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Abstract

The strength of causal relations typically must be inferred on the basis of statistical relations

between observable events. This article focuses on the problem that there are multiple ways of

extracting statistical information from a set of events. In causal structures involving a poten-

tial cause, an effect and a third related event, the assumed causal role of this third event

crucially determines whether it is appropriate to control for this event when making causal

assessments between the potential cause and the effect. Three experiments show that prior

assumptions about the causal roles of the learning events affect the way contingencies are

assessed with otherwise identical learning input. However, prior assumptions about causal

roles is only one factor influencing contingency estimation. The experiments also demonstrate

that processing effort affects the way statistical information is processed. These findings

provide further evidence for the interaction between bottom-up and top-down influences in

the acquisition of causal knowledge. They show that, apart from covariation information or

knowledge about mechanisms, abstract assumptions about causal structures also may affect

the learning process. q 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Causal learning is central for our survival. Causal knowledge allows us to antici-

pate harmful or gratifying events, and to plan actions to achieve goals. Despite the
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fact that a large number of philosophers and psychologists agree on the importance

of research on causality, no unitary concept has evolved so far. The main question of

how we distinguish causal relations from accidental sequences of events remains

highly debated.

2. Competing theories of causal learning

2.1. Covariation view

In the past 30 years, philosophers and psychologists have become increasingly

interested in probabilistic notions of causality. Our knowledge about causal rela-

tions, such as “Smoking causes lung cancer”, is often based on the observation of

covariations between causes and effects. A number of philosophers have proposed a

notion of causality that reduces causal relations to observable statistical laws (e.g.

Eells, 1991; Salmon, 1971; Suppes, 1970). Roughly, it has been proposed that

causes alter the probabilities of their effects. This idea has been adopted by psychol-

ogists who propose that causal induction involves the acquisition of knowledge

about contingencies between causes and effects (e.g. Jenkins & Ward, 1965;

Wasserman, Chatlosh, & Neunaber, 1983). Formally, an (unconditional) contin-

gency can be defined as the difference between the conditional probability of a

target effect E given the presence of a potential causal factor C and its probability

given the absence of the factor (i.e. P(E|C) 2 P(E| , C)). If this difference is greater

than 0, the contingency suggests that C is a facilitatory or generative cause, and if it

is smaller than 0 then C may be inhibitory or preventive for the occurrence of the

effect. Some researchers have assumed that these probabilities are estimated on the

basis of stored frequency information (Cheng & Novick, 1992).1

A different, currently popular approach models causal learning as acquisition of

associative weights (e.g. Shanks & Dickinson, 1987; Wasserman, Elek, Chatlosh, &

Baker, 1993). However, Chapman and Robbins (1990) have proven that, at least in

situations with one single cause and one effect, the asymptotic associative weight

obtained by the Rescorla–Wagner learning rule (Rescorla & Wagner, 1972) corre-

sponds to the results of applying the contingency rule (see also Cheng, 1997, for

analyses of the relation between contingency theories and the Rescorla–Wagner

rule). Thus, according to the covariation view causal induction is bottom-up learning

about statistical contingencies between causes and effects.

One fundamental problem of the covariation view is that a set of events can be

statistically analyzed in a large number of ways. The world is rife with correlations.

Thus, attempts to attend to all statistical relations that can be estimated within sets of

events would clearly surpass the capacity of human learners. Furthermore, not all

statistical covariations within a set of events are causally meaningful. Spurious
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correlations between causally unrelated events are a classic example of how covar-

iations may be misleading. For example, even though there may have been a statis-

tical correlation in the late 1960s between the length of hair of male students and

being accepted at Berkeley, this correlation does not indicate a direct causal relation.

Alternative ways of measuring statistical relations within a set of events may yield

opposite assessments so that a principled method is needed to distinguish causally

meaningful statistical indicators from indicators that cannot be directly linked to

causal influences.

2.2. Mechanism view

The fact that causality is only indirectly reflected in covariation information has

led to the alternative view that causal learning is mainly guided by prior knowledge

about causal mechanisms (e.g. Ahn, Kalish, Medin, & Gelman, 1995; Bullock,

Gelman, & Baillargeon, 1982; Shultz, 1982). According to this view, knowledge

about causal mechanisms that connect causes and effects primarily underlies the

learning process. Ahn et al. (1995), for example, gave participants who were

requested to assess a causal relation a choice between covariation information or

information indicating mechanisms. The experiments demonstrated a clear prefer-

ence for information that provides evidence for or against mechanisms. The

Koslowski (1996) experiments also point to the great relevance of mechanism

information. According to her view, covariation information and prior knowledge

about mechanisms interact. Identical covariations are viewed as indicators of greater

causal strength when they are deemed plausible. For example, mentioning the plau-

sible finding that increasing the number of visiting hours leads to higher recovery

rates of patients yielded higher ratings of causal relatedness than the implausible

finding that patients with heavy drapes on their windows recover faster (Koslowski,

1996, Experiment 5). Furthermore, only plausible covariations tend to be attended

to. The plausibility is derived from prior knowledge about possible mechanisms.

The basic problem of the mechanism view is that it does not explain how knowl-

edge about mechanisms is acquired in the first place (see Cheng, 1993). It may be

true that learners tend to use specific prior knowledge when it is applicable to a new

situation. However, a complete theory of causal learning has to address the question

of how people learn about causal relations when no prior learning about similar

situations has taken place. Causal model theory (see Waldmann, 1996) provides a

third type of theory that attempts to reconcile the covariation approach with the view

that prior assumptions about the causal domain guide the induction process even

when no specific knowledge about mechanisms is available.

2.3. Causal model view

In the past few years a novel approach of causal learning has emerged that attempts

to solve the methodological problems of the covariation view without postulating that

an elaborate knowledge base about causal relations is already in place. According to

this view, learners enter the learning task with abstract assumptions about hypothe-

tical causal structures if more concrete knowledge is not available. A number of
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philosophers and computer scientists have developed formal theories (e.g. Bayesian

network theories) in which graphical representations of causal structures guide learn-

ing and inferences (e.g. Pearl, 1988, 1996, 2000; Spirtes, Glymour, & Scheines,

1993). Structural knowledge about hypothetical causal models encodes assumptions

about the causal status of events (causes vs. effects) and about hypothetical direct and

indirect causal relations. It does not embody knowledge about mechanisms of causes

or effects although this information may be used if it is available. One important

function of causal models is that they indicate which covariations are relevant for

the estimation of causal power. Unlike knowledge about specific mechanisms,

abstract structural assumptions do not imply the sign (inhibitory vs. generative

cause) or strength of a causal relation. The structure selects the relevant statistical

indicator. The sign and strength of the target causal relation are then fully dependent

on the statistical structure of the learning input.

2.3.1. Causal priority

One example of how contingency assessments may be guided by prior structural

assumptions is the fact that statistical relations are typically insensitive to one of the

most fundamental properties of causal relations, causal priority: we know that

causes precede their effects, and not the other way around. By contrast, contingen-

cies do not encode directionality information. In situations in which the presence of

a cause increases the probability of observing its effect, it is ceteris paribus true that

the presence of the effect increases the probability of observing its cause. Thus,

simple probabilistic relations do not represent the fundamental property of causal

priority. In more complex situations with multiple causes and effects, the interpreta-

tion of the observed statistical evidence is crucially dependent on the assumed

pattern of causal directionality. For example, three correlated events may be

causally interconnected in various ways. Two events may play the role of alternative

causes of the third event (common-effect model) which implies that either of the

causes may generate the effect individually, or that the two causes may interact. In a

different causal scenario the two events may be characterized as alternative effects of

the third event, their common cause (common-cause model). In this situation, the

causal model implies that the two effects are independently generated by their

common cause, and that there should be a spurious covariation among the two

effects. These different structural implications are a consequence of the specific

pattern of causal directionality linking the events within a causal model.

Waldmann and Holyoak (1992) have therefore proposed a causal model theory

which postulates an interaction between hypothesized causal models and the learn-

ing input. The main idea is that the structure of the causal models directs the

interpretation of the learning input which in turn may modify the initial causal

model. The impact of prior assumptions about causal directionality has been demon-

strated in a number of experiments. In general, these experiments have shown that

identical learning inputs were treated differently depending on the structure of the

causal model invoked for the interpretation of the learning experiences (Waldmann,

1996, 2000, in press; Waldmann & Holyoak, 1990, 1992; Waldmann, Holyoak, &

Fratianne, 1995). Waldmann (2000), for example, presented participants with learn-
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ing inputs in which they received information about substances in the blood of

fictitious patients as cues and had to learn to diagnose a novel disease. Learning

was affected by initial instructions in which these substances were initially either

characterized as causes of the disease (predictive learning) or as effects of the

disease (diagnostic learning). In particular, cue competition among the causes (i.e.

blocking) could only be shown when the cues were described as causes but not when

they were characterized as effects. This finding can be explained on the basis of the

view that learners used causal models when processing the learning input.

2.3.2. Causal co-factors

Causal priority is only one aspect of abstract prior causal knowledge that

constrains the assessment of contingencies. The present article focuses on the

role of prior knowledge in the choice of a method of estimating causal strength.

In Section 2.1, unconditional contingencies were mentioned as empirical indicators

of probabilistic causality. However, unconditional contingencies may even be

observed between events that are not directly causally related, or the contingencies

may not express the true causal relation between the two events. Problems always

occur when there are additional factors which are correlated with the two observed

events. These additional factors may be the cause for spurious correlations, or they

may alter the observed statistical relation and therefore convey a wrong impression

of the true causal relation. Philosophers (e.g. Cartwright, 1983; Eells, 1991;

Salmon, 1980) and cognitive psychologists (Cheng, 1993; Cheng & Novick,

1992; Spellman, 1996a,b; Waldmann, 1996; Waldmann & Holyoak, 1992) have

therefore proposed conditional contingencies as indicators of causality. Condi-

tional contingencies refer to contingencies between two events, the potential

cause C and the potential effect E, conditional upon alternative causal factors Ki

being kept constant, i.e. as p(E|C.K1.K2…Kn) 2 p(E| , C.K1.K2…Kn). An isolated

period denotes an “and”, and each Ki a choice between the presence or the absence

of the co-factor.

For example, suppose we want to test the hypothesis that smoking (C) causes

heart disease (E). Furthermore, we assume that smoking is correlated with coffee

drinking (K1), which may also be a cause of heart disease. To test our hypothesis, we

should assess the conditional contingencies between smoking and heart disease in

the subpopulation of coffee drinkers (K1) and people who do not drink coffee (,K1).

If we then discover that smoking equally leads to heart disease in both subpopula-

tions, we may conclude that smoking is an independent cause of this disease.

Even though the exact mechanism of taking co-factors into account is highly

debated, a large number of studies have been presented in the past few years that

show that participants are capable of taking co-factors into account when assessing

the causal relation between a cause and an effect (e.g. Baker, Mercier, Vallée-

Tourangeau, Frank, & Pan, 1993; Price & Yates, 1993). Spellman (1996a,b), for

example, presented participants of an experiment with the task of assessing the

causal impact of two unknown colored liquids on the growth of plants. In the

learning materials the unconditional contingencies were kept constant, whereas

the conditional contingencies varied, or vice versa. (These situations are examples
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of Simpson’s paradox which will be discussed below.) The main finding was that

participants focused on subgroups instead of the total distribution. Thus, they tended

to estimate conditional contingencies in which the potential impact of the co-factor

was kept constant instead of unconditional contingencies.

Conditional contingencies, however, are not foolproof indicators of causality

either. As Cartwright (1983) points out, this method only yields correct results

when the subgroups are properly selected. Conditionalizing on the wrong variables

may lead to erroneous contingency estimates. An instance of this problem is known

in the philosophical and statistical literature as Simpson’s paradox, first discovered

by Pearson in 1899 (see Cartwright, 1983; Eells, 1991; Pearl, 2000; Simpson, 1951).

Simpson’s paradox describes the fact that a given contingency between two events

which holds in a given population can disappear or even be reversed in all subpo-

pulations when the population is partitioned in certain ways. Cartwright (1983) cites

a study on the graduate admissions of Berkeley that demonstrates the problem

(Bickel, Hammel, & O’Connell, 1977). The graduate school of Berkeley was

accused of discriminating against women. And indeed, at first sight the probabilities

seemed to support the causal hypothesis that being a woman causes one to be

rejected at Berkeley: the probability of admissions was higher for male students

than for female students. However, the researchers looked at the data more carefully.

When the admissions were analyzed separately for each department, one by one, the

correlation between gender and admission completely disappeared. The reason for

this was that women tended to apply to departments with higher rejection rates.

Department by department women were accepted in the same ratio as male appli-

cants, whereas across all the departments proportionally fewer women were

admitted.

Table 1 from Eells (1991, p. 63) gives an example of how this can happen. In this

example, Department 1 accepts 90% of the female and of the male applicants.

Department 2 only accepts 20% of the female and of the male applicants. Thus,

within each department male and female applicants are accepted in the same propor-

tions. However, more female applicants apply to Department 2 which is harder to get

in. Therefore, overall, across all departments, more than three times as many male

applicants (83%) are admitted than female applicants (27%).

This example may lead to the methodological suggestion that it is always a good

idea to partition into subsets of events, and compute conditional contingencies.

However, this strategy may also lead to false assessments. The reason why in the

Berkeley admissions case the analysis should be based on the department level is

that the departments are causally relevant for the effect under investigation. The
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Fictitious relative frequencies of admission to graduate program (after Eells, 1991, p. 63)

Department 1 (%) Department 2 (%) Total (%)

Male 81/90 (90) 2/10 (20) 83/100 (83)

Female 9/10 (90) 18/90 (20) 27/100 (27)

Contingency 0 0 0.56



departments decide about the admissions, and not the whole university.2 If, by

contrast, it had been shown that the contingencies reverse when the applicants

were partitioned on the basis of their roller skating skills, this would not count as

an argument against sex discrimination (Cartwright, 1983). Only partitions by

causally relevant variables are relevant for evaluating causal laws. If causally irre-

levant variables were also considered, almost any contingency can be obtained by

choosing the right partition of the event space.

Simpson’s paradox has often been used to demonstrate how possible confounds

can create a spurious covariation that misrepresents the underlying causal relation.

An early example from medicine comes from a Gedankenexperiment by Blyth

(1972). In his scenario a physician compares an old and, alternatively, a new treat-

ment to two populations: one of urban and affluent patients, the other of rural and

poor patients. The new treatment seems to have disastrous effects when compared to

the old treatment. Yet the physician has the very definite impression that the new

treatment works better. He is right, because the key to Simpson’s paradox here is

that the urban patients are more likely to suffer from a more severe variant of the

disease, and the new therapy has been administered (in a not intentionally planned

way) mostly to the urban population.

The practical relevance of this scenario has been demonstrated by a re-analysis of

a study about the medical consequences of smoking (Appleton, French, & Vander-

pump, 1996). In this study a sample of 1314 women in the mixed (urban and rural)

district of Whickham (Newcastle-upon-Tyne) was examined in 1972, and 20 years

later in 1992. Unexpectedly, smokers turned out to have a longer life expectancy

than non-smokers. However, a closer look at the data revealed that in this study

younger women, who generally have a greater life expectancy, were more likely to

be smokers than the older women. In this situation, the causal impact of smoking can

only be assessed if the causally relevant age confound is held constant.

Pearl (2000) has recently presented a formally rigorous analysis of the relation-

ship between confounding and causal inference. In one of his examples a certain

drug seems to reduce the recovery rate in the studied population while simulta-

neously increasing the recovery rates of the subgroups of males and females. Fig.

1 displays the causal structure underlying this situation. In the data underlying this

situation males, who recover regardless of the drug more often than females, are also

more likely to use the drug than females. Thus, the gender factor confounds the

target relation between the drug and the recovery rate because it is causally related to

both events. The assessment of the strength of the causal link between treatment and
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recovery rate is only possible in this non-experimental situation when the second

causally relevant factor, gender, is held constant.

Another instructive example of Simpson’s paradox comes from an analysis of a

decision making situation. Shafir (1993) has constructed an imaginary scenario in

which a student who is facing an exam wants to decide whether to go on a vacation

afterwards or to stay at home. He has taken 50 exams, half of which were followed

by a vacation. Overall he recalls having been happy more frequently when staying at

home, which seems to suggest to rather stay at home in the future. However,

partitioning the exams into the ones he passed and the ones he failed reveals a

different pattern. In each of these subgroups he recalls having been happy more

often when he went on a vacation than when he stayed at home. The reason for the

paradox is that the student went on a vacation more often after failing the exam than

after passing, and that after failing an exam he often felt unhappy. As in the previous

examples, a response to the causal question of how the act of traveling will affect his

well-being is only provided by an analysis of the subgroups in which success in the

exam has been held constant.

2.3.3. No causes in, no causes out

What all these examples show is that causal induction is crucially dependent on

prior causal knowledge. This has been neatly described by the title “no causes in, no

causes out” of a chapter of Cartwright (1989) which was borrowed here. New causal

relations may be induced using contingency estimates. However, the contingencies

only reflect causal relations when the observations are partitioned on the basis of
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text for further explanations).



causally relevant rather than irrelevant variables. The causal relevance of these

partitioning variables has to be established prior to the new induction task. Thus,

Simpson’s paradox exemplifies the basic assumption of causal model theory that the

interpretation of the learning input is based on prior assumptions about general

properties of the causal situation. According to this theory, prior knowledge and

bottom-up learning interact. Causal assessments are based on contingencies

displayed in the learning input. However, the way contingency estimates are derived

from the data is dependent on prior assumptions about the causal structure under-

lying the observed events. These prior assumptions need not include specific knowl-

edge about mechanisms. Assumptions about the causal role are sufficient.

Experiments 1 and 2 investigate the role of prior assumptions about causal rele-

vance.

Prior assumptions about potential alternative causes are only one example of

knowledge-based constraints on contingency assessments. Eells (1991, chapters 3

and 4) has extended the analysis by Cartwright (1983). He has shown that it is also

appropriate to hold constant independent events that are not direct alternative causes

of the target effect but interact with the cause in producing the effect. For example,

specific physiological features may not by themselves increase the probability of

heart disease but they may affect the capacity of smoking to cause the disease. In this

example, it is also appropriate to control for these physiological parameters even

though these factors are not direct alternative causes of the disease. The term “causal

relevance” should therefore be used in the broad sense of alternative causes of the

target effect or independent events that interact with the target cause.

2.3.4. Causal structures

So far causal structures have been discussed in which multiple causes converge on

a common effect. However, there are other possible causal structures linking three

events.

Fig. 2 displays four different causal structures linking three events. (These struc-

tures were investigated in Experiment 3.) In all four structures a potential cause C is

directly linked to a potential effect E. The structures differ with respect to the causal

role of the event K. The decision about whether a co-factor is causally relevant is

only one factor determining whether this event should be kept constant or not.

Correlated events may play other causal roles in complex causal networks.

Fig. 2A shows a common-effect structure in which C and K both converge on the

effect E. For example, C may represent smoking, E heart disease, and K may be an

alternative potential cause of heart disease, such as coffee drinking, or it may interact

with smoking in producing heart disease (e.g. certain physiological characteristics).

The discussion in the last section has demonstrated that in such situations it is

appropriate to hold K constant when assessing the relationship between C and E.

Fig. 2B,C displays two variants of causal chains. In both chains, C directly causes

E but in Fig. 2B (“chain-1”) the third event K is located at the end of the chain as an

effect of E, and in Fig. 2C (“chain-2”) it is located at the beginning of the chain as a

cause of C. For example, C and E may again represent smoking and heart disease. In

Fig. 1B K may represent shortness of breath, a possible effect of heart disease,
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whereas in Fig. 1C K may stand for tobacco commercials, a possible cause of

smoking. Which events should be held constant when assessing causal relations

in such chains?

In general, one must not hold constant intermediate events that mediate a causal

relation between a target cause and an effect when assessing the indirect causal

relation between these two events (see Cartwright, 1989; Eells, 1991). For example,

when assessing the indirect causal relation between K and E in the chain displayed in

Fig. 2C it is inappropriate to hold fixed the causal intermediate C. This can easily be

understood with an example in which the only way of K to cause E is through the

intermediate event C. In this case K may increase the probability of E by increasing

the probability of C. However, if the value of C is fixed at some level, K cannot raise

the probability of E. Holding C fixed in such a situation would screen off K from E.

Hence, the conditional contingency between K and E would be zero, and the true

indirect causal relation between these two events would not be reflected in the

contingencies. With more complex structures in which further links connect K

and E, the values may not go to zero but the contingency between these two events

would still be distorted when the intermediate C is held fixed.

For similar reasons, one also must not hold fixed events that are causal subse-

quents of the target causal relation (see Eells, 1991). Fig. 2B displays an example of
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cause, event E an effect, and K a correlated third event that is differentially linked to the other events in the
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such a situation (chain-1). A causal chain is shown in which C causes E, and E in

turn causes K. When assessing the causal contingency between C and E it would be

inappropriate to hold fixed the terminal effect K. Holding fixed this event would

increase or decrease the probability of E which in turn may dampen the contingency

between C and E. In summary, causal intermediates, effects of these intermediates,

and effects of the target effect must not be held constant. Holding these events fixed

may dampen the observed contingency between the target cause and the target

effect. This way the relation between the observed statistical contingencies and

the underlying causal relation will be distorted.

The situation changes for causal chains in which K is the initial cause producing C

which in turn causes E (chain-2). Under restricted conditions it may be unnecessary

to hold K fixed in such a structure when assessing the causal relation between C and

E but in other situations it is necessary to hold the initial cause fixed. Holding this

event fixed is unnecessary when the chain satisfies the Markov condition. In Markov

chains the contingency between C and E is independent of the initial cause K. The

Markov condition states for the causal chain depicted in Fig. 2C that the conditional

probability of E given C in the presence of K equals the conditional probability of E

given C in the absence of K (i.e. PðEjC:KÞ ¼ PðEjC: , KÞ). Similarly the condi-

tional probability of E provided C is absent should also stay the same regardless of

whether K is present or absent (i.e. PðEj , C:KÞ ¼ PðEj , C: , KÞ). Thus, K has

no influence on E independent of C. C perfectly screens off K from E, that is once K

has produced event C the occurrence of event E is solely dependent on the capacity

of C to produce the effect, and K does not play any further role. In such a situation, it

does not make a difference whether K is held constant or not.

However, Markov chains are only a special case of possible chains. Eells (1991)

discusses an example in which K does not cause E but causes C and interacts with C

in the production of E. In this example, K stands for a physiological condition, C

represents smoking, and E lung cancer. The physiological condition K itself does not

cause lung cancer but it increases the likelihood of smoking. Furthermore, the

physiological condition K interacts with smoking in the production of cancer. Smok-

ing may prevent lung cancer when the condition is present, and cause it when it is

absent. In such a situation, the causal impact of smoking can only be assessed when

the presence or absence of the physiological condition is controlled for. This exam-

ple shows that sometimes it is appropriate to hold fixed the initial cause of a causal

chain. However, most researchers who work with normative models, such as Baye-

sian networks, assume that causal chains honor the Markov condition unless there is

clear empirical evidence disproving this assumption (e.g. Glymour & Cooper,

1999). One goal of Experiment 3 was to investigate whether lay people share this

simplifying default assumption with the experts.

Fig. 2D shows a common-cause structure in which a cause C causes both event E

and event K. To use once again the smoking example, C may represent smoking and

E and K the two independent effects heart disease and pollution due to exhaled

smoke. The standard assumption for such structures is that the common cause C

screens off E from K. Thus, conditional on C the two effects are independent of each

other. Once the status of C is known, the predictability of either effect cannot be
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improved by knowing whether the collateral effect is present or absent. A famous

example by the philosopher Reichenbach (1956) describes a situation in which two

actors contract a stomach disease at the same time. However, the coincidence is

rendered statistically independent once the common cause, food poisoning, is

known.

In such common-cause structures it is not necessary to hold fixed the collateral

effect (e.g. K in Fig. 2D) when assessing the causal contingency between the cause

and the other effect (e.g. C and E in Fig. 2D). In fact, similar to the situation in which

K is the initial cause of a Markov chain (Fig. 2C), it should not make a difference

whether the collateral effect is held fixed or not. However, there may be situations in

which the two effects interact even when the common cause is partialed out (see

Eells, 1991). These interactions may be due to additional unknown causal connec-

tions linking the two effects in the underlying causal network. If that was the case,

holding fixed one of the interacting effects would actually distort the contingencies

between the cause and the other effect for the same reasons that subsequent effects

may dampen contingencies. In such situations, the collateral effect (e.g. K) must not

be held fixed. In summary, with common-cause structures it is generally advisable

not to hold fixed one of the effects when the causal relation between the common

cause and some other effect is to be assessed.

The previous analyses can be summarized in the following rule (see Eells, 1991,

p. 206; Pearl, 1996): when assessing a causal relation between an event C and an

event E, we must hold fixed all non-subsequent causal factors that are causally

relevant to E (i.e. alternative causes or interacting events), and we must not hold

fixed subsequent causal factors that are directly or indirectly caused by C.

This analysis shows again the interdependence between prior assumptions and the

estimation of causal strength. Prior assumptions about causal structures guide the

choice of a statistical indicator of causal strength (see also Pearl, 2000, for guidelines

on the analysis of more complex causal models). Experiment 3 investigates whether

human learners conform to these normative rules in situations with three covarying

causal events.

2.4. Processing effort

There is a problem with the strategy to hold fixed potential co-factors to assess

causal relations on the basis of contingencies. This strategy only guarantees success

when all co-factors are controlled. Otherwise one can never be sure that some

unknown factor may distort the relation between the underlying causal relation

and the observed contingencies. One problem with this prescription is, of course,

that it is unlikely that we will ever know all co-factors. But even if we did, it may be

practically impossible to follow the strategy of holding every causal factor constant.

As the philosopher Dupré (1993) has argued, if a specific effect has n alternative

causes then 2n possible combinations of the presence and absence of these factors

would have to be inspected to assess a specific causal relation. Thus, a situation with

31 factors may already exceed the potential of the human population to fill each cell

M.R. Waldmann, Y. Hagmayer / Cognition 82 (2001) 27–5838



with only one person. Dupré suggests that in science we should abandon the meth-

odological goal to come up with a complete causal story (see also Cherniak, 1986).

Completeness may even be less of a plausible goal for everyday causal cognition.

Causal knowledge is typically acquired under capacity and time constraints that

require pragmatic solutions. We do not need complete knowledge; what we do

need is knowledge that allows us to make satisfactory predictions and plan success-

ful actions. Partial causal knowledge does not necessarily lead to failure. We may

very well successfully act or predict even on the basis of partially incorrect causal

knowledge. Also we need to weigh our processing resources against the potential

gain of more differentiated knowledge. When knowledge is easily acquired we may

attempt to obtain a more complete account, whereas in situations in which our

resources are more heavily demanded a more sketchy representation may suffice.

Herbert Simon (1956, 1982) has coined the term “satisficing” to describe knowledge

or cognitive strategies that may not be perfect but satisfactory in the contexts in

which this knowledge is to be used.

Schaller and O’Brian (1992) conducted experiments that demonstrate the role of

processing load in group stereotype formation. In their experiments they presented

participants with information about the performance of two groups, Group A and

Group B, in solving anagram tasks. Overall Group B outperformed Group A but this

apparent superiority was reversed when the length of the anagrams was taken into

account. Group A tended to show lower performance because it preferably

attempted to solve the more difficult, longer anagrams than Group B. Thus, the

statistical structure formed a variant of Simpson’s paradox. The results show that

the participants of the experiment ignored the co-factor, difficulty of anagram, unless

they were explicitly instructed to organize the data according to this factor, or when

they were given more time for processing the information. Thus, these results

support the hypothesis that processing effort is an important constraint (see also

Fiedler, Walther, Freytag, & Stryczek, in press). Sperber, Cara, and Girotto (1995)

also have recently postulated a trade-off between processing effort and task require-

ments in logical reasoning (see also Gigerenzer & Goldstein, 1996).

3. Overview of experiments

The goal of the experiments that will be presented in this article is to show that

prior knowledge and processing effort guide the strategies of causal strength estima-

tion. A number of previous studies have investigated causal structures in which

multiple causes converge on a common effect, and have demonstrated that learners

take potential causal co-factors into account (e.g. Baker et al., 1993; Price & Yates,

1993; Spellman, 1996a,b). In contrast, the aim of the present research is to explore

the conditions in which participants use or ignore co-factors and other types of

correlated events. The experiments use causal structures that embody a variant of

Simpson’s paradox. Simpson’s paradox is a powerful methodological tool to address

these issues as it permits a clear empirical dissociation between judgments that are

based on the overall distribution as opposed to judgments based on the analysis of
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subgroups. In general, participants received identical learning inputs in the contrast-

ing conditions of the experiments and were asked identical questions about the

observed events. However, prior assumptions about causal roles were manipulated

by means of differential initial instructions. Both knowledge-based constraints and

processing constraints were systematically explored. Concerning knowledge-based

constraints, Experiments 1 and 2 investigated whether prior assumptions about the

causal relevance of a co-factor affect the strategies of contingency assessment.

These experiments focused on common-effect structures with potential co-factors

that were either described as causally relevant or causally irrelevant. Experiment 3

explored other potential causal roles of correlated events including common-cause

structures and causal chains. The impact of processing load was studied by manip-

ulating the presentation mode of the learning input. The learning input was either

presented in list format (Experiments 1 and 3) or in a trial-by-trial presentation

(Experiment 2). The subgroups were either presented in a blocked arrangement

(Experiments 1 and 2) or in an intermixed fashion (Experiments 2 and 3). These

manipulations are motivated by the assumption that intermixed presentation of the

subgroups, especially in the context of trial-by-trial learning, makes it harder to

analyze the statistical structure of subgroups. Thus, we expected that co-factors

would only be taken into account when the processing load was low enough to

permit conditionalization. In the cognitively more demanding situations we

expected participants to resort to less demanding strategies of data processing.

4. Experiment 1

The Cartwright (1983) analysis of the Berkeley admission problem has demon-

strated that in situations with multiple potential causes of a common effect, condi-

tional contingencies should be assessed which control for causally relevant co-

factors. Causally irrelevant co-factors should be ignored. Controlling for causally

irrelevant co-factors may lead to distortions of the underlying causal relations.

Because the causal relevance of the co-factors has to be established prior to the

induction task, this requirement is a clear example of how prior knowledge guides

the assessment strategies. The goal of Experiment 1 is to investigate whether human

participants are sensitive to this crucial distinction between causally relevant and

causally irrelevant co-factors.

In this experiment all participants received identical learning input and identical

instructions to rate the strength of a causal relation between a target cause and a

target effect. The participants’ task was to assess the causal relation between irradia-

tion of fruit and the quality of fruit. The crucial manipulation involved a grouping

variable according to which the learning cases could be partitioned into two exhaus-

tive sets of cases. This grouping variable was either characterized as causally rele-

vant or causally irrelevant. In the condition with the causally relevant grouping

variable, information about two types of fruit was given which may affect the

efficacy of irradiation. In the condition with the causally irrelevant grouping infor-

mation, it was pointed out that the fruit samples were randomly assigned to two
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investigators. A third “control” condition presented no information about possible

groupings. The crucial question was whether participants would conditionalize the

causal relation on the grouping variable when it was characterized as causally

relevant but ignore this variable when it was causally irrelevant.

A variant of Simpson’s paradox was imposed on the learning data to empirically

test this question. Whereas the contingency computed across all cases pointed in one

direction (positive or negative), the contingencies within each subgroup had signs in

the opposite direction. This reversal allows for a clear test of whether participants

focus on the total distribution or on subgroups. If participants proved sensitive to the

causal relevance of the grouping variable they should focus on the total distribution

in the condition with the causally irrelevant grouping variable (as in the control

condition with no grouping information), whereas participants who assumed causal

relevance of this variable should analyze the subgroups separately. Thus, a clear

reversal of the sign of the causal ratings is to be expected.

4.1. Method

4.1.1. Participants and design

The participants were 36 students from the University of Tübingen, Germany,

who were randomly assigned to one of three conditions. Two of the three conditions

varied the causal relevance of the co-factor (causally relevant vs. irrelevant co-

factor). The third condition was a control condition in which no co-factor was

presented.

4.1.2. Procedure and materials

The participants’ task in this experiment was to assess the strength of the causal

relation between irradiation of tropical fruit and the quality of the fruit. All instruc-

tions and materials (in this and all other experiments) were in German. Participants

received written instructions in which they were told that importers of tropical fruit

are trying to improve the quality of the fruit by irradiating them. However, so far it is

unknown whether the irradiation has a positive, a negative, or no effect on the

quality of the fruit. To assess the efficacy of irradiation, participants received infor-

mation about the quality of samples of fruit that either had or had not been irradiated.

The participants were handed a two-page list which contained information about 80

samples of fruit. Each sample was represented on a separate line, and for each

sample participants could see whether or not the sample had been irradiated

(“yes” or “no”), and whether the quality of this sample was “good” or “bad”.

Participants were instructed to study the list carefully in order to be able to assess

whether irradiation has an effect or not. They were requested to express their

impression on a rating scale that ranged from 210 (“irradiation leads to a strong

deterioration of the quality”) to 110 (“irradiation leads to a strong improvement of

the quality”). Participants were allowed to take notes on a separate sheet of paper.

Participants were assigned to one of three conditions. Participants in all condi-

tions saw the same list with the 80 cases, and received the same rating instructions.

Thus, all participants were requested to rate the overall strength of the causal relation
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between irradiation and quality of fruit. The only difference was that in two of the

conditions an additional grouping variable was mentioned which either was causally

relevant or irrelevant. The third condition represents a control condition in which no

grouping variable was introduced.

Participants in the condition with the causally relevant variable were told that

there are two types of fruit, Taringes and Mamones. Additionally it was pointed out

that it was expected that irradiation affects these two types of fruit differently.

Furthermore, information was added to the list which indicated that one of the

two pages showed Taringes, and the other page Mamones. In the condition with

the causally irrelevant grouping variable, participants were told that due to the large

number of tests, the samples of fruit described on the two pages were randomly

assigned to two different investigators. The participants in this condition saw the

same list as in the condition with the causally relevant variable except that

“Mamones” and “Taringes” were respectively replaced by “A” and “B” as a short-

hand for the two investigators.

To test whether participants’ contingency judgments reflect their prior assump-

tions about the additional grouping variables, the organization of the list corre-

sponded to a variant of Simpson’s paradox. Table 2 shows how the cases were

distributed. The table displays the proportion of fruit that were of good quality

after they were irradiated, and the proportion of fruit that were good without

being irradiated. For example, within subgroup A 36 fruit samples were presented

that were irradiated. Forty-four percent of these samples (i.e. 16 out of 36) had good

quality after irradiation. As can be seen in Table 2, the arrangement of the cases

resulted in a reversal of the sign of the contingencies within as opposed to across the

grouping variable. Disregarding the grouping variable yields a positive contingency

between irradiation and quality of fruit (10.20). By contrast, the contingencies

within each of the subgroups are negative (20.31 and 20.14). For half of the

participants, the mapping between irradiation and quality of fruit was switched so

that these participants saw a symmetric situation with a negative overall contin-

gency, and positive contingencies within the subgroups.

4.2. Results and discussion

Table 3 shows the results of this experiment. The signs of the ratings of the group

who saw the negative overall contingency were reversed so that the two subgroups

were comparable. The results show that participants behaved according to the Cart-
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Table 2

Contingencies and relative frequencies of fruit with good quality within and across the subcategories A

and B of the grouping variables (Experiment 1)

A B Total

Irradiation 16/36 (0.44) 0/4 (0.00) 16/40 (0.40)

No irradiation 3/4 (0.75) 5/36 (0.14) 8/40 (0.20)

Contingency 2 0.31 2 0.14 1 0.20



wright (1983) advice. The mean ratings in the control condition and in the condition

with the irrelevant grouping variable were positive, and statistically indistinguish-

able from each other. Thus, participants in these two conditions believed that irra-

diation raises the quality of fruit. This finding indicates that participants based their

assessments on the total distribution of cases while disregarding subgroups. By

contrast, participants in the condition with the causally relevant grouping variable

got the impression that the cause prevents the effect. These participants concluded

that irradiation lowers the quality of fruit. The negative mean rating indicates that

many participants computed contingencies for each subgroup separately before

these contingency estimates were integrated. The mean rating of this group was

very different from the mean ratings of the two other groups (Fð1; 33Þ ¼ 71:1,

P , 0:001, MSE ¼ 9:71).

5. Experiment 2

In Experiment 1 two different grouping variables were compared, type of fruit

(Mamones and Taringes) and investigators (A and B). Experiment 2 attempted to

replicate the results of Experiment 1 with a grouping variable that was kept constant

across the two conditions. Thus, all participants saw identical cases, received iden-

tical rating instructions, and were informed about identical subcategories. The only

manipulation involved a hint about the potential causal relevance of the co-factor

describing the subcategories. Only half of the participants received this hint.

The participants’ task in this experiment was to assess whether a newly developed

medicine reduces the incidence of a symptom caused by a tropical disease. Again the

learning data embodied a variant of Simpson’s paradox. Overall the contingency

between the medicine and the reduction of the incidence of the symptom was

positive, whereas within the subgroups of males and females no influence could

be seen (see Table 4). Two instruction conditions were compared which only

M.R. Waldmann, Y. Hagmayer / Cognition 82 (2001) 27–58 43

Table 4

Contingencies and relative frequencies of patients with the symptom (Experiment 2)

Males (%) Females (%) Total (%)

Medicine 24/30 (80) 2/10 (20) 26/40 (65)

No medicine 8/10 (80) 6/30 (20) 14/40 (35)

Contingency 0 0 1 0.30

Table 3

Mean ratings of the causal relation between irradiation and quality of fruit (Experiment 1)

Relevant Irrelevant Control

24.33 5.17 4.75



differed in one sentence. In this sentence the hint was given that the medicine may

affect male and female patients differently.

A second aim of Experiment 2 was to explore whether the findings of Experiment

1 generalize to more naturalistic learning situations in which information is

presented sequentially in a trial-by-trial fashion.

A third goal of this experiment was to provide a test of the assumption that

processing effort also influences learning strategies. The claim to be tested was

that participants should tend to neglect subgroups when the separate analysis of

the subgroups is cognitively demanding. Processing load was manipulated by

presenting the male and female subgroups either in a blocked fashion or by present-

ing them in a random order. We expected that the participants would resort to the

simpler strategy of estimating unconditional contingencies in the conditions that are

more taxing for the cognitive system.

5.1. Method

5.1.1. Participants and design

The participants were 40 students from the University of Tübingen, Germany,

who were randomly assigned to one of four conditions generated by the two factors

causal relevance (hint vs. no hint) and presentation mode (blocked vs. random).

5.1.2. Procedure and materials

In this experiment all participants received initial written instructions that were

identical except for one additional sentence in the condition with the hint. The

instructions mentioned an increased incidence of tropical diseases due to interna-

tional travel. One (fictitious) disease, “Ariana Tropicans”, was singled out which

causes a number of symptoms including large amounts of water in the extremities.

Furthermore, it was pointed out that no medicines exist that alleviate the symptoms

but that a new experimental medicine, “Caldivon”, is currently being tested on 80

patients from a tropical clinic. According to the instruction, some of these patients

receive the medicine, and others are in the control condition. Half of the participants

of Experiment 2 who were in the hint condition were then told that Caldivon may

have different effects on males and females as it is based on a hormone.

Then the instructions showed pictures of the front and back side of an index card

which served as an example for the cards from the later learning phase. The front

side gave information about the initials of the patient, the gender of the patient, the

treatment (“Caldivon”), and the initial symptom (“large amounts of water in the

extremities”). On the backside, the state of the symptom after the treatment was

shown (“no water in the extremities”). The instructions pointed out that the task was

to learn to predict the symptom described on the backside of the index card on the

basis of the information on the front side. Furthermore, at the end of the instructions

a rating scale was shown along with the instruction that the task would require the

participants to assess the causal efficacy of the medicine by using a scale that ranged

from 0 (“no effect”) to 110 (“strong effect”).

After the instructions participants received a stack of 80 index cards. The index
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cards looked like the one presented on the instruction sheet. On the front sides

information was given about the initials of the patient, gender, the initial symptom

(all patients initially had “large amounts of water in the extremities”) and whether

Caldivon was given to the particular patient or not. On the backsides, the state of the

symptom after treatment was shown (“water in the extremities” or “no water in the

extremities”). Participants went through the stack by themselves by turning around

one index card after the other. Taking notes or reordering the cards was not

permitted. In the blocked condition the index cards were grouped according to the

gender of the patients. In the random condition participants received the cases in a

random sequence. After the learning task all participants received identical rating

instructions and a rating scale. The task for all participants was to assess on the ten-

point scale how Caldivon affected water in the extremities.

Table 4 shows the statistical structure of the learning domain. Overall the percen-

tage of patients without water is higher in the treatment condition in which Caldivon

was given than in the control condition in which no medicine was taken. The

contingency between the medicine and the symptom amounts to 10.30. However,

within the groups of male and female patients the contingencies are zero. Thus, the

medicine appears to help the whole group but it does not have an effect within the

subgroups of males and females.

5.2. Results and discussion

Table 5 shows the mean ratings of the participants in the four conditions. The

experimental manipulations yielded a highly reliable interaction between the two

factors hint and presentation mode (Fð1; 36Þ ¼ 12:2, P , 0:01, MSE ¼ 3:62). This

interaction is due to the fact that a clear lowering of the ratings, consistent with the

use of the co-factor, was only observed in the condition with hint and blocked

presentation of cases. This impression was confirmed by a post-hoc comparison

of the four conditions (least significant difference test) which revealed that the

condition with hint and grouped presentation proved significantly lower than the

other three conditions which, in turn, did not statistically differ among each other.

This pattern is consistent with the prediction that the hint led a significant number of

participants to base their judgments on conditional contingencies (i.e. 0), whereas

the participants in the groups without hint and with random ordering of cases seemed

to have based their estimations on unconditional contingencies (i.e. 10.30).

The results obtained in this experiment show that prior knowledge and processing

effort interacted. Experiment 2 showed a general tendency to ignore subgroups

unless the causal relevance of the co-factor was explicitly pointed out and the
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Table 5

Mean ratings of the causal relation between the medicine and the symptom (Experiment 2)

With hint Without hint

Grouped 1.6 4.9

Ungrouped 4.5 3.6



task of separating into subgroups was cognitively manageable. This pattern of

results is consistent with the claim that both prior knowledge and cognitive effort

constrain the learning strategies.

6. Experiment 3

The previous experiments have explored the conditions in which participants

calculate contingencies between a potential cause and an effect conditional upon

a third correlated event. This third event was either described as causally relevant or

irrelevant for the cause–effect relation in question. In these experiments, the co-

factor was typically introduced as a variable that potentially interacted with the

target cause in producing the effect. This is a situation in which it is appropriate

to hold the co-factor constant to assess the causal relation between the target cause

and the effect (Eells, 1991). Common-effect situations in which a co-factor is linked

to a target effect is only one type of structure that links three events. Other structures

such as causal chains or common-cause structures also are possible.

Experiment 3 systematically explores different causal structures. In this experi-

ment all events are described as causally relevant. However, the causal role in the

underlying causal network is varied. Four conditions are compared in which the

relationship of a target cause (C) to a target effect (E) is to be assessed. Cause C and

effect E are directly linked in all causal structures. The causal role of the co-factor K

is varied, however. Fig. 2 displays the four causal structures that can be generated

given the constraint that C and E are directly linked, and K is linked to either C or E.

As elaborated in Section 2.3.4, if the goal is to assess the causal strength between

C and E, K should be held fixed in the common-effect condition in which K is

independently causally relevant for E (Fig. 2A), whereas it should not be held

fixed in the chain in which K represents the final effect (Fig. 2B) and the

common-cause situation in which E and K are collateral effects of C (Fig. 2D). In

the causal chain condition in which K plays the role of the initial cause (Fig. 2C) it is

permissible to ignore K if the chain embodies the Markov condition (i.e. K and E are

independent conditional upon the intermediate cause C). If the Markov condition is

violated, however, it is necessary to hold K constant.

Experiment 3 explores whether participants learning about these causal structures

are sensitive to these different conditionalization requirements involving K. Four

conditions were created in which identical learning data were presented to the

participants. All participants were asked to assess the causal relation between C

and E. The only difference was that the causal role of event K was manipulated

through initial instructions yielding the four mental causal representations shown in

Fig. 2.

As an additional factor we manipulated the abstractness of the learning materials.

From an experimental point of view abstract materials, for which no prior knowl-

edge about the learning events is available, are ideal because the four causal models

can be mapped to the same set of three events, thus holding everything constant

except for the initial instructions. According to causal model theory the use of
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abstract causal models should suffice to induce different learning strategies.

However, this prediction requires that participants actually use the initially

instructed causal models when processing the learning input. It seems plausible

that this may be difficult with extremely abstract materials in which the event labels

do not even allow learners to distinguish whether the respective event represents a

potential cause or a potential effect.

To investigate the potential role of familiarity with causal relations we compared

the four causal models using two types of materials. In the abstract scenario we

described the learning events as fictitious chemical substances (Anin, Billon, Cyran)

which could be assigned arbitrary causal roles within the causal models. In the

contrast condition, however, we used cover stories that presented plausible examples

for the four models which were consistent with prior knowledge about the potential

causal status of the mentioned events. We kept the causal relation to be assessed

constant; all participants had to assess whether genetically altered fruit damages the

gastrointestinal flora. However, in order to increase plausibility we varied the

semantic contents of the co-factor K. For example, in the common-effect condition

(Fig. 2A) K was described as bacteria (a possible alternative cause of gastrointestinal

disease), whereas in the common-cause condition (Fig. 2D) K was described as an

alternative symptom of the food, an allergic reddening of the skin. Although prior

knowledge does not determine whether genetically altered food indeed leads to

gastrointestinal disease or a reddening of the skin, the potential causal roles of the

events are unambiguous. Reddening of the skin, for example, cannot possibly be the

cause of genetically altered food.

Comparing the abstract with the plausible condition allows us to directly test the

generality of the predicted effects and assess the role that prior knowledge about

specific plausible mechanisms plays.

6.1. Method

6.1.1. Participants and design

Ninety-six students from the University of Göttingen, Germany, participated in

this experiment. The participants were randomly assigned to one of the eight condi-

tions generated by crossing the factor “plausibility of cover stories” (plausible vs.

abstract) with the factor causal model (common effect, common cause, chain-1,

chain-2) (see Fig. 2). Only students who had not taken any course in statistics or

experimental methodology were admitted to participate in this experiment. Thus,

students from a variety of areas participated in the experiment. Only five participants

were (first semester) psychology students.

6.1.2. Procedure and materials

Participants in the conditions with the abstract cover stories were told that

researchers in medicine are increasingly interested in metabolic processes. In parti-

cular, the researchers are investigating whether the substance Anin (event C in Fig.

2), by means of polymerization, stimulates the production of the substance Billon
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(event E). It was pointed out that thus far it is unclear whether Anin influences the

production of Billon or has no effect.

The four conditions in which the causal models were manipulated differed with

respect to the assignment of the causal role of the third event (event K), substance

Cyran. In all conditions Cyran was linked to Anin or Billon by means of a fictitious

oxydation process. (The processes oxydation and polymerization were mentioned to

add credibility to the cover stories. Other than that they did not provide any help as

to distinguishing between causes and effects.) In the common-effect condition, parti-

cipants were told that it is presumed that Cyran may also lead to Billon. Thus, event

C as well as event K may independently cause event E (see Fig. 2A). Participants in

the common-cause condition read instead that it was assumed that event C leads to

event E and to event K (see Fig. 2D). (In all four conditions, the full description of

the events was used.) In the chain-1 condition event C causes event E which in turn

causes event K (see Fig. 2B), whereas in the chain-2 condition event K leads to event

C which in turn leads to event E (see Fig. 2C). Before participants inspected the

learning data they were informed that later they would be asked to assess the causal

relation between event C, Anin, and event E, Billon.

After studying the instructions, all participants were requested to summarize what

they had read. If anything was unclear, clarifications were given. As an additional

help a diagram was placed in front of the participants which displayed the causal

structure by linking the three events with arrows (similar to Fig. 2). The target

relation (between Anin and Billon) was signified by a dotted arrow with a question

mark placed above the arrow. Then participants in all four conditions received an

identical two pages on which 100 observations of a fictitious medical study were

described. The two pages showed a four-column list of the descriptions of the 100

cases. The first column numbered the observations. The second, third and fourth

columns displayed whether Cyran, Anin, and Billon, respectively, were present or

not (“yes” or “no”). The ordering of cases was randomized. Participants were

permitted to take notes. After studying the cases all participants were given the

same task. They had to rate the causal relation between Anin (C) and Billon (E)

using a rating scale that ranged from 0 (“no influence”) to 110 (“very strong

stimulation”).

Again the statistical structure of the learning data followed a variant of Simpson’s

paradox. Table 6 shows the statistical distribution of the conditions. The most

important information involves the unconditional and conditional contingencies

between events C and E. Whereas the unconditional contingency is positive
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Table 6

Contingencies and relative frequencies of the presence of event E in the presence and absence of events C

and K (Experiment 3) (see also Fig. 2)

K (%) , K (%) Total (%)

C 32/40 (80) 1/10 (10) 33/50 (66)

,C 8/10 (80) 4/40 (10) 12/50 (24)

Contingency 0 0 1 0.42



(10.42), the contingencies are zero when the potential co-factor K is held constant.

All participants studied the same list with identical arrangements and ordering of the

observations, and were requested to respond to the identical rating question. The

only difference between the conditions was the assignment of different causal roles

to event K, substance Cyran, in the initial instructions.

In the plausible condition cover stories were used that allowed participants to use

prior knowledge about causal directionality during learning. Participants in the four

conditions in which the causal model was manipulated were generally told that

medical researchers were interested in diseases of the stomach. In particular, the

researchers suspected that genetically altered fruit (event C) may damage the gastro-

intestinal flora (event E). As in the abstract condition it was pointed out that, thus far,

it is unclear whether the new fruit has an effect or not. All participants had the same

task; they were requested to assess the causal relation between fruit and damaging of

the gastrointestinal flora. The four causal models were manipulated by mentioning a

third event (event K) which, unlike in the abstract condition, differed across causal

models. In the common-effect condition (Fig. 2A) bacteria were mentioned as an

alternative potential cause of gastrointestinal problems. In the common-cause condi-

tion (Fig. 2D) a possible reddening of the skin was introduced as a potential second

effect of genetically altered fruit. In the chain-1 condition (Fig. 2B) flatulence was

mentioned as a potential effect of gastrointestinal disease, and in the chain-2 condi-

tion (Fig. 2C) it was pointed out that irradiation of the tropical fruit may be the cause

of genetic alterations.

Apart from these instructions the learning procedure was modeled closely after

the one used in the abstract conditions. Again participants were requested to

summarize the instruction and diagrams were placed in front of participants

which displayed the causal structure of the labeled events. Again the diagrams

showed the instructed causal structure with arrows representing causal relations.

The learning events were represented by pictorial symbols and verbal labels.

The same learning list as in the abstract condition was used, only the labels on top

of the two sheets were exchanged in a way consistent with the respective condition.

After studying the lists participants were requested to rate the strength of the causal

relation between genetically altered food and the gastrointestinal flora by using a

scale that ranged from 0 (“no influence”) to 110 (“very strong damage”).

6.2. Results and discussion

Table 7 displays the mean ratings in the eight conditions. The pattern of results

corresponds to the philosophical analyses outlined in Section 2.3.4 (Eells, 1991;

Pearl, 2000). The causal relation between the target cause (event C) and the target

effect (event E) significantly differed across the four conditions (Fð3; 88Þ ¼ 8:14,

P , 0:01, MSE ¼ 6:12). This effect did not interact with the second factor which

manipulated the plausibility of the cover stories (F , 1). Further analyses (least

significant difference tests) revealed that this effect is solely based on the fact that the

ratings for the target relation within the common-effect model proved significantly

lower than the ratings for the other three conditions. Thus, no significant difference
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was observed between the common-cause, chain-1, and chain-2 conditions. This

pattern of results is consistent with the recommendation that one should conditio-

nalize on a co-factor when this factor represents an alternative cause within a

common-effect model. Although the ratings for this condition deviated from the

conditional contingency (0) displayed in the data, it still was clearly lower than the

ratings for the other three conditions. It is a well known fact that people have

difficulties with contingencies of 0 especially when the effect also occurs in the

absence of the cause (see Shanks, 1993). This may explain the slight increase in this

condition.

The ratings for the other three causal models are consistent with the assumption

that in these conditions the assessments were based on the unconditional contin-

gency (0.42) which suggests that in these conditions event K was ignored. This is

recommended by normative analyses for the common-cause model and the chain-1

model. For the chain-2 model in which the co-factor represents the initial cause of

the chain this strategy is appropriate if it is assumed that chains honor the Markov

condition, a standard assumption made by most researchers who use Bayesian

models to represent causal structures (e.g. Glymour & Cooper, 1999). Whenever

the Markov condition is valid, computations are greatly simplified by enabling the

learner to focus on the direct causal links (e.g. between C and E). All indirect

relations (e.g. between K and E) can be generated from the direct relations. The

results of the present experiment suggest that learners untutored in statistics and

methodology share the Markov assumption with experts, which allows it to simplify

the task of learning about causal chains.

The second factor (plausibility of cover stories) also proved significant

(Fð1; 88Þ ¼ 4:25, P , 0:05, MSE ¼ 6:12). There was a general tendency of higher

ratings in the plausible as compared to the abstract condition, especially in the

common-cause and chain conditions. The increase in these conditions may be

viewed as supporting Experiment 5 of Koslowski (1996) which showed higher

ratings for identically described relations when the underlying causal relation

seemed plausible as compared to an implausible relation.

Unlike in Experiment 2, participants were able to control for co-factors even

though the presentation of cases was not blocked according to the states of the

co-factor (see also Waldmann & Hagmayer, 1995, Experiment 2). However, this

is consistent with the explanation that processing load is the crucial variable. In

Experiment 2, the cases were presented in a trial-by-trial fashion which made it

extremely hard to separate out the groups in the condition with intermixed presenta-
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Table 7

Mean ratings of the causal relation between event C and event E in the four conditions of Experiment 3

(see also Fig. 2)

Common cause Chain-1 Chain-2 Common effect

Abstract 4.92 4.67 6.58 3.00

Plausible 6.42 6.50 6.83 3.58

Total 5.67 5.58 6.71 3.29



tion of cases. By contrast, Experiment 3 presented the cases in list format which

allowed participants to go back and forth between cases. Furthermore, only in

Experiment 3 were participants permitted to take notes.

7. General discussion

The goal of causal induction is to arrive at representations of objective causal

relations. Typically causal relations cannot be observed directly but must be inferred

on the basis of statistical relations between observable events (see Cartwright, 1989;

Cheng, 1997). The presented studies focus on the problem that there are multiple

ways of extracting statistical information from a set of events. Which method is

appropriate is partly determined by the hypothesized causal structure underlying the

observed patterns of events. As pointed out by Cartwright (1989), covariation is one

of the most potent ways to measure causal capacities. However, like other measuring

instruments it needs to be read properly.

Previous experiments have shown that assumptions about causal directionality

influence how the participants of the experiments compute statistical contingencies

(Waldmann, 1996, 2000, in press; Waldmann & Holyoak, 1992; Waldmann et al.,

1995). The present set of studies focuses on how assumptions about the causal role

of potential co-factors or other correlated events influence statistical estimation. The

three presented experiments show that identical observations may yield radically

different causal strength estimates depending on assumptions about the causal role

of the learning events. All three experiments studied causal structures with three

events in which the task consists of estimating the strength of the relation between a

target cause and a target effect. The manipulations involved the role of a third event.

The general goal was to explore the conditions in which participants would tend to

take this third event into account and hold it constant or tend to neglect it.

In the past few years, philosophers and statisticians have analyzed the conditions

under which it is necessary to hold a co-factor constant and when it is prohibited to

hold it constant (Cartwright, 1989; Eells, 1991; Pearl, 1996, 2000). The behavior of

the participants conformed surprisingly well to these philosophical analyses (see

also Section 2.3.4). Experiments 1 and 2 show that, at least under favorable circum-

stances, participants tended to hold a co-factor constant when they assumed that it

was independently causally relevant for the target effect, whereas they tended to

ignore it when it was causally irrelevant. This strategy is in line with the Cartwright

(1983) prescription only to conditionalize on causally relevant co-factors. Experi-

ment 3 extends these findings to more complex structures. The results show that

participants tended to conditionalize on co-factors when they represented potential

alternative causes of the target effect (common-effect structure), whereas they

ignored these events when they represented a collateral effect of the target cause

(common-cause structure) or when they were part of a causal chain. This strategy

implicitly follows the prescription to conditionalize on factors that are independent

alternative causes or interact with the target cause and not to conditionalize on

factors that are direct or indirect effects of the target cause (Eells, 1991). The results
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about causal chains furthermore reveal that, at least in the type of task used in

Experiment 3, untutored participants share the intuition with researchers in the

area of Bayesian causal modeling (Glymour & Cooper, 1999) that it is reasonable

to assume that chains embody the Markov condition. The Markov condition for

chains states that indirectly related causal events are independent conditional upon

the intermediate events.

The role of prior knowledge in the selection of processing strategies is an inter-

esting example of how specific causal knowledge and abstract strategies of causal

strength assessment are interconnected. It is true that knowledge about the causal

relevance of the grouping variables is domain-specific (e.g. the fact that gender is a

causally relevant factor). However, unlike in previous research on the transfer of

specific causal knowledge which showed that learners tend to distort observed

covariations in the direction of prior assumptions (e.g. Chapman & Chapman,

1967, 1969), this type of knowledge does not directly bias the sign or size of

estimates of the strength of a causal relation between the target cause and the target

effect. Whether or not a cause generates or prevents the effect is completely depen-

dent on the structure of the learning input. To obtain the correct results, abstract

knowledge has to be activated about what type of contingency assessment (e.g.

unconditional or conditional) should be chosen. These abstract rules of causal

strength assessment are then instantiated based on specific assumptions about the

relevant causal factors at hand (e.g. gender). Thus, the dramatic reversals obtained in

situations exemplifying Simpson’s paradox are not due to selective processing of

individual cases or knowledge-driven distortions of the contingency estimates. They

rather are a natural consequence of unbiased processing of differentially grouped

cases. Therefore, these results demonstrate that besides covariation and specific

knowledge about mechanisms abstract knowledge about causal structure may also

exert a powerful influence on reasoning and learning.

Prior assumptions about causal roles is only one factor influencing contingency

estimation. Conditionalizing on events and computing conditional contingencies is

sometimes an effortful process that may surpass the cognitive capacity of the lear-

ners. Experiment 2 provides evidence for the fact that processing effort also deter-

mines how contingencies are assessed. Despite prior knowledge about the causal

relevance of a co-factors participants inappropriately tended to ignore this co-factor

when the task of separating the learning events into subgroups was too demanding.

In summary, one of the general problems of causal induction is to select among

the many possible ways of processing statistical information. Without prior assump-

tions about causal roles the amount of data and the number of necessary computa-

tions may easily surpass our capacity even in fairly simple domains. Assumptions

about causal structure may greatly reduce the complexity of this task by implicitly

encoding information about interdependencies and conditional independencies

among events (see Pearl, 1988; Peng & Reggia, 1990; Spirtes et al., 1993). The

presented experiments demonstrate that humans are attempting to make the task of

learning cognitively manageable. The results of the experiments show that both

assumptions about causal structure and processing demands prove to be potent

pragmatic constraints on learning.
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7.1. The role of the learning data

In all experiments, variants of Simpson’s paradox were used in the design of the

learning materials. The main reason for this choice was that Simpson’s paradox

offers a method to empirically decide whether participants conditionalized on a co-

factor or computed unconditional contingencies. In situations modeled after Simp-

son’s paradox these two types of contingencies reverse. However, the question may

be raised whether the statistical structure of the learning data was always plausible.

Experiment 1, for example, was modeled after an example discussed by Cartwright

(1983) (the Berkeley admission problem) that was used to demonstrate that one

should conditionalize on causally relevant (departments) but not causally irrelevant

events (roller skating skills). Eells and Sober (1983) argue against this recommen-

dation that in the latter case no paradox should arise in the real world since a causally

irrelevant factor, such as roller skating skills, should turn out to be uncorrelated with

the causal factors, for example the tendency to apply to the different departments.

Similarly in Experiment 1 the assignment to investigators should turn out to be

random unless there is a hidden causal relation involved. This observation led the

philosopher Spohn (1990) to recommend to conditionalize on all temporally prior

factors independent of their causal relevance. This should take care of causally

relevant co-factors, and should not make a difference when irrelevant factors are

held constant. However, from a psychological point of view it should be pointed out

that these philosophical analyses assume the ideal case of statistical information that

is representative for the population. In realistic learning situations the learning data

may be sparse and therefore distorted so that accidental correlations may occur.

Thus, it may be reasonable to let prior knowledge guide processing instead of

relying too much on the representativeness of the learning data. Also, even if

conditionalizing on all prior factors led to correct results, the present experiments

show that participants, if anything, prefer to not conditionalize unless prior knowl-

edge dictates it to take co-factors into account. Conditionalizing in many situations

is a demanding process that participants rather avoid unless pressed. Thus, Cart-

wright’s distinction between causally relevant and irrelevant co-factors seems to be

adopted by human learners even when the statistical structure contradicts the irre-

levance assumption.

The relatively strong influence of top-down knowledge despite statistical patterns

in the learning input that contradict these assumptions generally raises the question

of what role bottom-up information plays. The example of the statistical implica-

tions of causal irrelevance may be extended to other causal structures. Causal struc-

tures generally imply empirical patterns that may or may not hold in the learning

data. For example, causal chains and common-cause structures imply intercorrela-

tions among the involved events, whereas two independent causes of a common

effect would be expected to be independent of each other (see Pearl, 1988). Thus, the

statistical structure of the learning input presented in Experiment 3, which was

identical in all four conditions, proved more or less compatible with the different

causal structures suggested in the initial instructions.

The results of the experiments show little sensitivity to such potential
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mismatches. Participants generally were not aware of the full statistical pattern

presented to them. No participant became aware of the fact that the data contained

a paradox (see also Fiedler et al., in press). The participants rather decided on the

basis of their prior assumptions to follow a specific analytical strategy (e.g. to

compute conditional or unconditional contingencies) without attempting to explore

alternative strategies. Therefore, only a subset of the potential statistical information

was generated.

There is little evidence that causal structures are induced solely by means of a

complete analysis of the statistical information in the learning input. In this regard,

our theory (“causal model theory”) notably deviates from normative accounts that

have been developed in philosophy and artificial intelligence research (e.g. Pearl,

1988; Spirtes et al., 1993). One of the most important goals of these theories is to

develop methods for inducing causal structures from covariation information alone

with minimal entering assumptions. However, the present experiments show that

this strategy is simply too complex to be computationally feasible for humans. It is

more plausible to assume that participants generally enter the task with concrete or

abstract prior assumptions about the causal structure to be studied. The analysis of

the learning input then allows the learner to fill in the missing information into the

hypothesized causal models (e.g. statistical contingency information). Only if this

information or other learning feedback is blatantly incompatible with the hypothe-

sized causal models may the learner attempt to revise parts of the model. But

revision of initial models certainly is a demanding task that learners tend to avoid

unless pressed. Waldmann et al. (1995) have shown that given enough time some

participants are eventually able to learn about domains that are inconsistent with

prior assumptions but many participants were unable to revise the initial models

within the given time frame. Unlike in the present experiments, these studies used a

corrective learning procedure in which active predictions were required. Thus, the

present studies may show that participants do not explicitly test structural implica-

tions embodied in causal models, whereas participants may implicitly become aware

of incompatibilities when corrective feedback proves the inadequacy of the initial

causal model (see also Ahn & Mooney, 1995; Schaller, Asp, Rosell, & Heim, 1996;

Waldmann & Martignon, 1998).

This hypothesis raises the question of whether part of the reason for the strong

impact of top-down assumptions may have been that the presentation of lists may

have made it difficult to implicitly become aware of statistical relations that were not

actively sought out. Whereas other learning procedures, such as trial-by-trial learn-

ing, may force learners to encode all learning events, list learning allows them to

neglect parts of the list that are deemed irrelevant. However, Experiment 2 used a

trial-by-trial learning format and the results closely matched the results of the

experiments using the list format. Nevertheless, there are other studies using trial-

by-trial learning with a random order of trials in which conditionalization could be

reliably found (e.g. Spellman, 1996a,b). One reason for the divergence could be that

Spellman used more salient cover stories that emphasized the causal relevance of all

the causal factors. In her experiments participants observed pictorially represented

trials in which different colored liquids were simultaneously poured onto a plant
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which made the causal impact of both liquids visually salient. Furthermore, in the

initial instruction it was made clear that these liquids were either fertilizers or weed

killers. Thus, it was obvious to participants that both liquids were causally relevant,

and that the two causes may even cancel each other out. By contrast, the cover

stories in our Experiment 2 only mentioned the possibility that the drug may have

different effects on males and females. Furthermore, there was no reason to expect

reversals of effects (as with fertilizers and weed killers).

Similarly with causal chains there may be learning conditions which make it

easier to become aware of the fact that the Markov condition is violated. In a recent

study, Young, Johnson, and Wasserman (2000) have used an occasion setting para-

digm with trials in which an effect was temporally preceded by two causal factors.

The results showed that participants had a strong tendency to conditionalize the

causes on each other when a temporal gap separated them (as in a causal chain).

Thus, trial-by-trial learning of chain structures may increase the tendency of learners

to notice interactions between the elements of the chain.

7.2. The role of processing effort

If correct, prior knowledge about causal roles reduces complexity and leads to

correct causal representations. In contrast, the beneficial role of saving processing

effort by resorting to unconditional contingencies is less clear. Causal structures

following Simpson’s paradox are a clear example of how this strategy may lead to

erroneous judgments. However, interactions among causal factors that lead to rever-

sals of conditional and unconditional contingencies may not be as frequent as the

present examples suggest. In the majority of real-world situations, conditional and

unconditional contingencies may at least point in the same direction. We hardly

would be able to arrive at causal representations if non-linear interactions and

reversals of the Simpson’s paradox variety were the rule (Dawes, 1988). Sometimes

it may even be the goal of the learner to obtain information about a causal event

across a number of varying contexts, and in such situations it may be adequate to

base the judgment on the overall probabilistic relation observed in a sample of

representative contexts (see Shafer, 1996). A politician, for example, who is inter-

ested in the general impact of a new health-related regulation may just be interested

in the general average effect of the new policy, and not in the underlying causal

relations. Of course, when the goal is to assess specific causal relations independent

of other causal factors, contingency estimates that take into account potential causal

co-factors are less biased. And indeed the experiments show that the learners attempt

to hold such causal factors constant in such tasks whenever it is possible. When the

task is too complex, however, the learners will have to trade off effort against the

likelihood of deviating substantially from the less distorted estimates.

An interesting question for future research is whether learners are able to adap-

tively regulate the effort they invest in analyzing statistical relations. Research on

decision making has shown that the complexity of information processing is often

adaptively varied depending on assessments of the costs and benefits of making

correct judgments (Payne, Bettman, & Johnson, 1993). It seems plausible to expect
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that processing effort and the plausibility of the causal model interact. Learners may

have a tendency to simplify the task when there are no convincing reasons to invest

more effort, whereas they may use more effortful strategies with cover stories that

suggest the relevance of these strategies.

In summary, the results of the present experiments along with related research

suggest that causal induction is determined by a complex interaction between top-

down assumptions, goals of the learner, structure of the learning input, type of

learning task, and assessments of trade-offs between strategies and learning effort.

The present studies only present a first step in elucidating these complex interac-

tions.
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