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Abstract 
 

The majority of psychological studies on causality have fo-
cused on simple cause-effect relations. Little is known 
about how people approach more realistic, complex causal 
networks. Two experiments are presented that investigate 
how participants integrate causal knowledge that was ac-
quired in separate learning tasks into a coherent causal 
model. To accomplish this task it is necessary to bring to 
bear knowledge about the structural implications of causal 
models. For example, whereas common-cause models im-
ply a covariation among the different effects of a common 
cause, no such covariation between the different causes of a 
joint effect is implied by a common-effect model. The ex-
periments show that participants have virtually no explicit 
knowledge of these relations, and therefore tend to misrep-
resent the structural implications of causal models in their 
explicit judgments. However, an implicit task that only re-
quired predictions of singular events showed surprisingly 
accurate sensitivity to the structural implications of causal 
models. This dissociation supports the view that people’s 
sensitivity to structural implications is mediated by running 
simulations on mental analogs of the causal situations. 

Introduction 
In everyday life as well as in scientific research we 
rarely observe the behavior of complex causal networks 
at once. A more typical scenario is that we learn about 
single causal relations separately, and later try to inte-
grate the different observed relations into a more com-
plex interconnected causal model. For example, we 
might first learn that aspirin relieves headache. Later 
we may observe that aspirin unfortunately also creates 
stomach problems. Now we are in the position of put-
ting these two pieces of knowledge together. The ques-
tion is how? How are different fragments of causal 
knowledge integrated into coherent complex structures? 
 
Bayesian Causal Models 
One recent approach to this problem that has become 
increasingly popular in the past few years postulates 
Bayesian network models for representing causal knowl-
edge (see Pearl, 1988, 2000; Glymour & Cooper, 1999). 
Bayesian network models provide compact, parsimonious 
representations of causal relations. For example, Figure 1 
displays a causal model that connects five events, X1, X2, 
X3, X4, X5. One way to represent this domain is to list the 

32 probabilities of the joint probability distribution,   
P(X1, X2, X3, X4, X5), by considering every combination of 
present and absent events. Another possible strategy is to 
encode the base rates and all covariations that can be 
computed between five events. However, even with mod-
estly complex structures the number of covariations be-
comes very large, especially when more complex higher-
order covariations between multiple events also are con-
sidered. Bayesian network models reduce the complexity 
of representing causal knowledge by distinguishing be-
tween direct causal relations (the arrows in Fig. 1), and 
covariations that can be derived by using information 
encoded in the structure of the causal models. The struc-
ture of causal models primarily expresses information 
about conditional independence between events. For ex-
ample, in Figure 1 event X4 is coded as being independent 
of event X5 conditional upon event X3. Conditional inde-
pendence greatly simplifies computations by allowing the 
derivation of the indirect relations from products of the 
relevant components (see Pearl, 1988; Glymour & Coo-
per, 1999). In Figure 1 the joint probability distribution 
can be factorized into the product of a small number of 
unconditional and conditional probabilities, 

P(X1,X2,X3,X4,X5) = P(X5|X3)·P(X4|X2,X3)· P(X3 |X1)· 
 P(X2)·P(X1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 1: Example of a Bayesian Network 
 
The distinction between direct causal relations and indi-
rect relations can also be used for the integration of sepa-
rate pieces of causal knowledge.  Combining the informa-
tion that aspirin relieves headache with the information 
that it additionally causes stomach problems yields a 
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common-cause model with aspirin playing the role of the 
common cause of two independent effects, relief of head-
ache and stomach problems (see Fig. 2, left). By contrast, 
integrating the two causal relations “Aspirin causes stom-
ach problems” with “Helicobacter pyloris causes stomach 
problems” would yield a different structure, a common-
effect model, in which two independent causes converge 
on a joint effect (see Fig. 2, right). In both examples, two 
independent causal relations are being integrated. How-
ever, the outcome of the integration process is different. 
The two different causal models entail different implica-
tions for the indirect relations between events.  
 
Structural Implications of Causal Models 
The basis for the possibility of integrating different causal 
links into coherent wholes are the structural implications 
of causal models. In our experiments we focused on two 
simple models, a common-cause and a common-effect 
model. Both models integrate two causal links but entail 
distinctly different implications for the non-causal rela-
tions.  

 
 
 
 
 
 
 
 

 
 Figure 2: Implications of Different Causal Models 
 
Figure 2 (left) depicts a common-cause model with a 
common cause C producing two independent effects E1 
and E2. Common-cause models of this kind entail a (spu-
rious) covariation among the effects. Provided the com-
mon cause independently generates the two effects, the 
joint probability of the effects, P(E1,E2), can be calculated 
by taking the product of the base rate of the cause, P(C), 
and the two conditional probabilities,  P(E1|C) and P(E2|C) 
(see also Appendix). Thus, although the two effects may 
never have been observed together, the causal model still 
allows it to derive a prediction for the patterns that should 
be expected. Common-cause models clearly differ from 
common-effect models. Figure 2 (right) shows an exam-
ple in which two causes, C1 and C2, are linked with a joint 
effect E. Common-effect models do not imply covaria-
tions among the different causes of the joint effect. The 
causes may covary in a specific learning situation but this 
covariation is not implied by the model, it is something 
that has to be explicitly encoded. This is the reason why 
in the example shown in Figure 1 common effects were 
conditionalized on patterns of its direct causes (e.g., P(X4| 
X2, X3)). However, this is only possible when all the rele-
vant events have been observed together, and when the 
number of relevant patterns is small enough not to surpass 
information processing limitations. In more complex 
cases and in situations in which causal knowledge has to 
be generated from different learning experiences, causal 
schemas have been postulated in the literature (Pearl, 

1988). For common-effect models, the noisy-or schema 
has been proposed as a plausible integration schema (see 
also Waldmann & Martignon, 1998). According to this 
schema P(X4|X2,X3) can be reduced to [1-(1-P(X4|X2))·(1-
P(X4|X3))], an expression that only contains probabilities 
referring to direct causal relations. The noisy-or schema 
assumes that different causes have independent and addi-
tive influences on the common effect. Given that com-
mon-effect models do not imply covariations among the 
causes a further reasonable default assumption is that they 
occur independently. A number of psychological experi-
ments have shown that learners indeed tend to initially 
assume independence (see Waldmann, Holyoak, & Fra-
tianne, 1995). 

 
Sensitivity to Structural Implications:            
Computation vs. Causal Simulation 
Previous research has demonstrated sensitivity to struc-
tural implications of causal models in causal learning 
(Waldmann & Holyoak, 1992; Waldmann, 2000), causal 
reasoning (Waldmann & Hagmayer, 1998), and categori-
zation (Waldmann et al., 1995). The processes underlying 
this sensitivity are unclear, however. The standard ap-
proach within the area of Bayesian modeling is to explic-
itly derive the predicted event patterns or covariations and 
test these predictions against the data at hand. It appears 
unlikely that this strategy could be followed in intuitive 
everyday reasoning. Despite the fact that Bayesian models 
provide a parsimonious way of representing domain 
knowledge it is also clear that the explicit derivation of 
indirect relations is often complex and computationally 
demanding (Glymour & Cooper, 1999). In fact, one rea-
son for the increasing number of automated statistical 
tools that are currently offered to researchers lies with the 
fact that the task surpasses the capacity limitations of 
intuitive reasoning.  

However, there is an alternative, more implicit strat-
egy. Instead of explicitly computing covariations we may 
form mental representations of causal structures that are 
analogous to the graphical structures used in Bayesian 
network modeling (e.g., Fig. 1). Similar to toy models, 
these causal models can then be used to run mental simu-
lations (see also Barsalou, 1999).  For example, instead of 
calculating the probability of patterns within a common-
cause model with one cause and two effects we could 
mentally imagine the presence or absence of the cause, 
and then generate predictions for each individual effect 
based on the observed covariations between the cause and 
either effect. Since these predictions are triggered by a 
common event within a mental common-cause model the 
predicted patterns should show the covariations that are 
implied by the structure of the mental model. These co-
variations are not the consequence of an explicit computa-
tion, they rather are a side effect of the structure of the 
causal model used to simulate the causal situation in the 
real world. Therefore it may well be that the predicted 
patterns exhibit covariations of which the learners are not 
aware. For the learner it is only necessary to focus on the 
direct causal relations. All the indirect relations are taken 
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care of by running simulations on mental analogs of the 
objective causal situation.  

Two experiments will be presented in which partici-
pants acquired partial knowledge about separate frag-
ments of common-cause or common-effect models.  To 
test whether they were sensitive to the additional covaria-
tions implied by the different causal models, two types of 
measures were collected. Explicit knowledge was assessed 
by means of probability estimates in which participants 
were requested to estimate the strength of the indirect, not 
directly observed relation. Based on the assumption that 
explicit computations of the answers to these questions 
are hard we expected poor performance with this task. 
However, the second task was designed to tap into im-
plicit knowledge generated by causal simulations. In this 
task, participants were requested to predict the pattern of 
events they expected to see. For example, in a common-
cause condition (see Fig. 2) the experimenter instructed 
participants to imagine that the cause was present and to 
make a prediction about the two effects. A typical finding 
with this type of task is that participants tend to match the 
probabilities they have seen in the learning situation. 
Since in the present task the two effects never have been 
seen together, direct experience with the patterns is not 
available. However, it is possible that participants match 
the probabilities for each relation independently within a 
mental analog of a common-cause model. The model 
itself generates covariations that have never been ob-
served directly. The crucial measure in this task is the 
covariation between the predicted effects that can be de-
rived from participants’ responses. The causal-simulation 
account predicts that these patterns should display the 
covariations implied by the causal models even when no 
explicit knowledge could be detected in the explicit task. 

Experiment 1 
The goal of this experiment was to investigate whether 
learners who have acquired partial knowledge about 
fragments of causal models are sensitive to the structural 
implications of these models. Participants were given the 
task to learn about the causal relations between the muta-
tion of a gene and the prevalence of two (fictitious) sub-
stances (enzyme BST and brasus protein).  We used a 
trial-by-trial learning procedure in which participants 
worked through a stack of index cards with information 
on the front side about whether a mutation of the gene 
occurred or not.  By turning around the individual cards 
participants received information about the presence or 
absence of either the enzyme BST or the brasus protein. 
To ensure that no covariation between the enzyme and the 
protein could be observed the cards were divided into two 
different stacks, one for each substance.  Participants were 
instructed to alternate between the stacks in the course of 
the learning phase. In the initial instruction the separate 
stacks were characterized as displaying the raw data of 
two different research projects located at different univer-
sities. The task and the presentation of the data were iden-
tical for all participants. They first received information 
about the mutation of the gene on the front side of the 
cards, and then were shown information about the occur-

rence of either the enzyme or the protein on the backside.  
The learning phase consisted of 80 cards, 40 for each 
substance.  

Two factors, type of causal model and degree of co-
variation, were manipulated yielding four experimental 
conditions. The first factor contrasted two different causal 
models. One group of participants read in the initial in-
structions that the researchers were interested in finding 
out whether the mutation causally influences the two 
substances (common-cause model)(see Fig. 2, left).  In 
contrast, for the second group the two substances were 
described as potential causes of the mutation (common-
effect model)(see Fig. 2, right). The second factor ma-
nipulated the strength of the relation between mutation 
and the two substances. The strength was always equal for 
both substances and either weak or strong. Table 1 dis-
plays the absolute frequencies used in this experiment. 
Thus, for example, participants in the condition with 
strong connections saw 16 cases for each substance in 
which the presence of a mutation of the gene was paired 
with the presence of the substance. 
 

Table 1: Frequencies in Experiment 1 
 
 Strong Condition Weak Condition 

 Substance No Sub-
stance Substance No Sub-

stance 

Mutation 16 4 10 10 

No Mutation 0 20 6 14 
 
Apart from the different initial instructions about the 
underlying causal model the learning phases and the test 
phases were identical within the conditions with strong or 
weak relations. Regardless of whether the mutation of the 
gene was introduced as a cause or as an effect, informa-
tion about its presence or absence was delivered before 
information about the substances was given.  

The learning phase was followed by a test phase in 
which participants’ assumptions about the covariation 
between the two substances was assessed. This covaria-
tion had to be inferred because the two substances had 
never been seen together. To test whether participants 
were sensitive to the different implications of the two 
causal models we compared an implicit with an explicit 
measure of knowledge. In the implicit test procedure 
participants received 20 new index cards in a random 
order, half of them indicating that in this particular case a 
mutation had occurred. The rest of the index cards de-
scribed cases in which no mutation had occurred. Partici-
pants’ task was to predict for each case individually 
whether either of the two substances was present or ab-
sent. No feedback about the substances was provided 
during this test phase. Since patterns of substances had to 
be predicted it was possible to analyze the amount of 
covariation between the substances in the responses of the 
participants. We used the phi correlation coefficient as a 
measure of the degree of the implicitly predicted covaria-
tion (see Appendix). In a second task that followed the 



implicit task, we investigated participants’ explicit expec-
tations. In this task they had to estimate the probability 
that the second substance is present conditional upon the 
first being present (P(substance2|substance1)) and being 
absent (P(substance2|~substance1)). As with the implicit 
measures the explicit estimates were transformed into phi 
correlations that allowed us to directly compare the im-
plicit with the explicit measure.  

What are the normative Bayesian predictions for the 
presented data? When a common-cause model is assumed 
it is appropriate to encode the conditional probabilities 
directed from the cause (i.e., mutation) to its effects (i.e., 
substances). In this direction, the data display a condi-
tional probability of either substance in the presence of 
the mutation (i.e., P(substance|mutation)) of .80 in the 
strong and .50 in the weak condition. The corresponding 
values in the absence of a mutation (P(substance|~mu-
tation)) are 0 in the strong versus .30 in the weak condi-
tion. Taking the difference of these numbers yields the 
widely used contingency (∆P) measure of statistical 
strength (Eells, 1991). Accordingly, the contingency is ∆P 
=.80 in the strong and ∆P =.20 in the weak condition.  

Within the framework of a common-effect model the 
same data should again be analyzed from causes to ef-
fects. In this condition the substances play the role of the 
causes. Thus, it is appropriate to compare P(mutation| 
substance) with P(mutation|~substance). The data yield a 
probability of the mutation in the presence of the sub-
stance of 1 in the strong and of .63 in the weak condition. 
The corresponding values in the absence of the substance 
are .17 in the strong and .42 in the weak condition. These 
numbers imply almost the same contingencies as in the 
common-cause condition of ∆P=0.83 (strong condition) 
and ∆P=.21 (weak condition).  

On the basis of structural information from the causal 
models these numbers can be used to derive the predicted 
covariation between the substances. While the common-
effect model does not imply a covariation, the common-
cause model entails that the observed joint probability 
should correspond to the product of the base rate of the 
cause and the conditional probabilities observed for each 
causal link. These probabilities can be transformed into a 
phi coefficient of correlation (see Appendix).  The data 
presented imply a phi correlation of r=.67 between the 
substances in the strong condition and of r=.042 in the 
weak condition.    

Results and Discussion 
The results are based on 48 students from the University 
of Göttingen who were randomly assigned to one of the 
four learning conditions. Table 2 shows the means for 
both the explicit and the implicit measure obtained in the 
four conditions.  

The correlations that the participants generated in the 
implicit prediction task resemble very closely the ones 
normatively implied by the causal models.  Participants in 
the common-cause condition generated a high mean cor-
relation of .62 between the substances when the causal 
connections were strong and a mean correlation of -.004 
when they were weak.  In contrast, in the common-effect 

condition in which they received identical learning inputs 
as participants in the corresponding common-cause condi-
tion the prediction responses displayed generally low 
correlations in both conditions.  An analysis of variance 
revealed a significant main effect for the factor causal 
model, F(1, 44)=7.28, p<.05, MSE =.14, and a significant 
main effect for the factor strength of covariation, F(1, 
44)=18. 4, p<0.01, MSE=.14. The interaction failed to be 
significant,  F(1, 44)=2.33, p=.13, MSE=.14.   

 
Table 2: Means of Implicit and Explicit Meas-
ures (Experiment 1) 

 
 Implicit Measure:  

Generated Correlations 
Explicit Measure:  

Estimated Correlations 
 Common- 

Cause 
Model 

Common- 
Effect 
Model 

Common- 
Cause 
Model 

Common- 
Effect 
Model 

Strong 
Relations .622 .168 .286 .161 

Weak 
Relations -.004 -.130 -.109 .039 

 
The explicitly estimated correlations clearly differed 

from the implicitly generated ones (see Table 2). There 
was no significant difference of the estimated correlations 
in the two contrasted causal models, F<1. Only the differ-
ence between the conditions in which strength of covaria-
tion was manipulated proved significant, F(1,44)=8.05, 
p<.01, MSE=.10.  

These results indicate that participants showed little 
sensitivity to the implications of causal models when the 
task required explicit estimates. They seemed to be aware 
of the fact that the inferred covariations somewhat depend 
on the strength of the causal links responsible for the 
covariations, but they did not explicitly grasp the struc-
tural difference between common-cause and common-
effect models. By contrast, the implicit measure displayed 
surprisingly accurate predictions. In this task, participants 
clearly differentiated between common-cause and com-
mon-effect models despite identical learning inputs. In 
our view, this finding supports the prediction that sensitiv-
ity to structural implications can be achieved by running 
simulations on mental analogs of causal models.  

Experiment 2 
In Experiment 1 participants first were informed about 
whether a mutation of the gene occurred or not, and then 
learned for each substance separately whether it was pre-
sent or absent. This procedure served the goal of present-
ing identical learning inputs to participants in the different 
conditions. It raises the question, however, whether the 
observed asymmetries of sensitivity to implied covaria-
tions are due to the contrasted causal models or rather to 
differences in the direction of required inferences during 
learning. In the common-cause condition learning was 
directed from cause to effects (predictive learning), 
whereas in the common-effect conditions the very same 



learning items implied that learning proceeded from effect 
to causes (diagnostic learning). Thus, it may be speculated 
that differences between predictive and diagnostic learn-
ing rather than differences in the underlying causal mod-
els may be the reason for the obtained results. 

The goal of Experiment 2 was to replicate the results 
of Experiment 1 and to control for the direction of learn-
ing. Moreover, unlike in Experiment 1 the conditional 
probabilities and contingencies were equalized in the 
contrasted conditions. Material and procedure were taken 
from Experiment 1. All participants had the task to learn 
about the causal connection between mutation and the two 
substances. Again, as learning input they received index 
cards separated into two stacks which either provided 
information about the relation between the mutation and 
the enzyme BST or between the mutation and the brasus 
protein. Table 3 shows the frequencies of the different 
patterns that were presented during the learning phase.  
 

Table 3: Frequencies in Experiment 2  
 

 Substance No Substance

Mutation 25 5 

No Mutation 5 25 
 
These frequencies implied conditional probabilities be-
tween the mutation and the substances that were com-
pletely symmetric (P(mutation|substance) = P(substance| 
mutation) =.8, and P(mutation|~substance)= P(substance| 
~mutation)=.2). Thus, the contingencies were identical in 
both directions (∆P=.60).  

Two factors were manipulated in Experiment 2. The 
first factor manipulated the assumed causal model by 
means of differential initial instructions. As in Experiment 
1, the mutation of the gene was either introduced as the 
cause of the two substances (common-cause model) or as 
their effect (common-effect model). The second factor 
manipulated the learning direction. Learning proceeded 
either from causes to effects (predictive learning) or from 
effects to causes (diagnostic learning). Thus, half of the 
participants received information about the mutation first 
before learning about the substances whereas the other 
half first read information about the presence or absence 
of one of the substances, and then received feedback 
about the mutation. In fact, the same index cards were 
used for all participants, the only difference was which 
side they saw first. Information about the mutation was 
shown first in the predictive version of the common-cause 
condition and in the diagnostic version of the common-
effect condition. The reversed cards showing information 
about the substances first were given to participants in the 
predictive common-effect and the diagnostic common-
cause conditions. Using the procedures described in the 
Appendix, a phi correlation of r=.37 between the sub-
stances can be derived for the common-cause model in 
which they played the role of effects. This is about half 
the size of the implied covariation in the condition with 
strong relations of Experiment 1. Thus, a smaller effect 

size is to be expected in the present experiment. In con-
trast to the common-cause model, the common-effect 
model does not imply any covariation between the causes.  
These different structural implications are, of course, 
independent of the direction of learning. 

As in Experiment 1, sensitivity to implied covariations 
was assessed by means of implicit and explicit measures. 
Regardless of the learning direction the implicit test al-
ways presented information about the mutation of the 
gene as the cue for the predictions. Participants were 
shown 20 new cases, half of which describing mutations, 
and had to predict for each case individually whether 
either of the substances was present or not. The explicit 
task in which participants estimated conditional probabili-
ties followed the implicit one (see Experiment 1).  

Results and Discussion 
64 students from the University of Göttingen were ran-
domly assigned to one of the four conditions. The means 
of the phi correlations that were either generated (implicit 
measure) or estimated (explicit measure) in the four dif-
ferent conditions are shown in Table 4. 

  
Table 4: Means of Implicit and Explicit Meas-
ures (Experiment 2) 

 
 Implicit Measure: 

Generated Correla-
tions 

Explicit Measure: 
Estimated Correla-

tions 

Learning 
Direction 

Common- 
Cause 
Model 

Common- 
Effect 
Model 

Common- 
Cause 
Model 

Common- 
Effect 
Model 

Predictive .243 .013 .258 .239 

Diagnostic .186 -.001 .129 .210 
 

As in Experiment 1, assumptions about the underlying 
causal model clearly influenced the implicit measure. The 
main effect for the factor causal model was significant for 
the generated correlations, F=4.97, p<.05, MSE=.14.  In 
general, participants generated higher correlations be-
tween the substances when they were viewed as effects 
(common-cause model) than when they had been charac-
terized as causes of the mutation (common-effect model).  
In the common-effect condition the generated covaria-
tions between the two substances (i.e., the causes) were 
very close to 0 which supports our prediction that inde-
pendence between causes is assumed in common-effect 
models. Neither the factor learning direction nor the inter-
actions with this factor proved significant (F<1).  

In contrast to the implicit measures, no sensitivity to 
the structural implications of causal models could be 
detected with the explicit measures. In general, partici-
pants tended towards correlations that clearly differed 
from 0 but showed no sensitivity to the assumed causal 
model.  None of the effects approached significance in an 
analysis of variance in which type of causal model and 
learning direction entered as factors (F<1).  

These results clearly support the conclusions of Ex-



periment 1 by demonstrating sensitivity to structural im-
plications with an implicit but no sensitivity with an ex-
plicit measure. Consistent with the normative analysis, the 
implicit measures yielded higher covariations for the 
common-cause than for the common-effect model. The 
present experiment also shows that this pattern of results 
is not due to differences in the learning procedure (predic-
tive vs. diagnostic) but rather is based on differences of 
the assumed causal models.  

Conclusions 
Research on causality belongs to the truly interdiscipli-
nary topics of cognitive science. There are differences in 
the research focus between disciplines, however. Whereas 
the majority of studies within cognitive psychology have 
focused on single cause-effect relations, researchers in the 
areas of computer science and philosophy have become 
increasingly interested in complex causal structures (e.g., 
Glymour & Cooper, 1999; Pearl, 2000). The goal of the 
present research is to bridge this gap without forgetting 
the inherent information processing limitations of hu-
mans. It is unlikely that untutored human learners are able 
to store and use the complex information embodied in 
even fairly simple causal structures. Therefore we have 
focused on a more realistic task in which participants 
learned about different fragments of a causal model sepa-
rately, and later were confronted with the task to integrate 
the different pieces in order to predict unobserved co-
variations. To solve this task correctly, knowledge about 
structural implications of different causal models has to 
be activated. Research on Bayesian networks has shown 
that structural information greatly simplifies causal com-
putations but it also has demonstrated that the task still 
remains complex. Consistent with this analysis both ex-
periments have demonstrated that participants showed 
little explicit knowledge about differences between causal 
models, even when the models were extremely simple. 
Participants’ explicit judgments did not distinguish be-
tween a condition in which the target events were two 
effects of a common cause and a condition in which these 
events represented two causes of a common effect. This 
result raises doubts as to humans’ competence to correctly 
learn about causal structures in the world. However, a 
second, more implicit measure displayed surprisingly 
accurate inferences. When the task required predicting 
individual events, participants proved sensitive to the 
difference between common-cause and common-effect 
models. This dissociation between explicit and implicit 
measures is consistent with the view that mental simula-
tions of causal models support the implicit task. Generat-
ing predictions by means of a mental simulation capital-
izes on causal structure without requiring explicit knowl-
edge. As long as the mental representation mirrors the 
causal features of the represented domain, simulations 
should display the same structural constraints. Therefore 
causal simulations allow us to generate correct predictions 
without requiring complex, explicit computational infer-
ences.  
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Appendix 
The following derivation shows how joint probabilities 
and correlations can be derived for common-cause mod-
els. In the formulas, s1, s2 represent the two substances and 
m the mutation. “~” signifies the absence of an event. 
The joint probability of the two substances can be com-
puted by 
 P(s1.s2) = P(s1.s2|m)·P(m)+P(s1.s2|~m)·P(~m)  (1) 
Common-cause models assume that the effects are inde-
pendent conditional upon the states of the common cause, 
that is: 

P(s1.s2|m) = P(s1|m) ·P(s2|m) 
Thus, Equation 1 can be simplified: 

P(s1.s2) =  P(s1|m) ·P(s2|m) ·P(m) +  
 P(s1|~m) ·P(s2|~m) ·P(~m) 

The joint probabilities for the other patterns (e.g., 
P(s1.~s2)) can be calculated in a similar fashion. These 
probabilities can be used to compute phi correlation coef-
ficients based on the following formula: 
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This procedure of computing phi correlations can be ap-
plied to the patterns predicted by the participants (implicit 
task) as well as to the estimated conditional probabilities 
(explicit task). 
 


