive causes, see Cheng, 1997). For example, the
causal power of c1 can be inferred on the basis of
P(e|c1 .~c2). (An isolated period means “and,” and “~” refers
to the absence of the cause.) Finally, in causal chains the
causal power of the initial cause c over its direct effect e1
should be independent of the final effect e2. Therefore, the
simple conditional probability P(e1|c) should serve as an
indicator of the causal power of event c. The causal power
of the intermediate cause e1 is dependent on the kind of
causal chain underlying the domain. In a genuine Markov
chain, in which the initial cause is independent of the final
__________
1A more realistic assumption is that there are other unknown causal
influences. Cheng (1997) has derived an empirical estimate of
causal power for a single cause-effect relation, for situations in
which there are unknown causes. Although we have also devel-
oped our model for this more realistic case, we will focus in this
paper on fully specified models. Most of the experiments described
below can be explained using the simplifying assumption of a
closed world. The more complex version of the model that in-
cludes unknown causal factors does not qualitatively change the
predictions for these experiments.
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effect conditional upon the intermediate cause, the condi-
tional probability P(e2|e1) is an appropriate indicator of
causal power. However, more complex chains are possible
in which the events c and e1 interact (Eells, 1991). In these
situations it would be appropriate to control for the influ-
ence of the initial cause c by looking at P(e2|e1.c) and possi-
bly also P(e2|e1.~c). (See also Waldmann & Hagmayer,
submitted.) With genuine Markov chains both methods
should lead to the same results.

In summary, the model estimates causal power on the ba-
sis of the relevant frequency information. These estimates
are updated after each learning trial.

Integrating Causal Power Estimates (Step 3)
The second important function of causal models is the guid-
ance they provide for the integration of multiple cues. We
assume that the initial strategy of learners is to integrate the
causal power estimates on the basis of structural assump-
tions implied by the semantics of causal networks. This
strategy is computationally less demanding than trying to
assess the probabilities of the outcomes conditional upon all
possible patterns of cues from the learning input. 

Predictive Learning Common effect models are typical
causal models underlying predictive learning with multiple
cues (see Fig 1B). An important assumption implicitly en-
coded by these models is that the alternative causes occur
independently of each other, and that their individual causal
impacts on the effect are also independent. Thus, a noisy-or
integration schema provides a natural integration strategy
for multiple causes (see also Pearl, 1988, chap. 4.3.2). As-
suming two causes, a noisy-or schema predicts that the
effect is caused either by cause1 or by cause2. Since these
two causes may overlap it is necessary to subtract the inter-
section. Based on the two power estimates p1  and p2  for the
two causes c1 and c2, the conditional probability of the effect
can be computed using the noisy-or schema,

P(e|c1,c2) = p1 + p2 − p1⋅p2   (Equation 1).
In summary, in a predictive learning situation with a com-
mon effect model the causal power of each individual cause
is assessed on the basis of frequency information (Step 2).
Then these estimates are integrated into a prediction using
the noisy-or schema (Step 3). This process is repeated at
each learning trial.

Diagnostic Learning A typical causal model underlying
diagnostic learning with multiple effect cues is the common
cause model (see Fig 1A). This model assumes that the
effects are independent of each other conditional upon the
states of the cause, thus simplifying the diagnostic judg-
ments. Instead of having to store the probability of the cause
conditional upon all patterns of effect cues, the model
makes it possible to use the individual power estimates and
integrate them by taking their product. For example, in a
common cause situation with two effects e1 and e2, the Bay-
esian common cause integration schema can be expressed as

P(c|e1,e2) = α⋅P(c)⋅P(e1|c)⋅P(e2|c) (Equation 2).
In this formula, α refers to a normalizing constant, P(c) to
the unconditional probability (base rate) of the cause, and
the two conditional probabilities on the right-hand side to

the causal powers of c with respect to either effect. In a
situation with two mutually exclusive, exhaustive causes (a
situation typical of many categorization experiments), a
diagnostic decision is achieved by comparing the condi-
tional probability of the cause (Equation 2) with the condi-
tional probability of the absence of the cause, P(~c|e1,e2).
According to the model, the learner will hypothetically
assume that a specific cause is present, estimate the prob-
ability of the observed pattern, and then compare this esti-
mate with the hypothesis that the cause is not present. These
estimates are weighted by the frequency of the stored
learning exemplars.

Revising the Causal Model (Step 4)
So far, the model can only learn about domains that are
consistent with the structure of the initial causal model.
However, this consistency is not always given. In a predic-
tive learning task, for example, a common effect model may
not adequately represent a causal situation. It could be the
case that while neither of the causes alone causes the effect,
both causes together do so. With a common effect model as
the initial model, the two power estimates will be zero. If
these estimates are plugged into the noisy-or schema, the
incorrect  prediction that the effect is absent when both
causes are present is obtained. Thus in this situation the
model will make prediction errors. We assume that learners
will notice these errors, and consider modifying the struc-
ture of the model in a parsimonious fashion. A small modi-
fication is one that does not add unknown causal factors,
and does not change the causal roles of the learning events.
One possibility would be to include configural causes in the
causal model. This modification amounts to adding an extra
term for the conjunctive cause c12 which expresses its power
independent of the power of the two components,

P(e|c1,c2) = p1~2 + p2~1 + p12 (Equation 3).
Unlike in the noisy-or schema, the causal power of each
individual cause only manifests itself in the absence of the
causes with which it interacts. Therefore the individual
causal power estimates only apply to situations in which
interacting factors are absent (e.g., p1~2 refers to the causal
power of c1 in the absence of c2). On the basis of this modi-
fied integration schema (And schema), power estimates have
to be obtained for each individual cause and separately for
the conjunctive cause. This new model can learn about some
types of interactions between causes, such as the situation in
which the presence of two causes is necessary for the effect.
However, it will fail in situations with more complicated
interactions. For example, in an exclusive-or scenario
(XOR), either the presence of both causes or the absence of
both causes produces the effect, but neither of the causes
does so on its own. To account for this situation a more
complicated schema has to be invoked.

In general we claim that people attempt to make small
modifications to the initial causal model. The initial schema
for multiple causes will be the noisy-or schema, followed by
the And schema. Other modifications of the causal structure
are also possible (e.g., adding causal links).

It is important to note that, despite the top-down direction
of the model, it is implicitly sensitive to violations of model
assumptions. The initial model will generate prediction or
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diagnosis errors when it is inconsistent with the learning
data. This will in turn lead to a (parsimonious) modification
of the initial model.

Empirical Evidence
The model provides a theoretical basis for a number of
findings in the domain of causal learning.

Estimating Causal Power
Waldmann and Hagmayer (submitted) have studied the
process of assessing the causal power relation between a
potential cause and an effect in the presence of a covarying
third event. Participants received information about the raw
data of a fictitious neuro-immunological study. All partici-
pants in our study received identical learning data (a list of
cases), and had to answer the same question about the
strength of the causal relation between the cause and the
effect. Across participants, we manipulated the causal role
of the third event by means of initial instructions in which
the causal role of this event was differentially described (see
Fig. 1). Thus participants believed they were confronted
with a common cause model, a common effect model, or a
causal chain model. The results clearly confirmed the pre-
dictions of our theory. Participants only held the third event
constant when they thought it was part of a common effect
model, otherwise they tended to ignore it. One additional
interesting result of this study is that no participant explic-
itly attempted to test the fit of the model to the data. Since
learning data was identical, the statistical structure of the
learning input was not equally consistent with the hypothe-
sized causal model. However, as anticipated by our model,
participants did not become aware of these inconsistencies,
but rather used the instructed model to estimate causal
power in a top-down fashion. (In this experiment no learn-
ing feedback was given so that participants could not be-
come implicitly aware of these mismatches.)

Asymmetries of Cue Competition
The model readily explains the asymmetries of cue compe-
tition found in experiments that characterize the learning
cues either as causes of a common effect or as effects of a
common cause (Waldmann & Holyoak, 1992; Waldmann,
1996). In these experiments, a blocking paradigm was used
to investigate cue competition. Participants learned in Phase
1 that a specific cue was perfectly correlated with the out-
come. In Phase 2, a second redundant cue was constantly
paired with the first cue. Now the compound of both cues
was predictive of the outcome. Associative theories such as
the Rescorla-Wagner rule (1972) predict lower associative
weights for the redundant cue relative to a condition in
which this cue is not paired with the predictive cue from
Phase 1. Our experiments show that, although the learning
input was identical, a significant reduction in the ratings of
the redundant cue was only observed when the cues were
introduced as causes of a common effect (predictive learn-
ing), but not when they were characterized as effects of a
common cause (diagnostic learning).

The model anticipates this asymmetry, because causal
power estimates are computed in the cause-effect direction

on the basis of assumptions about the underlying causal
model. In the predictive condition the cues represent multi-
ple causes. The model predicts that for common effect mod-
els it is necessary to calculate causal power estimates for
individual causes in the absence of alternative causes. Since
in Phase 2 of the blocking design the new redundant cause is
never presented in the absence of the cause established
within Phase 1, no causal power estimate can be obtained
for this redundant cause. Thus we can expect participants to
be uncertain about the causal impact of this cue, and express
this uncertainty in lowered ratings. By contrast, in the diag-
nostic condition a common cause model is assumed; the
causal power of each effect can be assessed without having
to hold constant collateral effects. Thus, both effect cues
should yield similar ratings (i.e., absence of blocking).

Asymmetries of Base Rate Use
In the last few years, a number of psychologists have shown
that sensitivity to base rate information can be obtained
when frequency information is given as learning input (e.g.,
Cosmides & Tooby, 1996). Although our model is restricted
to frequency data, it predicts interesting asymmetries in the
use of base rates. Whereas the predictive integration sche-
mas (e.g., noisy-or schema) do not contain terms for the
base rates of the causes, the diagnostic schemas (e.g., com-
mon cause schema) integrate causal power estimates with
base rate information.

Waldmann and Reips (in preparation) have tested this as-
sumption. In a number of experiments, participants learned
about identical causal structures with varying causal base
rates in either the cause-effect or the effect-cause direction.
Subsequent to the learning phase all participants had to give
diagnostic judgments. In line with the model’s predictions,
participants used base rate information when prior learning
was diagnostic but tended to ignore base rates when it was
predictive (see also Waldmann, 1996).

Linearly Separable Versus Nonlinearly Separable
Category Structures
Waldmann, Holyoak, and Fratianne’s (1995) experiments
on category learning provide a further test case for the
model. These experiments showed that the relative difficulty
of linearly separable and nonlinearly separable category
structures interacts with the causal role of the learning cues.
Table 1 shows two of the category structures investigated.
The learning exemplars embody three binary dimensions
that indicate either high intensity (H) or low intensity (L)
values. For example, in Experiments 4 and 5 participants
received pictures of a stone surrounded by three colored iron
compounds. The orientation of the compounds specified the
values of the dimensions: Either the ends of the compounds
pointed to the stone (H) or their sides faced the stone (L).
Thus, case 1 (HHH) in Table 1 represents a picture in which
the three compounds point to the stone.

Two category structures were compared. In the linearly
separable arrangement (LS), high values are more typical
for category A and low values for category B. Within cate-
gory A, at least two out of three dimensions had high val-
ues. By contrast, in the nonlinearly separable arrangement
(NLS), neither high nor low values were typical for the two
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categories A and B. This structure can only be categorized
on the basis of a configural cue. Within category A the first
and the third dimension are positively correlated (HH or
LL), whereas within category B they are negatively corre-
lated (HL or LH). This structure corresponds to an XOR
structure with an additional irrelevant feature (Dimension
2).

Table 1: Structure of item sets (Waldmann et al., 1995)

Linearly Separable
Categories

Dimensions
1 2 3

1.   H H H
2.   H H L
3. H L HA

4.   L H H
5.   L L H
6.   L H L
7.   H L LB

8.   L L L
Nonlinearly

Separable Categories
Dimensions

1 2 3

1.   H H H
2.   H L H
3.   L H LA

4.   L L L
5.   H H L
6.   H L L
7.   L H HB

8.   L L H

In the experiments, the factor category structure (LS vs.
NLS) was crossed with a second factor in which the causal
interpretation of the cues was manipulated by means of
initial instructions. In the predictive learning condition,
participants were told the three compounds were potential
causes: They emit either high (H) or low (L) intensity mag-
netic waves which may cause some stones to become mag-
netic. The task was to decide whether the stones in the pic-
tures were magnets (category A) or were not (category B).
Thus in this condition a common effect model was in-
structed. In the diagnostic learning condition a common
cause structure was suggested to the participants; they were
instructed that some of the stones potentially emit magnetic
waves which may affect the orientation of the compounds.
The orientation may indicate either a strong (H) or a weak
(L) effect. In both conditions the orientation of the com-
pounds served as cues, the only difference was whether the
cues were interpreted as causes or as effects.

The experiments yielded a number of findings that can be
explained by our model (see Waldmann et al., 1995). One
general finding was that in the predictive learning condition
the LS category structure was easier to learn than the NLS
structure. This finding is in line with the assumption inher-
ent in the model that learners sequentially activate integra-
tion schemas that are ordered on the basis of complexity. As
the model starts with a noisy-or schema, it fails initially
with both category structures. However, the next schema
(And schema) includes additional terms for paired cues.

This schema picks up the two-out-of-three rule embodied in
the LS structure but is unable to capture the more complex
XOR interaction in the NLS structure.

The findings in diagnostic learning conditions are more
complex. In Experiment 5 (Waldmann et al., 1995), partici-
pants learned that the exemplars in category A were caused
by the presence of a magnet, whereas the stones in category
B were not magnetic. This instruction yielded a clear learn-
ing advantage for the LS structure. Far less errors were
committed when participants learned the LS structure than
when they learned the NLS structure. However, when the
instructions were slightly modified the opposite effect was
observed. In Experiment 4 participants were told that there
are two types of magnets, strong and weak. As in Experi-
ment 5, participants only had to decide whether there was a
magnet (category A) or not (category B). No feedback was
given about the strength of the magnet. Thus, apart from the
instructional difference, the procedure was identical in the
two experiments. Nevertheless, the NLS structure proved
easier to learn than the LS structure in Experiment 4, in
which the variability of the strength of the magnets was
pointed out. How can this reversal be explained by the
model?

For Experiment 5, the model first sets up a common cause
model, which is based on the initial instructions (Step 1) and
specifies how causal power is assessed (Step 2). On the
basis of frequency input, updated after each learning trial,
the causal power between the presence and absence of the
cause (category A vs. B) and each of the three effects will
be estimated by calculating the conditional probability of
the states of the effects (H vs. L), given the two categories.
For example, P(e1=H|c) expresses the probability of the first
dimension having a high intensity value in the presence of a
magnet. In the LS condition, the model will eventually learn
that the probability of each effect having a high value is
0.75 within category A and 0.25 within category B. The
probabilities of a low value are the complements. By con-
trast, in the NLS condition these estimates will be 0.5 for
both categories. To obtain categorization judgments the
power estimates will be plugged into a common cause
schema (see Equation 2) for three effects. Using this
schema, the probability of the presence (category A) or
absence (category B) of the cause will be compared. For
example, given an HHH pattern (case 1) the probability of
category A is the product of the three power estimates of the
three effects (0.753) multiplied by the base rate (0.5) and the
normalizing constant (identical for both categories). The
fact that the probability of category A is higher than that of
category B will lead to the correct decision that this case
belongs to category A. Applying this schema to the other
learning exemplars also leads to correct categorizations. By
contrast, applying this procedure to the NLS structure will
not be successful. Given that each effect is equally associ-
ated with both categories, no reliable categorization can be
achieved. The only solution is to modify the initial model
(Step 4), which will take time relative to the LS condition.

To model the results of Experiment 4, the additional as-
sumption has to be made that participants enter the task with
prior knowledge that strong magnets tend to produce high
intensity values whereas weak magnets are more likely to
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cause low values. The model again approaches the task
using a common cause model (Step 1). However, based on
the instructions, the model has to express the fact that the
cause (category A) can be strong or weak. It is therefore
necessary to obtain causal power estimates for three causal
events, the cause being strong, the cause being weak (e.g.,
P(e1=H|c=weak), and absence of the cause (category B).
Since no feedback is given about the strength of the cause,
the participants have to infer the probable state of the cause
by themselves. This can be achieved on the basis of prior
assumptions about a positive correlation between the state
of the cause and the state of the effects, which can be im-
plemented by having the learning process start with a preset
data base that embodies these correlations. These assump-
tions will, for example, lead to the decision that the HHH
case in the NLS structure is probably caused by a strong
cause. The feedback confirms that this case indeed belongs
to category A. Therefore, the causal power estimate for the
strong value of the cause will be updated. Similarly, an LLL
case will lead to an updating of the weak value of the cause.
Due to the outlying value of the middle dimension, the other
two cases within category A (e.g., HLH) will initially lead
to incorrect category B decisions (the model does not know
yet that Dimension 2 is irrelevant). However, the learning
feedback reassigns these two cases to category A. Now a
decision has to be made between a strong and a weak cause,
which in the HLH case leads to an update of the power
estimate for the strong cause, and in the LHL case to an
update for the weak cause. Eventually the model will learn
that the probability of high intensity values of the relevant
effects (Dimensions 1, 3) is 1 when the cause is strong and 0
when it is weak, or vice versa when the cause is weak. Di-
mension 2 will lead to estimates of 0.5 with either state of
the cause. Furthermore, the probabilities of the values of all
three effects are uniformly 0.5 within category B. Using
these power estimates the model is able to correctly classify
the eight cases of the NLS arrangement. The model classi-
fies a case into category A when either a strong or a weak
cause is inferred; otherwise the case will be assigned to
category B. With the power estimates generated in Step 2
(and 0.25 as the base rate estimates for the two states of the
cause) the probability of category B will always be lower
than that of category A for cases 1 to 4. By contrast, cases 5
to 8 will be correctly assigned to category B.

Using the initial assumptions outlined above, the model
will make more errors with the LS structure than with the
NLS one. Again, the model will initially assign the LLL
case to category A (weak state), although this is the wrong
decision in this condition. Except for the correctly classified
HHH case, the other cases within category A will create
problems. They will be wrongly assigned to category B.
After feedback they will be reassigned. However, since
these exemplars have more H than L values, only the power
estimate for the strong variant of the cause will be updated.
Eventually this will lead to a fading out of the hypothesis
that the cause might also be weak, because the constant
updating of only one value of the cause will boost the base
rate estimate for this value at the expense of the alternative
value. At the asymptote the model will have learned that
there is no weak cause, but this will take time.

Discussion
Causal learning is typically confronted with a large data
base of potentially relevant statistical relations. One way of
dealing with this complexity is to use prior knowledge about
mechanisms (see Koslowski, 1996). However, when no
prior knowledge is available other types of solutions have to
be used. Our Bayesian network model belongs to a fairly
recent class of theories that invokes more abstract types of
structural knowledge. We assume that learners start with
initial assumptions about the causal structure of the learning
domain. These models guide the estimation of causal power
on the basis of frequency information, and they suggest
integration rules for prediction and diagnosis. In this way,
causal models effectively reduce the potential computational
complexity inherent in even relatively simple causal learn-
ing tasks.
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