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Abstract 
 

Following up on previous work by Thagard (1989, 2000) we 
have developed a connectionist constraint satisfaction model 
which aims at capturing a wide variety of tasks involving 
causal cognitions, including causal reasoning, learning, hy-
pothesis testing, and prediction. We will show that this model 
predicts a number of recent findings, such as asymmetries of 
blocking, and asymmetries of sensitivity to structural implica-
tions of causal models in explicit versus implicit tasks. 

Introduction 
Causal reasoning has been widely investigated during the 
last decade, which has led to a number of interesting novel 
findings (see Shanks, Holyoak, & Medin, 1996; Hagmayer 
& Waldmann, 2001, for overviews). For example, it has 
been shown that participants’ causal judgments are sensitive 
to the  contingency between the cause and the effect, and 
that people’s judgments reflect the causal models underlying 
the observed learning events (see Hagmayer & Waldmann, 
2001; Waldmann, 1996). Moreover, causal reasoning has 
been studied in the context of a number of different tasks, 
such as learning, reasoning, categorization, or hypothesis 
testing.  

Most psychological theories and computational models 
of causal learning and reasoning are rooted in two traditions. 
They are either based on associationistic or on probabilistic 
or Bayesian models (see Shanks et al., 1996; Thagard, 
2000). Both kinds of models have been criticized. Associa-
tionistic learning networks have proven unable to capture 
the fundamental semantics of causal models because they 
are insensitive to the differences between learning events 
that represent causes versus effects (see Waldmann, 1996). 
By contrast, Bayesian networks are perfectly capable of rep-
resenting causal models with links directed from causes to 
effects (see Pearl, 2000). However, although the goal of 
these networks is to reduce the complexity of purely prob-
abilistic reasoning, realistic Bayesian models still require 
fairly complex computations, and they presuppose compe-
tencies in reasoning with numerical probabilities which seem 
unrealistic for untutored people (for a detailed critique of 
these models see Thagard, 2000).  

The aim of this paper is to introduce a more qualitatively 
oriented, connectionist constraint satisfaction model of 
causal reasoning and learning. Our model is inspired by 
Thagard’s (2000) suggestion that constraint satisfaction 

models may qualitatively capture many insights underlying 
normative Bayesian network models in spite of the fact that 
constraint satisfaction model use computationally far sim-
pler, and therefore psychologically more realistic  processes. 
The model differs from standard associationist learning 
models (e.g., Rescorla & Wagner, 1972) in that it is capable 
of expressing basic differences between causal models. Our 
model embodies a uniform mechanism of learning and rea-
soning, which assesses the fit between data and causal mod-
els. This architecture allows us to model a wide range of 
different tasks within a unified model, which in the literature 
have so far been treated as separate, such as learning and 
hypothesis testing.  

Constraint Satisfaction Models  
Constraint satisfaction models (Thagard, 1989, 2000) aim at 
capturing qualitative aspects of everyday reasoning. Their 
basic assumption is that people hold a set of interconnected 
beliefs. The beliefs pose constraints on each other, they ei-
ther support each other, contradict each other, or are unre-
lated. Coherence between the beliefs can be achieved by 
processes which attempt to honor these constraints.  

Within a constraint satisfaction model beliefs are repre-
sented as nodes which represent propositions (e.g., “A 
causes B”). The nodes are connected by symmetric relations. 
The numerical activation of the nodes indicates the strength 
of the belief in the proposition. A belief that is highly acti-
vated is held strongly, a belief that is negatively activated is 
rejected. The activation of a node depends on the activation 
of all other nodes with which it is connected. More pre-
cisely, the net input to a single node j from all other nodes i 
is defined as the weighted sum of the activation a of all re-
lated nodes (following Thagard, 1989, p.466, eq.5):  

 Netj = ∑i wijai(t)     (1) 
The weights w represent the strength of the connection of 
the beliefs. In our simulations, they are generally pre-set to 
default values which are either positive or negative and re-
main constant throughout the simulation. At the beginning of 
the simulations, the activation of the nodes representing hy-
pothesis are set to a low default value. However, nodes rep-
resenting empirical evidence are connected to a special acti-
vation node whose activation remains constant at 1.0. This 
architecture allows us to capture the intuition that more faith 
is put into empirical evidence than into theoretical hypothe-
ses (see Thagard, 1989). To update the activation in each 
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cycle of the simulation, first the net input  netj to each node 
is computed using Equation 1. Second the activation of all 
nodes is updated using the following equation (Thagard, 
1989, p.446, eq.4): 
 aj(t+1)  = aj(t)(1-θ)+netj(max-aj(t)) if netj>0 
  = aj(t)(1-θ)+netj(aj(t)-min) otherwise.   (2) 
In Equation 2 θ is a decay parameter that decrements the 
activity of each node in every cycle, min represents  the 
minimum activation (-1) and max the maximum activation 
(+1). The activations of all nodes are updated until a stable 
equilibrium is reached, which means that the activation of all 
nodes do no longer substantially change.  

 The Model 
Following causal-model theory (Waldmann, 1996) we as-
sume that people typically enter causal tasks with initial as-
sumptions about the causal model they are going to observe. 
Even though specific knowledge about causal relations may 
not always be available, people often bring to bear knowl-
edge about abstract features of the models, such as the dis-
tinction between events that refer to potential causes and 
events that refer to effects. In virtually all psychological 
studies this information can be gleaned from the initial in-
structions and the materials (see Waldmann, 1996).  

Figure 1 displays an example of how the model repre-
sents a causal model. The nodes represent either causal hy-
potheses or observable events. The causal hypothesis node 
at the top represents a structural causal hypothesis (H1), in 
this case the hypothesis that the three events e1, e2, x form a 
common-effect structure with e1 and e2 as the two alternative 
causes and x as the common effect. The two nodes on the 
middle level refer to the two causal relations H2 and H3 that 
are part of the common-effect model with two causes and a 
single effect. The nodes on the lowest level refer to all pat-
terns of events that can be observed with three events (a dot 
represents “and”). On the left side, the nodes represent pat-
terns of three events, in the middle pairs, and on the right 
side single events. Not only present but also the correspond-
ing absent events are represented within this model (for ex-
ample ~x). The links connecting the nodes represent belief 
relations. Thus, they do not represent probabilities or causal 
relations as in Bayesian models. There are two different 
kinds of connections between the nodes. Solid lines indicate 
excitatory links, dashed lines inhibitory links. How are the 
connections defined? A connection is positive if the proposi-
tions support each other. For example, if all three events are 
present, the observation is in accordance with both hypothe-
ses H2 and H3. This pattern might be observed if both e1 
and e2 cause x. Therefore the evidence node e1.e2.x is posi-
tively connected to H2 and H3. In general, a hypothesis is 
positively connected to an evidence node if the events men-
tioned in the hypothesis are either all present or all absent. If 
this is not the case, that is if one of the relevant events speci-
fied in the hypothesis is absent, the link is assigned the nega-
tive default value.  Figure 1 does not display the special ac-
tivation node. This node was pre-set to 1.0 and attached to 
event nodes describing present events in the respective ex-
periment. 
 

Figure 1: Constraint satisfaction model of causal learning 
and reasoning. See text for further explanations. 

 
In Figure 1, the dashed line between the hypotheses H1 and 
H2, which signifies an inhibitory link, is of special interest. 
The network represents a common-effect structure. This 
means that there are two causes e1 and e2 which compete in 
explaining the occurrence of effect x. Therefore the two 
hypotheses referring to the individual causal relations have 
to be connected by a inhibitory link (see also Thagard, 
2000). However, both hypotheses H2 and H3 are positively 
connected to the structural hypothesis H1. By contrast, a 
common-cause structure is represented slightly different. In 
such a structure, event x would be the common cause of the 
two effects e1 and e2. A model of this structure looks almost 
identical to the one for the common-effect structure in Fig-
ure 1. There is only one very important difference. Because 
there is no competition between the effects of a common 
cause, a common-cause model has no inhibitory link be-
tween H2 and H3. All other nodes and links in the two mod-
els are identical.  

Both the common-effect and the common-cause model 
were implemented using Microsoft Excel. Default values 
were adopted from the literature if not indicated otherwise 
(Thagard, 1989). Initial activations were set to 0.01, inhibi-
tory links between nodes to –0.05, and excitatory links to 
+0.05. The inhibitory link between H1 and H2 within the 
common-effect model was pre-set to a value of –0.20. The 
special activation node was attached to all evidence nodes. 
The additional activation was divided among the evidence 
nodes according to the relative frequency of the evidence in 
the learning input. This principle captures the intuition that 
more faith is put into evidence that is observed more fre-
quently. 

Evaluation 
In order to evaluate the proposed constraint satisfaction 
model different tasks and paradigms from the literature on 
causal learning and reasoning were modeled. One of our 
main goals was to show that the same architecture can be 
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used to simulate different types of tasks. However, different 
tasks required different sections of the model depicted in 
Figure 1. We used two principles for the construction of task 
specific networks. The first principle is that we only in-
cluded the event nodes that corresponded to the event pat-
terns observed in the learning phase or that corresponded to 
events that have to be evaluated or predicted in the test 
phase. For example, to model a task in which only event 
triples were shown, only the event nodes on the left side of 
the event layer in Figure 1 would be incorporated in the 
model. However, if the task following the learning phase 
required the prediction of single events, the corresponding 
nodes for single events would have to be added to the event 
layer. The second principle is that only the hypothesis nodes 
were included that represent hypotheses that are given or 
suggested to participants. These two principles ensure that 
for each paradigm a minimally sufficient sub-model of the 
complete model is instantiated.  

Test 1: Contingency Learning 
An important finding is that learners are sensitive to contin-
gencies between events in causal learning, that is they are 
not only sensitive to the probability of the effect in the pres-
ence but also in the absence of the cause (see Shanks et al., 
1996). The measure ∆P, that is the difference between these 
two conditional probabilities, is a possible quantitative 
measure of the degree of contingency. To model this task, 
only one hypothesis about a single causal connection is 
needed (H2, for example). As learning input participants in a 
typical experiment see sequences of trials. Trials consist of 
pairs of causally related events. Different contingencies are 
realized by showing different frequencies of the four possi-
ble patterns of events. To model causal learning based on 
contingency information we used a constraint satisfaction 
model which consisted of H2 and the four evidence nodes in 
Column 3 on the bottom layer of Figure 1 (e1.x, e1.~x, 
~e1.x, ~e1.~x). The special activation node was attached to 
all four evidence nodes. Table 1 shows the frequencies and 
the resulting contingencies (∆P). 

   
Table 1:  Data used in Test 1. 

 
Sam
ple e1.x e1.~x ~e1.x ~e1.~x ∆P 

1 100 0 0 100 1.0 

2 90 10 10 90 0.8 

3 70 30 30 70 0.4 

4 50 50 50 50 0.0 

 
Figure 2 shows the results of the simulation for the node H2. 
As the graph shows, the model learns about the causal rela-
tionship if the contingency exceeds zero. The model is 
clearly sensitive to contingencies. The activation of the hy-
pothesis node H2 depends on the strength of the statistical 
relation between the events: The higher the contingency 

between the events, the higher the activation for H2 turns 
out to be. If there is no statistical relation, the activation of 
the hypothesis remains at zero (i.e., the model holds the be-
lief that there is no causal relation between the causal 
events). 

Figure 2: Sensitivity to contingencies (Test 1). 
Activation of hypothesis node H2 for  
∆P = 1.0 (top), 0.8, 0.4, 0.0 (bottom). 

 
Additional tests with other sets of data showed, that the ob-
served pattern of results holds as long as there are not ex-
treme event distributions. However, if the cause is either 
necessary or sufficient for the effect the model tends to ac-
cepts the hypothesis even with low objective contingencies. 

Test 2: Asymmetries of Blocking 
Blocking belongs to the central phenomena observed in as-
sociative learning which, among other findings, have moti-
vated learning rules that embody cue competition (e.g., Res-
corla & Wagner, 1972). A typical blocking experiment con-
sists of two learning phases. In Phase 1 participants learn 
that two events e1 and x are either both present or absent. In 
Phase 2 a third event e2 is introduced. Now all three events 
are either present or absent. In both phases events e1 and e2 
represent cues and x the outcome to be predicted. Associa-
tive theories generally predict a blocking effect which means 
that participants should be reluctant about the causal status 
of the redundant event e2 that has been constantly paired 
with the predictive event e1 from Phase 1. This prediction 
has come under attack by recent findings that have shown 
that the blocking effect depends on the causal model learn-
ers bring to bear on the task (see Waldmann, 1996, 2000). If 
participants assume that e1 and e2 are the causes of x (com-
mon-effect structure) a blocking effect can be seen. In con-
trast, if participants assume that e1 and e2 are the collateral 
effects of the common cause x (common-cause structure), no 
blocking of e2 is observed. In this condition, learners tend to 
view both e1 and e2 as equally valid diagnostic cues of x.  

To model blocking, we used a network  that was ex-
tended after Phase 1. In Phase 1, the net consisted of a hy-
pothesis node (H2) and the nodes for patterns of two events 
(e1, x). Thus, in Phase 1 the model corresponded to the one 
used to model contingency learning (Test 1). After Phase 1, 
the final activation of the hypothesis node was transferred to 
Phase 2. In Phase 2, the network consisted of two nodes for 
the two causal hypotheses (H2 and H3), and nodes that rep-
resented patterns of three events, the patterns participants 
observed within the learning phase. Furthermore, the node 
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H1 was included, which, depending on the condition, either 
coded a common-cause or a common-effect hypothesis. The 
nodes for the event pairs from Phase 1 were removed.  

Figure 3 shows the activation of the two hypotheses re-
ferring to the causal relations in Phase 1 and 2. Figure 3A 
depicts the activation for the common-cause model and Fig-
ure 3B for the common-effect model.  

Figure 3A: Simulation of a blocking paradigm (Test 2). Ac-
tivation of hypothesis nodes for a common-cause model. 

The solid line represents activation of H2:x→e1, the dotted 
line of H3:x→e2. Phase 2 started at the 101st. cycle. 

 
The model shows no blocking for event e2 in the context of 
the common-cause model. It quickly acquires the belief that 
there is a causal connection between x and e2. 

Figure 3B: Simulation of a blocking paradigm (Test 2). Ac-
tivation of hypothesis nodes for a common-effect structure. 
The upper line represents activation of H2:e1→x, the lower 

line of H3:e2→x. Phase 2 started at the 101st. cycle. 
 
For the common-effect model the simulation shows blocking 
of the second cause, that is the second hypothesis is believed 
to be wrong. Thus, the simulations closely correspond to the 
empirical finding that blocking interacts with the structure of 
the causal model used to interpret the learning data. 

Test 3: Testing Complex Causal Hypotheses 
he first and the second test of the model used phenomena 
from the literature on causal learning. We now want to turn 
to a completely different paradigm, hypothesis testing. In 
experiments on causal learning participants are typically 

instructed about a causal structure, and the task is to learn 
about the causal relations within the structure. They are not 
asked whether they believe that the structure is supported by 
the learning data or not. In recent experiments (Hagmayer, 
2001; Hagmayer & Waldmann, 2001) we gave participants 
the task to test a complex causal hypothesis. For example, 
we asked them whether three observed events support a 
common-cause hypothesis or not. Normatively this task 
should be solved by testing the implications of the given 
structural hypothesis. For example, a common-cause model 
implies a (spurious) correlation of the effects of the single 
common cause. In contrast, a common-effect structure does 
not imply a correlation of the different causes of the joint 
effect. Unless there is an additional hidden event that causes 
a correlation among the causes, they should be uncorrelated. 
In the experiment participants were given data which either 
displayed a correlation between all three events (data set 1) 
or correlations between e1-x and e2-x only, that is e1 and e2 
were marginally independent in this data (data set 2). Data 
set 1 was consistent with a common-cause hypothesis which 
implies correlations between all three events. In contrast, 
data set 2 favors the common-effect hypothesis with x as the 
effect and e1 and e2 as independent causes. However, in a 
series of experiments we found that participants were not 
aware of these differential structural implications when test-
ing the two hypotheses. Instead they checked whether the 
individual causal relations within the complex structures 
held (e.g., e1-x). Thus, participants dismissed a hypothesis if 
one of the assumed causal links was missing. However, they 
proved unable to distinguish between the common-cause and 
the common-effect structure when both structures specified 
causal connections between the same events (regardless of 
the direction).  

To model this task we used the model without the nodes 
for event pairs and individual events. The special activation 
node was connected to the patterns of three events. As be-
fore the activation of the individual event patterns was pro-
portional to the frequency of the respective pattern in the 
data. To test the model, we used three sets of data. Either all 
three events were correlated (data set 1), e1 and x, and e2 
and x were correlated and e1 and e2 were marginally inde-
pendent (data set 2), or e1 and x, and e1 and e2 were corre-
lated, and e2 and x were uncorrelated (data set 3). As com-
peting hypotheses we either used a common-cause model 
with x as the common cause, or a common-effect model with 
x as the common effect. Figure 4 shows the activation of the 
node H1 which represents the hypothesis that the respective 
causal model underlies the observed data.  

Figure 4A shows the results for the common-cause hy-
pothesis, Figure 4B for the common-effect hypothesis. The 
results clearly mirror the judgments of our participants. 
Whenever the two assumed causal relations within either 
causal model were represented in the data, the structural 
hypothesis was accepted (solid lines), if one link was miss-
ing the hypothesis was rejected (dotted line). 
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Figure 4A: Activation of hypothesis node H1 for a common-
cause model (Test 3). The solid lines represent the activa-
tions for data set 1 and 2, the dotted line the activations for 

data set 3. 
 

Figure 4B: Activation of hypothesis node H1 for a common-
effect model (Test 3). The solid lines represent the activa-
tions for data set 1 and 2, the dashed line at the bottom the 

activations for data set 3 
 
One slight deviation from our empirical findings was ob-
served. In early cycles there seems to be an  effect favoring  
the common-effect hypothesis with data consistent with this 
hypothesis. However, the difference between the hypotheses 
is relatively small and further decreases after 100 updating 
cycles. Thus, the results are consistent with participants’ 
insensitivity to structural implications of causal models in 
hypothesis testing tasks. 

Why does the model not differentiate between the two 
causal structures? The reason is that it is assumed that com-
plex structural hypotheses are not directly linked to empiri-
cal evidence. In our model empirical evidence is connected 
to the hypotheses that represent individual causal links 
which in turn are linked to more complex model-related 
hypotheses. This architecture  allows it to model learning 
and hypothesis testing within the same model. It also seems 
to capture the empirical finding that participants can easily 
decide whether a certain pattern of events supports a simple 
causal hypothesis, but have a hard time to relate event pat-
terns to complex causal hypotheses.  

Test 4: Causal Inferences  
In the previous section we have mentioned studies showing 
insensitivity to spurious relations implied by causal models. 
A last test for our model is a task in which participants have 
to predict other events under the assumption that a certain 

causal model holds. Interestingly we have empirically dem-
onstrated sensitivity to structural implications of causal 
models in this more implicit task (Hagmayer & Waldmann, 
2000). In this task participants do not have to evaluate the 
validity of a causal model in light of observed evidence but 
rather are instructed to use causal models when predicting 
individual events. In our experiments we presented partici-
pants with two learning phases in which they learned about 
two causal relations one at a time. Thus, in each phase par-
ticipants only received information about the presence and 
absence of two events (x and e1, or x and e2). They never 
saw patterns of all three events during the experiment. The 
initial instructions described the two causal relations, which 
were identically presented across conditions, either as parts 
of a common-cause model with x as the cause or as part of  a 
common-effect model with x as the effect. After participants 
had learned about the two causal relations we asked them to 
predict whether e1 and e2 were present given that x was 
present. We found that participants were more likely to pre-
dict that both e1 and e2 would co-occur when x was viewed 
as the common cause than when it was seen as a common 
effect. Thus, in this more implicit task the predictions ex-
pressed knowledge about structural implications of causal 
models. In particular, participants’ predicted patterns em-
bodying a spurious correlation among the effects of a com-
mon cause, whereas the causes of a common effect tended to 
be marginally uncorrelated in the predicted patterns. By con-
trast, in a more direct task which required explicit judgments 
about correlations, no such sensitivity was observed, which 
is consistent with the results reported in the previous section.   

To model this experiment we eventually used the com-
plete network depicted in Figure 1 which was successively 
augmented according to our two principles. In Phase 1, the 
learning phase, patterns of two events were connected to the 
hypotheses H2 and H3. Depending on the learning condi-
tion, these two hypotheses were either linked to a common-
cause or a common-effect hypothesis (H1). The activations 
of the hypothesis nodes at the end of Phase 1 were used as 
initial activation values in Phase 2. In Phase 2 the model 
consisted of the three hypothesis nodes, the nodes for pat-
terns of three events and the nodes representing single 
events. The single event nodes were included because the 
task required the prediction of individual events. The special 
activation node was now attached to event x. The model 
then predicted both the other two individual events and pat-
terns of all three events.  

The model quickly learned the causal relations during 
Phase 1 of the experiment. Figure 5 depicts the results of 
Phase 2. Figure 5A shows the predictions of the model for 
the condition in which participants assumed a common-
cause model, Figure 5B shows the results for the common-
effect condition. The results of the simulations are consistent 
with the behavior we have observed in our participants. 
When the model assumes a common-cause model the pres-
ence of x leads to a high positive activation of the two ef-
fects e1 and e2. This means that the model tends to prefer 
the prediction that the two effects of a common cause co-
occur. In contrast, for the common-effect structure the 
model does not show such a preference. In this condition, 
both causes or either one of them equally qualify as possible 
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explanations of the observed effect. This means that our 
model, similar to the one Thagard (2000) has proposed, 
tends to “explain away” the second cause when one of the 
competing causes is present. 
 

Figure 5A: Implicit causal inferences (Test 4). 
Activation of single event nodes for the common-cause 

model: Event x (top), events e1 and e2 (bottom) 
 

Figure 5B: Implicit causal inferences (Test 4). 
Activation of single event nodes for the common-effect 

model: Event x (top), event e1 (middle), event e2 (bottom) 

Discussion 
A constraint satisfaction model of causal learning and rea-
soning was presented in this paper that extended the archi-
tecture and scope of the model proposed by Thagard (2000). 
Thagard’s model focused upon causal explanations of singu-
lar events and belief updating. Our aim was to create a 
model that allows it to model both learning and reasoning 
within causal models. The model was applied to four differ-
ent tasks which, in part, have produced findings that are 
critical for extant theories of causal cognition. The model 
successfully modeled people’s sensitivity to structural impli-
cations of causal models in tasks involving learning and pre-
dictions whereas the same model also predicted that people 
would fail in tasks which required explicit knowledge of the 
statistical implications of causal models. 

One question that might be raised is whether the pro-
posed model really captures learning or just models causal 
judgment. In our view learning is not constrained to trial by 
trial learning. Causal learning might also be based on sum-
mary data. Both kinds of data yield converging results in 
learning (see Hagmayer, 2001 for an overview). Currently 
the model uses summary data. However, this does not mean 

that Constraint Satisfaction Models cannot incorporate trial 
by trial learning (see XX for a learning algorithm). The pro-
posed model combines learning and judgmental processes. 
This allows us to model both learning and reasoning tasks 
within the same architecture. 

In summary, our constraint satisfaction model seems to offer 
a promising new way to model causal learning and reason-
ing. It is capable of modeling phenomena in a wide range of 
different tasks, which thus far have been treated as separate 
in the literature. Relative to normative Bayesian models, our 
connectionist model allows it to simulate a large number of 
different tasks and different phenomena while using fairly 
simple computational routines. It proved capable of captur-
ing a number of recent phenomena that have presented prob-
lems to extant models of causal cognition. More tests of the 
model clearly seem warranted.  
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