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Abstract

The standard approach guiding research on the relationship
between categories and causality views categories as reflect-
ing causal relations in the world. We provide evidence that
the opposite direction also holds: Categories that have been
acquired in previous learning contexts may influence subse-
quent causal learning. In three experiments we show that
identical causal learning experiences yield different attribu-
tions of causal capacity depending on the pre-existing catego-
ries that the learning exemplars are assigned to. There is a
strong tendency to continue to use old conceptual schemes
rather than switch to new ones even when the old categories
are not optimal for predicting the new effect. This tendency is
particularly strong when there is a plausible semantic link
between the categories and the new causal hypothesis under
investigation.

Introduction
The Standard View: Causality Shapes Categories

The standard view guiding research on causality presup-
poses the existence of networks of causes and effects in the
world that cognitive systems try to mirror. Regardless of
whether causal learning is viewed as the attempt to induce
causality on the basis of statistical information or on the
basis of mechanism information it is typically assumed that
the goal of causal learning is to form adequate representa-
tions of the texture of the causal world (see Shanks,
Holyoak, & Medin, 1996, for an overview of recent re-
search). This view also underlies research on the relation-
ship between categories and causality. According to the
view that categorization is theory-based traditional similar-
ity-based accounts of categorization are deficient because
they ignore the fact that many categories are grounded in
knowledge about causal structures (Murphy & Medin,
1985). As Murphy and Medin pointed out, natural kind
categories (e.g., animals) are not adequately represented as
lists of features because this format excludes functional and
causal relations that also are part of our category knowledge.
Categories should rather be seen as embodying intuitive
theories of the target domain. One example of the standard
view is Waldmann, Holyoak, and Fratianne’s (1995) work
on causal categories (also see Waldmann, 1996). In a series
of experiments they have shown that category learning is
affected by assumptions about the causal structure underly-
ing the categories (e.g., disease categories).
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The Neglected Direction: Categories Shape Cau-
sality

Even though it is certainly true that in many cases knowl-
edge of causal structures influences the way categories are
formed, the opposite may also hold true: The categories that
have been acquired in previous learning contexts may have a
crucial influence on subsequent causal learning. This direc-
tion has typically been neglected in research on the relation-
ship between categories and causality.

The basis of the potential influence of categories on causal
induction lies in the fact that the acquisition and use of
causal knowledge is based on categorized events. Regardless
of whether causal relations are viewed as statistical relations
(probabilistic causality view) or as mechanisms (mechanism
view), both accounts postulate causal regularities that refer
to types of events. Causal laws, such as the fact that smoking
causes heart disease, can only be noticed on the basis of
events that are categorized (e.g., events of smoking and
cases of heart disease). Without such categories causal laws
neither could be detected nor could causal knowledge be
applied to new cases. Thus, causal knowledge not only af-
fects the creation of categories, it also presupposes already
existing categories for the description of causes and effects.

Given that the induction of new causal knowledge is based
on already existing categories the question arises whether
the outcome of causal learning may be influenced by the
categories that are used. The potential influence of catego-
ries is due to the fact that one of the most important cues to
causality is statistical covariation between causes and ef-
fects. Many (otherwise conflicting) views agree that causal
induction is based on the observation of causes altering the
probability of effects (e.g., contingency view; associationist
theories)(see Shanks et al., 1996). However, statistical
regularities are not invariant across different categorial seg-
mentations of domains. This can easily be shown with a
simple example. Let us assume, for example, a world with
four different (uncategorized) event tokens, A, B, C, and D,
that represent potential causes. It has been observed that A
and C are followed by a specific effect but B and D are not.
Now the statistical regularities that are observed in this mini-
world are crucially dependent on how these four events are
categorized. If A and B are exemplars of Category 1, and C
and D exemplars of Category 2, no causal regularity would
be observed. Within this conceptual framework the effect
has a base rate of 0.5 that is invariant across the two catego-



ries. By contrast, categorizing A and C (Category 3), and B
and D (Category 4) together would lead to the induction of a
deterministic causal law. Events that belong to Category 3
always produce the effect, whereas Category 4 is never
associated with the effect. Thus, the causal regularities ob-
served in a domain are dependent on the way the domain is
categorized. In fact, as pointed out by Clark and Thornton
(1997) in an example with (non-causal) continuous features,
there is an infinite number of descriptions of the world with
a potentially infinite number of statistical regularities en-
tailed by these descriptions.

At this point it could be argued that the dependence of
causal knowledge on pre-existing categories is a philosophi-
cal rather than a psychological problem as long as it has not
been shown that there is evidence for the possibility of dif-
ferent categorizations of the same domains. Following the
work of Rosch on natural categories many psychologists
have assumed that natural categories are relatively stable
since they are reflecting the correlational structure in the
world (see Rosch, 1978). However, recently it became clear
that this assumption is too strong. For example, Medin,
Lynch, Coley, and Atran (1997) have shown that the way
natural objects (e.g., trees) are categorized is dependent on
pragmatic factors such as the profession of the categorizer
(also see Barsalou, 1983). Schyns, Goldstone, and Thibaut
(1998) have demonstrated that not even the object features
used in categorizations are invariant. Their work demon-
strates that the way the world is perceived may be influenced
by the categories that are being used.

Another reason for the potential bi-directional interaction
of categories and causality is the dynamic character of
knowledge acquisition. Causal knowledge, in everyday life
as well as in science, is typically not acquired at one point in
time after which it remains stable but is rather the result of a
long process in which it undergoes dynamic changes such as
continuous modifications or even paradigm shifts (see
Carey, 1991; Horwich, 1993). Categories acquired in spe-
cific contexts may not always be optimal for the new learn-
ing task at hand. For example, a learner who is equipped
with Categories 1 and 2 in our example may be better off
abandoning the old conceptual scheme altogether and in-
stead forming Categories 3 and 4 that allow her to optimize
predictability. On the other hand, switching to a novel con-
ceptual scheme or keeping two different schemes in parallel
incurs a cost that is computationally demanding. Therefore,
there is a possible trade-off between sticking to old concep-
tual schemes that may not be currently optimal and switch-
ing to a new paradigm.

The hypothesized impact of pre-existing categories on
causal learning constitutes a new type of transfer effect.
Unlike in research on analogical transfer (see Holyoak &
Thagard, 1995), no specific relational knowledge is trans-
ferred. The transfer effect is rather based on the indirect
influence pre-existing categories may have on the statistical
regularities observed in a domain. For example, tradition-
ally, psychiatric diseases were classified on the basis of a
taxonomy of symptoms, whereas today many researcher are
more interested in neuropsychological analyses for which
the old categories may not be optimal anymore. The original
categories have never been created with the new research
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questions in mind. Nevertheless, it is possible that the con-
tinued use of the old categories in the new context may seri-
ously bias the outcome of the causal investigations.

The following three experiments demonstrate how causal
induction is affected by the way a novel domain is catego-
rized. It will be shown that participants tend to use category
knowledge acquired in a different context in a subsequent
causal learning task.

Experiment 1

The goal of this experiment was to demonstrate how the way
exemplars in a domain are categorized affects causal learn-
ing. The experiment consisted of three phases: In Phase 1,
the category learning phase, participants were told that
scientists had discovered new types of viruses that vary in
the dimensions brightness, size, shape, and number of mole-
cules on the surface. Cytophysiological investigations had
revealed two types of viruses which can be distinguished on
the basis of their appearance, allovedic and hemovedic vi-
ruses. After these instructions participants received index
cards with pictures of viruses one after another, and had to
judge whether the respective exemplar represented a he-
movedic or an allovedic virus. After each judgment feed-
back was given. Learning proceeded until participants met a
learning criterion, 10 correct classifications in a row. The
exemplars varied continuously in the four features. The two
relevant features were size and brightness. The diameter of
the viruses varied between 30 and 48mm (Levels 1 to 4 in
Table 1), and brightness was manipulated by using four
equally spaced levels of grayness (20% to 80%)(Levels 1 to
4 in Table 1). The two irrelevant features also came in four
levels which allowed us to create 256 different items. Our
goal was to discourage exemplar learning. Table 1 shows
examples of the 16 crucial types of viruses than can be cre-
ated by factorially combining four values of size and bright-
ness.

Two conditions were compared: In the size condition par-
ticipants learned, for example, that the bigger viruses were
allovedic, and the smaller ones hemovedic, in the orthogonal
brightness condition they learned, for example, that the
darker exemplars were allovedic and the lighter ones he-
movedic. In Phase 1 128 different exemplars were presented
to the participants.

While Phase 1 differed between conditions, the subse-
quent Phases 2 and 3 were identical across conditions. In
Phase 2, the causal learning phase, participants were told
that physicians were interested in exploring the relationship
between the newly discovered viruses and diseases in ani-
mals. In particular, they wanted to find out whether the vi-
ruses cause splenomegaly, that is a swelling of the spleen.
Therefore they studied animals that were infected with the
new viruses. It was pointed out that any outcome of this
study was possible including the possibility that there was no
causal relationship between the viruses and splenomegaly. In
Phase 2 participants saw a new set of 32 viruses one after
another representing single instances of the viruses. On the
backside of each card information was given on whether the
respective virus had caused splenomegaly or not. In all con-
ditions the same items with identical associations with the
effect were presented to participants.



Table 1: Structure of learning items in Experiments 1 and 3
(see text for explanations).
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Table 1 displays the structure of the items with respect to the
two relevant dimensions size and brightness. In the bright-
ness condition the left half of the table (Levels 1 and 2 of the
brightness dimension) may represent allovedic viruses and
the right half hemovedic viruses (Levels 3 and 4). By con-
trast, in the size condition the upper half represented one
category (Levels 1 and 2 of the size dimension), and the
lower half the other category (Levels 3 and 4). Half of the
items, indicated by an A, were shown in the category learn-
ing phase (Phase 1), the other half (indicated by a B) in the
causal learning phase (Phase 2). (Again, our goal was to
discourage exemplar encoding by presenting items that dif-
fered in their appearance.) Table 1 also shows which of the
B-items caused the effect splenomegaly (effect), and which
did not (~effect). The assignment of exemplars to the learn-
ing phases (A, B), and the association of dimensional attrib-
utes (dark, light, big, small) with the effects was counterbal-
anced.

In Phase 3, the test phase, we switched back to exemplars
corresponding to the A-items from the category learning
phase. These items had not been presented in the causal
learning phase. Participants received eight exemplars. Their
task was to express their assessment of the likelihood that
the respective virus causes splenomegaly by using a rating
scale that ranged from O ("never”) to 100 ("always™). After
these ratings participants also gave a general assessment of
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the likelihood that the two virus types, allovedic and he-
movedic viruses, caused the effect. These ratings allowed us
to check whether participants encoded the causal relation on
the category level.

Despite the fact that participants in the two conditions re-
ceived identical learning inputs in the causal learning phase
(Phase 2), and were confronted with identical test items
(Phase 3) we expected that the different categories learned
in Phase 1 would influence the causal judgments. Item 1 (A)
in Table 1 may exemplify our predictions: We expected that
participants in the size condition would group this item
along with the other items in the category of relatively small
viruses (Items 1 to 8). Since only one out of four items
(Items 2, 3, 5, 8) from the group presented in the causal
learning phase produced the effect, it seems reasonable to
infer that Item 1 would have a relatively low likelihood of
causing splenomegaly. By contrast, participants in the
brightness condition were expected to classify this item
along with the other relatively light viruses. Within this
group three out of four viruses (Items 2, 5, 9, 14) caused
splenomegaly which should lead participants in this condi-
tion to give relatively high ratings. A similar prediction can
be derived for Item 6, whereas for Items 11 and 16 the in-
verse pattern is predicted (i.e., high ratings in the size con-
dition, and low ratings in the brightness condition). The
remaining four test items (4, 7, 10, 13) should not yield any
differences across the category conditions because they were
associated with the same number of effects regardless of
which category structure was used.

Alternatively, participants could ignore the category-level
information from Phase 1 in the causal learning phase, and
compare the test exemplar with the causal pattern of adja-
cent exemplars (exemplar-based learning), or they could
create new categories that are more optimal for the causal
task at hand. Both strategies should not lead to any differ-
ences in the ratings of the items across the two category
conditions.

Results and Discussion

The results are based on 48 participants, 24 in the size con-
dition and 24 in the brightness condition. (Two participants
were excluded because they did not meet the learning crite-
rion in Phase 1.) The most interesting analyses involved the
test items whose ratings should differ across conditions (e.g.,
Items 1, 6, 11, 16 in Table 1). To make these items compa-
rable, the ratings of Items 11 and 16 were assigned the in-
verse rating (e.g., 80 was recoded as 20). For the statistical
analyses the average of these four items was used.

The results clearly confirm the predictions. The mean
ratings of the four critical items clearly differed depending
on which categories had been learned in the prior category
learning phase, F(1,46)=11.8, p<.001, MSE=350.9. The
mean ratings for these critical items were 43.5 versus 62.1 in
the two contrasting category learning conditions. By con-
trast, no reliable difference was obtained for the test items
which were not expected to differ across conditions (M=62.7
vs. M=65.8). A 2 (category conditions) x 2 (critical vs. non-
critical items) analysis of variance yielded a significant
interaction, F(1,46)=5.62, p<.05, MSE=253.8. These results
were mirrored in the final category-effect ratings. The mean



ratings for the category with strong associations with the
effect was 70.0, the contrast category with weak associations
yielded a mean value of 24.6. All but four participants who
rated both categories equally gave ratings consistent with
this difference. An analysis of variance with categories as a
within-subject factor yielded a clearly significant effect,
F(1,47)=153.5, p<.001, MSE=299.2. This effect was inde-
pendent of whether the categories were based on the size or
the brightness of the items. Thus, participants not only reg-
istered the association of the individual exemplars with the
effect but they also encoded the causal relations on the cate-
gory level.

In summary, despite the fact that participants in all condi-
tions received identical learning inputs in the causal learning
phase, and had to make predictions about identical exem-
plars in the test phase, the attribution of causal capacity
clearly differed depending on the categories the exemplars
were assigned to in Phase 1. The same virus exemplars were
either seen as causally effective or ineffective with respect to
splenomegaly.

Although it is certainly true that viruses may generally be
viewed as categories that are potentially responsible for
symptoms such as splenomegaly, it is by no means certain
that viruses that have been classified on the basis of their
appearance represent classes that are optimal with respect to
all kinds of effects that later may be studied. Potential causal
links between the viruses and specific symptoms never were
an issue when the rationale for the classifications in Phase 1
was introduced. In fact, other classifications (e.g., segment-
ing the exemplars in Table 1 using a diagonal boundary) are
better able to capture the observed causal regularities. Nev-
ertheless, Experiment 1 shows that participants rather con-
tinued to use categories acquired in a different learning
context than create new categories for the induction task at
hand.

Experiment 2

Experiment 1 used relatively simple category structures that
were based on one-dimensional rules. By contrast, the rules
underlying the causal regularities in Phase 2 were quite
complex relative to the categorization rules. In Experiment 2
we investigated a task with more realistic, complex category
structures, and with a comparably complex causal structure.
In this experiment we used linearly separable, family resem-
blance categories that were based on four binary features.
None of these features was individually sufficient for
achieving correct classifications. However, correct classifi-
cations could be learned by an additive integration of the
four features.

As learning exemplars we used items similar to the ones in
Experiment 1. In the present experiment the exemplars var-
ied on four binary dimensions, however: brightness (20%
vs. 60%), size (30mm vs. 42mm), number of corners (5 vs.
7), and number of molecules on the surface (2 vs. 4). Table
2 displays the structures of the learning items with the fea-
ture value 1 representing high values and the value 0 low
values.

Again the cover stories from Experiment 1 were used so
that participants’ task was to categorize the items into all-
ovedic and hemovedic viruses in Phase 1 of the experiment.
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Two categorization conditions were compared that manipu-
lated the location of the category boundaries (see Table 2).
In Condition A hemovedic viruses had at least two high
values on the four dimensions (Items 1 to 11), whereas all-
ovedic viruses (Items 12 to 16) only had one or no high
value. (The category labels were counterbalanced.) By con-
trast, in Condition B hemovedic viruses (Items 1 to 5) had at
least three high values, whereas allovedic viruses (Items 6 to
16) only had two high values or less. Again we used a
learning criterion in Phase 1. Learning proceeded until par-
ticipants managed to correctly classify one block of 16 items
(maximum of 8 blocks). The items were presented in ran-
dom orders within blocks.

Table 2: Structure of learning items in Experiment 2
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Whereas Phase 1 differed across the two conditions, the
subsequent causal learning phase and the test phase were
identical for all participants. Again participants received
index cards that depicted exemplars of the viruses with in-
formation on the backside on whether the respective virus
causes splenomegaly (E) or not (~E). To avoid an unequal
association of individual features with the effect Items 8 and
9 were not presented in this phase. In the particular counter-
balancing condition shown in Table 1 the upper half of the
items (1-7) caused the effect, whereas the lower half (10-16)
did not cause it.

In Phase 3, the test phase, participants received ten exem-
plars (1, 3, 6 to 11, 14, 16) and had to assess their likelihood
of producing splenomegaly using the rating scale from Ex-
periment 1. The most important results involved the six
items (6 to 11) lying between the category boundaries of the
two conditions. In Condition A these items should be viewed
as being members of the hemovedic virus type. Since within



this group seven out of nine viruses caused splenomegaly,
high ratings are to be expected. By contrast, the very same
items should yield low ratings in Condition B. In this condi-
tion the six items belong to the allovedic viruses which
cause the effect in only two out of nine cases.

Results and Discussion

The analyses are based on 32 participants (16 in Condition
A and 16 in Condition B). All participants met the learning
criterion. The most important analysis involved the test
items between the two category boundaries (ltems 6-11).
The mean ratings for these six items clearly differed across
the two category conditions A and B, F(1,30)=14.7, p<.01,
MSE=224.3. The two contrasting mean values (averaged
over the six items) were 65.9 versus 45.6. No significant
differences were obtained for the (non-critical) test items
that were not expected to differ across conditions. The aver-
age ratings of these items (with the items expected to yield
low ratings being recoded to the corresponding high values)
were 82.7 and 82.6. A 2 (category conditions) x 2 (critical
vs. non-critical items) analysis of variance revealed a sig-
nificant interaction, F(1,30)=9.19, p<.01, MSE=178.3.

Interestingly, the influence of the categories was strongest
for the exemplars participants had seen in the causal learning
phase (Phase 2). The mean ratings for these items (6, 7, 10,
11) were 70.8 versus 43.4 which was, of course, highly
reliable, F(1,30)=25.1, p<.01, MSE=238.3. Thus, even
though all participants had, for example, seen Item 6 as
causing splenomegaly, they nevertheless gave this exemplar
a lower rating in the test phase when it was categorized as an
allovedic virus in Condition B than when it belonged to the
hemovedic category in Condition A. (In this experiment the
appearance of the items did not vary across phases.) By
contrast, the two non-presented items 8 and 9 did not sig-
nificantly differ across category conditions (M=56.3 vs.
M=50.0). This rather surprising result seems to indicate that
category level information is only used when it is actively
encoded along with the item in the causal learning phase.
Since these two items were not presented during this phase
the relation between these items and the effects were appar-
ently not encoded on the category level.

Again the final ratings showed that participants generally
encoded the relationship between categories and the effect.
They rated the causal efficacy of the two categories clearly
different regardless of the location of the category boundary,
F(1,31)=80.5,p<.01, MSE=509.5 (M=74.8 vs. M=24.2). All
but five participants gave ratings consistent with this trend.

In summary, Experiment 2 confirms the results of Ex-
periment 1 with family resemblance category structures.
Despite the fact that all participants received identical cause-
effect information in the causal learning phase, the ratings of
the causal efficacy of the exemplars seen in this phase were
moderated by the categories to which they belonged.

Experiment 3

The two previous experiments have shown that participants
tended to use category knowledge that they had acquired in
a previous learning context when learning about a new
causal relation. Even though there was no reason to believe
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that the appearance-based categories learned in Phase 1
would provide useful classifications for the induction of the
cause-effect relations in Phase 2, participants rather contin-
ued to use these categories than switch to a new conceptual
scheme. Experiment 3 aimed at exploring the boundary
conditions for this effect. In Experiments 1 and 2 category
labels were used in Phase 1 (types of viruses) that seem to
be plausible candidates for being causes of the target effect
in Phase 2 (splenomegaly). Thus, despite the fact that the
classification of the virus types was based on a rationale
which was conceptually independent of the causal hypothe-
sis in Phase 2 it may still be plausible to assume that viruses
are generally useful categories for predicting health-related
symptoms. It is possible that in a situation in which the se-
mantic relatedness between categories and target effect is
reduced fewer participants would continue to use the old
categories.

To test the relevance of the semantic relation between
categories and effect we designed cover stories that at-
tempted to exclude all possible associations between catego-
ries and effects. Thus, our goal was to present participants
with a learning situation in which there was no a priori rea-
son to transfer the category knowledge from Phase 1 to the
causal learning situation in Phase 2.

We used the same learning exemplars and the same
learning procedure as in Experiment 1 but changed the cover
stories. In Experiment 3 we introduced the items displayed
in Table 1 as belonging to two types of objects, Alpha-
Objects and Beta-Objects, that were distinguished on the
basis of their appearance. In Phase 1 participants learned to
classify the items into these two classes. In Phase 2, the
causal learning phase, it was mentioned that these objects
may be the causes of a novel Effect. No further semantic
characterization of the kind of effect was given. In Phase 3
participants gave ratings of the likelihood that the test items
caused this unknown effect. After these ratings we also re-
quired participants to assess the causal efficacy of the two
contrasting categories, Alpha- and Beta-Objects.

Results and Discussion

The results are based on 48 participants (24 in the size con-
dition and 24 in the brightness condition). Three further
participants were excluded because they did not meet the
learning criterion. Again the most interesting result involved
the critical test items whose ratings should differ in case
category level information was used. In this experiment the
effect was again in the right direction but clearly weaker
than in Experiment 1. The mean values of the averaged four
critical items (two of them were recoded) were M=59.6
versus M=49.6 in the contrasting category conditions,
F(1,46)=3.92, p<.06, MSE=306.3. As in the previous ex-
periments the uncritical items whose ratings were not ex-
pected to differ across conditions yielded similar ratings
(M=64.3 vs. M=63.6). The 2 (category conditions) x 2
(critical vs. non-critical items) analysis of variance did not
show a significant interaction (p=.16) in this experiment.
The ratings of the category-effect relations indicated that
overall the differential relation of the two categories and the
effect was learned, F(1,47)=52.4, p<.01, MSE=595.2. The
mean ratings were 68.8 versus 32.7. However, a closer in-



spection of the data revealed that unlike in the previous
experiments a considerable number of participants did not
encode the differences on the category level. 14 out of the
48 participants gave equal ratings to the two categories. An
analysis in which these cases were excluded showed that
these 14 participants were mainly responsible for the de-
crease of the size of the effect for the critical items. The
remaining 34 participants (14 in the size and 20 in the
brightness condition) gave mean ratings of 43.6 versus 62.1
for the critical items, F(1,32)=11.6, p<.01, MSE=245.3,
which closely corresponds to the results of Experiment 1. An
analysis of variance that only included the data from these
remaining participants yielded a significant interaction be-
tween category conditions, and type of items (critical vs.
non-critical), F(1,32)=7.55, p<.01, MSE=211.5.

In summary, once again a considerable number of partici-
pants continued to use the old categorial scheme even
though there was no semantic link between categories and
the effect that suggested the usefulness of the categories for
the causal context. However, we also found evidence that
the semantic relatedness between categories and effect af-
fects the likelihood of transfer. Unlike in the previous ex-
periments a relatively large number of participants (ca 30%)
seemed to have concluded that the category level informa-
tion was not useful for the subsequent causal learning task,
and therefore did not encode the relation between category
level and effect.

Conclusions

Overall the three experiments provide clear evidence for the
tendency to continue to use categories that have been ac-
quired in previous learning contexts when learning about
new causal relations. Identical learning experiences yielded
different attributions of causal capacity depending on the
categories that the learning exemplars were assigned to. This
holds true even though there was no compelling reason that
the old categories were useful, and in fact other possible
category structures yielded stronger statistical relations be-
tween categories and the effect. In our view, these findings
show that the relation between categories and causality is bi-
directional. Categories not only reflect pre-existing knowl-
edge of causal structures they also affect the acquisition of
new causal knowledge. Like in scientific paradigms there is
a tendency to continue to use old conceptual schemes at the
potential cost of suboptimal predictability but with the com-
putational gain of not having to use many categorization
schemes in parallel. As in science there seem to be condi-
tions, however, in which old paradigms tend to be aban-
doned. The results of Experiment 3 suggest that there is a
tendency to acquire new knowledge from scratch when the
semantic link between old categories and the new causal
hypotheses is weak.

The inherent bi-directionality of the relation between
categories and causality may, of course, extend to multiple
steps in a dynamic process of theory revisions. Prior catego-
ries affect causal induction which in turn may create new
causal categories that influence what kind of statistical
structure new data exhibit. The present results show that the
outcome of this dynamic process of theory development may
be crucially dependent on how it started.
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