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Abstract 

Causal learning typically faces the problem of being confronted with a large number of 

potentially relevant statistical relations.  One type of constraint that may guide the choice of 

appropriate statistical indicators of causality are assumptions about temporal delays between 

causes and effects. A few previous studies have investigated the role of temporal relations 

between learning events that are experienced in real time. However, human causal reasoning 

may also be based on verbally described events rather than direct experiences of the events to 

which the descriptions refer. The aim of this paper is to investigate whether assumptions 

about the temporal characteristics of the events that are being described also affect causal 

judgment. Three experiments are presented that demonstrate that different temporal 

assumptions about causal delays may lead to dramatically different causal judgments despite 

identical learning inputs.  In particular, the experiments show that temporal assumptions guide 

the choice of appropriate statistical indicators of causality by structuring the event stream 

(Experiment 1), by selecting the potential causes among a set of competing candidates 

(Experiment 2), and by influencing the level of aggregation of events (Experiment 3).  
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        Assumptions about temporal intervals between events guide our causal judgments in 

science and in everyday life. Suppose, for example, we are suffering from a severe headache 

and take a new medicine that promises relief.  How long are we going to wait until we 

swallow more of this drug because the first dose did not help?  We will probably base our 

decision on assumptions about the expected delay between taking the drug and experiencing 

an effect.  If we assume that it would take thirty minutes and one hour has already passed 

without any effect, we will probably conclude that the drug was not effective and possibly 

decide to increase the dose.  However, if we assume that it will take more than one hour then 

we may wait. Therefore the same fact may lead to very different causal judgments and 

actions.  

Experienced versus Described Learning Events 

Previous research on the role of time in learning has focused on learning events that 

are being observed in real time. The research on the role of spatio-temporal contiguity is a 

prime example.  A large number of studies have shown that increasing the temporal delay 

between cause and effect tends to weaken the impression of a causal relation (Bullock et al., 

1982; Leslie & Keeble, 1987; Mendelson & Shultz, 1976; Michotte, 1963; Schlottmann, 

1999; Schlottmann & Shanks, 1992; Siegler, 1976; Siegler & Liebert, 1974; Shultz, 1982; 

Shultz & Kestenbaum, 1985). The focus on learning events that are being observed in real 

time is probably due to the fact that learning theories are rooted in the tradition of animal 

studies which do not allow for alternative presentation modes.  

In contrast, human learning has more flexibility. Besides observing events in real time 

there is also the possibility to learn and reason on the basis of verbally or graphically 

described events.1  In fact, most studies on human causal induction use materials in which 

events are being described rather than directly experienced (e.g., disease classification tasks). 

Described events are also presented in spatio-temporal arrangements. However, the order and 

the timing of the presentation hardly ever mirrors the events that are being described.  If 
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participants in an experiment, for example, receive the information that a 50 year old patient 

suffers from cancer three seconds after the information that he was exposed to asbestos when 

he was a 10 year old child then the 40 year delay is causally relevant whereas the three second 

delay between the consecutive screens presenting the trial is irrelevant. One of the main goals 

of our experiments is to demonstrate that assumptions about the temporal characteristics of 

the events that are being described may also affect learning, even when these temporal 

relations are not directly observed.  

The Role of Temporal Assumptions in Theories of Causal Learning 

The dominant approach to causal learning is the view that causal knowledge is a result 

of association processes. Associative theories model causal learning as the acquisition of 

associative weights between cues and outcomes, regardless of whether the cues represent 

causes and the outcomes effects or vice versa (see Waldmann, 1996). Many of these theories 

have acknowledged the important role of time in learning, but they refer to the timing of cues 

and outcomes and not the timing of the causal events to which the cues and outcomes refer 

(see, for example, Barnet & Miller, 1996; Blaisdell et al., 1998; Gallistel & Gibbon, 2000; 

Schmajuk et al., 1998). This means that these theories blur the distinction between 

experienced and described events. Consequently, a number of researchers working within the 

framework of associationism have claimed that human learning is insensitive to the fact that 

causes temporally precede their effects (e.g., Matute, et al., 1996; Price & Yates, 1993; 

Shanks & Lopez, 1996).   

A second class of theories, the mechanism view (e.g., Ahn et al., 1995; Koslowski, 

1996; Mendelson & Shultz, 1976; Schlottmann, 1999), claims that knowledge about 

mechanisms is the basis for causal reasoning.  Since mechanisms are temporally ordered 

sequences of events, this theory is, in principle, sensitive to temporal aspects. One problem of 

mechanism-based theories is that specific knowledge about mechanisms may not always be 

available. Nevertheless, we may have intuitions about the temporal delay of an effect. 
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Knowledge about temporal delays does not require knowledge about the mechanisms that 

generate them.  For example, we know how long the booting process usually takes on our 

computer although we may not have any further knowledge about the underlying technical 

details. 

A third class of models of causal learning postulates that causal strength estimates are 

based on statistical indicators, such as contingencies, that express the degree of covariation 

between events (e.g., Allan & Jenkins, 1983 ; Cheng & Novick, 1990, 1992; Shaklee & 

Tucker, 1980). Contingency is defined as the difference between the probability of the effect 

in the presence of the cause (P(e|c)) and the probability of the effect in the absence of the 

cause (P(e|~c))(Cheng & Novick, 1992; Eells, 1991; Suppes, 1970; Waldmann, 1996).2 

Covariations between causes and effects are symmetric, and therefore share the same 

problems as associative weights: they are not inherently sensitive to temporal aspects of 

causality (see Waldmann, 1996, Shanks, 1993).   

However, some more recent theories (e.g., causal-model theory; Waldmann, 1996) 

have integrated the assumption of causal priority by assuming a level of causal models which 

consists of hypothetical networks of directed cause-effect relations and a level of statistical 

indicators that serve as empirical evidence.  Causal-model theory explicitly acknowledges the 

necessity of an interaction between prior assumptions about causal events and the processing 

of the learning input. Therefore causal-model theory is prepared to distinguish between 

experienced and described events as it clearly separates between cues and outcomes, the 

learning events experienced in real time, and the causal model that is generated independent 

of the temporal ordering of learning events.  The causal model includes information about 

causal directionality, and may also contain knowledge about the temporal dynamics of the 

described events.  However, thus far, apart from incorporating the temporal priority of causes, 

the role of time has also not been further analyzed within this approach.  Anderson’s (1990) 

rational theory of causal inference is another example of a more recent view that models the 
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influence of temporal cues on causal inferences.  This approach includes a temporal parameter 

in the statistical estimation procedure, and therefore allows it to model the influence of 

different temporal assumptions. However, so far little experimental work has been presented 

within this framework that addresses the role of temporal cues. 

Estimating Causal Strength 

Most theories of causal learning have focused on how estimates of causal strength are 

acquired.  However, these theories have typically neglected the question of how the events are 

selected that enter causal strength assessments.  In everyday life we are typically confronted 

with complex situations in which a large number of statistical relations are potentially 

available.  Even in relatively simple cases with only three events dozens of statistical relations 

could potentially be considered (see also Waldmann & Martignon, 1998).3  Given that it is 

practically impossible for an information processing system with limited capacity to consider 

all possible statistical relations between observed events, it is necessary to constrain the space 

of possible relations.  Adopting the framework of causal-model theory we assume instead that 

people typically enter a causal learning task with assumptions about the causal situation they 

are going to learn about (Waldmann, 1996).  These assumptions determine which 

contingencies are assessed to estimate causal strength. Sometimes these assumptions may be 

very specific (e.g., about concrete mechanisms) but often they are abstract and refer to causal 

structures. Previous work has shown that simply making assumptions about what is a 

potential cause and what is an effect may have a powerful influence on the outcome of 

learning even when no further knowledge about the processes connecting these events is 

available (see Waldmann, 2000, 2001; Waldmann et al., 1995; Waldmann & Holyoak, 1992; 

Waldmann & Hagmayer, 2001). Temporal assumptions are an example of more concrete 

assumptions that might guide causal learning and influence causal judgments. 
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The Influence of Temporal Assumptions 

The aim of the present paper is to investigate the influence of temporal assumptions 

upon causal judgments. How can temporal assumptions influence causal judgments? We 

investigated three possible ways.  First, temporal assumptions can structure sequences of 

events into pairs of related events.  Second, they can select possible cause events for an effect. 

Third, they can influence the aggregation level on which the data are analyzed. 

Temporal assumptions refer to expected lags between causes and their effect.  Thus, in 

a continuous sequence of events these assumptions may combine potentially related events.  

Whether or not these events are causally related will still depend on the observed contingency 

between these events, but prior assumptions will determine which events will be involved in 

contingency assessments.  Figure 1 provides an example that illustrates how different 

assumptions about causal lags may lead to different contingency assessments.  Figure 1 (Panel 

A) depicts the result of relating simultaneously occurring events. The effect is never present 

when the cause occurs, but it is always present when the cause is absent. Thus, the cause 

seems to prevent the effect. However, if the same sequence of events is structured on the basis 

of the assumption that the effect occurs with a lag of one time unit, different event pairs are 

formed (Fig. 1, Panel B). Here the effect always occurs after the cause and never occurs when 

the cause is absent. Thus, the data now indicate a generative cause that deterministically 

produces the effect. In both cases, all events are used in the contingency assessments.  

However, the temporal assumptions about causal lags determines which events are paired 

together, and consequently affect the causal assessments. Experiment 1 investigates this kind 

of influence. 

 ____________________ 
Insert Fig. 1 about here 

                                                  ____________________ 
 
Temporal assumptions may also guide the selection of possible causes.  Explaining a 

certain event requires a selection of causal candidates from the set of preceding events.  Since 
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this set is potentially infinite, it is practically impossible to consider every possible candidate.  

Temporal assumptions may provide useful clues. For example, imagine that an effect E is 

present which might be caused by two different events C1 and C2. Both events, C1 and C2, 

occurred with a time lag ∆t = 2 prior to the effect E. Without any assumptions about temporal 

lags both causal events, C1 and C2, could have caused E. A decision is impossible because 

both are confounded with each other. However, if we assume that causes of the type C1 

normally produce E with a time lag ∆t of 1, and causes of the type C2 produce E with a time 

lag of 2 then a decision is possible. Probable causes are instances of C1 that occurred ∆t = 1 

and instances of C2 that occurred ∆t = 2 prior to the effect E.  Experiment 2 investigates the 

influence of this type of temporal assumptions on the selection of potential causes. 

Temporal assumptions may not only refer to lags between causes and effects, they 

may also specify how an observed stream of events should be segmented into relevant event 

categories.  A typical example are medical or psychotherapeutical intervention studies in 

which researchers often decide to globally compare a pre-treatment with a post-treatment 

stage instead of looking at finer grained relationships between events occurring within these 

stages.  Figure 2 provides an example of how these two levels of temporal aggregation may 

lead to different conclusions.  In the fictitious situation depicted in Figure 2, a treatment, the 

potential cause, is administered several times during a specific period of time, the treatment 

phase.  The treatments may refer to individual doses of a drug that is being tested.  Neither 

before nor after this phase the treatment is delivered.  A global analysis of the effect of the 

treatment would focus on the comparison between the pre- and the post-treatment phase, 

which, in this example, indicates a negative result (Fig. 2, Panel A).  The treatment does not 

increase the probability of occurrence of the effect event (i.e., the absence of the symptom) as 

compared to its probability in the pre-treatment phase.  If anything, this probability decreases.  

However, an analysis that disregards these global phases and focuses on short-term effects of 

single doses of the drug will lead to the opposite conclusion (see Fig. 2, Panel B).  According 
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to this analysis, the effect always occurs after the treatment has been administered but only 

occurs once when no treatment has been delivered.  Experiment 3 investigates the effect of 

this type of temporal assumption. 

____________________ 
Insert Fig. 2 about here 

                                                  ____________________ 
 

In summary, the following three experiments investigate the role of temporal 

assumptions on causal judgments about described events.  Temporal assumptions are 

manipulated by means of differential initial instructions.  The tasks refer to situations for 

which no specific knowledge about mechanisms is available.  In general, in all experiments 

identical learning data are given to participants.  Information of temporal relations is given in 

written form or is graphically depicted.  This procedure is used to eliminate possible 

interactions between experienced temporal delays and assumed temporal relations.  Since all 

participants receive identical data the statistical patterns potentially available are identical.  

However, adopting the framework of causal-model theory, we expect that learners tend to use 

prior temporal assumptions to constrain the selection of statistical indicators of causal 

strength.  

Experiment 1 

The goal of Experiment 1 is to investigate whether temporal assumptions are used to 

structure sequences of events.  In particular, we tested whether learners extract statistical 

relations according to prior assumptions about temporal lags between causes and effects.  We 

expect that learners first pair events that in their opinion belong together, and then base their 

causal judgments on estimates of covariation between the paired events. It is important to note 

that the prediction is not that prior assumptions lead to biases in covariation judgments or to a 

differential neglect of specific events.  It is rather expected that all events will enter the stage 

of contingency assessment.  
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To test these predictions we gave participants the task to assess how two different 

types of intervention affected a frequently occurring mosquito plague. All participants 

received identical data for both interventions.  The crucial manipulation involved participants’ 

assumptions about temporal delays.  Participants were told that in one community an 

insecticide was used to kill the mosquito larva, and that in another community a flower was 

planted which mosquito larva eating beetles needed to breed. The causal mechanisms were 

not explained in greater detail, and participants did not receive any information about the 

temporal delay between each type of intervention and its effect.  Nevertheless, we assumed 

that participants would associate an insecticide with a fast mechanism because insecticides 

typically degrade fast. Thus, we expected participants who held this assumption to assess the 

effect of the insecticide by estimating the contingency between the insecticide and the amount 

of the mosquitoes within the same year (short-delay assumption).  By contrast, for the second 

type of intervention we expected participants to assume that the plants first needed to grow 

before they become effective, and that the beetles needed time to breed.  Thus, it seemed 

reasonable to expect that many participants would pair the respective intervention with the 

presence or absence of a mosquito plague in the year subsequent to planting (long-delay 

assumption).  

The structure of the learning data (which was identical for both interventions) allowed 

us to dissociate between the two assumptions.  If the events in the same years were paired the 

contingency turned out to be slightly negative which indicates that the intervention apparently 

had no positive effect on the mosquito plague.  By contrast, if the events were paired that 

were separated by a lag of one year, a (modest) positive effect of the intervention was found.  

Method 

Participants and Design.  Participants were 32 students from the University of 

Göttingen, Germany, who were tested in a within-subjects design with short- vs. long-delay 
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assumptions as the contrasted conditions. The sequence of the two conditions was 

counterbalanced across participants. 

Procedure and materials.  The task in this experiment was to assess the causal 

efficacy of two types of intervention to reduce mosquito plagues. Participants received written 

instructions (in German) in which they were told that two communities in the same area had 

tried to fight the regular mosquito plague by different methods. Data for 20 years were 

available, and the participants’ task was to evaluate how effective the interventions were for 

alleviating the mosquito plague. According to the instructions, community A used an 

insecticide in some of these years.  Additionally, it was pointed out that it was possible that 

the insecticide may not have worked because of the possibility of dilution. This hint was 

given to make participants aware of the possibility that the insecticide may also not have 

proven effective, thus making it necessary to study the data to assess the efficacy of this 

intervention.  For the method chosen by community B a different mechanism was mentioned. 

Participants were told that this community relied on a biological strategy. They planted a 

certain flower which beetles who are hunting mosquito larva needed to breed. Similar to the 

other condition, participants were alerted to the possibility of failure. It was pointed out that 

one reason for a possible failure of this strategy may have been that the plant is very sensitive 

to environmental conditions, in particular to pollution.  

All participants received the same data. For each community they were presented a 

table on a different sheet of paper which displayed 20 columns for the 20 years (1980-1999) 

and three rows. The first row showed the year, the second whether the insecticide was applied 

or whether the flowers were planted, and the third row whether there was a mosquito plague 

in the respective year or not. The data given were identical for both communities. In order to 

obscure the identity of the data, the columns were rearranged in the two conditions without 

changing the statistical relations between the intervention and the effect (see analysis in the 

next paragraph).  The two tables are shown in the Appendix.  The sequence of the conditions 
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(short-delay vs. long-delay) as well as the assignment of the two tables to these conditions 

were counterbalanced.  

The data were designed to embody different contingencies depending on whether 

events were paired that occurred within the same year or in two consecutive years.  Assessing 

the contingency in the same year (corresponding to a short-delay assumption) showed that the 

there was no mosquito plague 3 out of 8 years when the insecticide was used and in 6 out of 

12 years when nothing was done.  Thus, the contingency amounted to –0.125 which seems to 

indicate a slightly negative effect upon the mosquitoes.  In contrast, taking a possible delay of 

one year into account (corresponding to a long-delay assumption) yielded a contingency of 

+0.292 which indicates a slightly positive effect of planting.  In 5 out of 8 years there was no 

plague when the flowers were planted the year before, whereas this was the case in only 4 of 

the 12 years when no flowers were planted the year before.  This analysis holds true for both 

data sets.  It is also notable that both contingency estimates are based on all observations 

without any differential weightings.  The reason for the difference lies in the differential 

pairing of events. 

In the experiment participants were instructed to study the sheet carefully to be able to 

assess how the two types of intervention affected the mosquito plague.  Participants were 

permitted to takes notes on a separate sheet of paper.  After studying the data, participants 

were requested to express their causal judgment for both interventions separately by using a 

rating scale ranging from 0 (“no effect”) to +10 (“strong effect”).  As in the initial instruction, 

temporal delays were not mentioned in the rating instructions.  
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Results and Discussion 

The results confirmed that participants proved sensitive to the manipulation of 

temporal assumptions.  Participants concluded that the insecticide (short-delay condition) had 

only slightly reduced the mosquito plaque (M=+4.2).  By contrast, the same participants 

referring to the same data estimated that the planting of the flowers (long-delay condition) had 

a larger positive effect (M=+5.4). The difference between the ratings is significant, F(1, 31) = 

11.2, p < .01, MSE = 1.91.  These results support our prediction that the different instructions 

led participants to combine data differently in their contingency assessments.  The absolute 

difference between the conditions may not be as large as expected but this is possibly due to 

the fact that the manipulation of assumptions was rather implicit. Remember that participants 

were never told about temporal aspects. The manipulation of temporal assumptions relied on 

participants making the expected inferences from the rudimentary information about causal 

mechanisms.  Some participants may have arrived at different conclusions.  For example, 

some may have inferred that the insecticides may also take time to take effect, or that the 

plant intervention may take more than one year to materialize. 

This post-hoc explanation is bolstered by an additional experiment we ran in the pilot 

phase of this project. In order to get clear evidence for our predictions we ran a similar study 

in which we explicitly manipulated assumptions about temporal delays. Participants were 

asked to evaluate the effect of a newly developed drug upon the mood of a severely depressed 

patient. We manipulated temporal assumptions by either pointing out in the instruction that 

the temporal delay to be expected was very short so that the effect should be visible within the 

same day (short-delay condition), or we mentioned that the temporal delay of the effect was 

exactly one day (long-delay condition). All participants received the same patient record as 

data.  As in the present Experiment 1, data were presented which contained different 

contingencies (positive vs. negative) depending on the pairing of events.  In this experiment in 

which temporal assumptions were unambiguously instructed, the results demonstrated a clear 
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reversal of causal ratings that closely mirrored the presented contingencies.  Whereas the 

participants in the short-delay condition judged the drug to be helpful, participants in the long-

delay condition concluded that the drug lead to a decline of the patient’s mood.  

Experiment 2 

The aim of Experiment 2 is to investigate whether temporal assumptions guide the 

selection of causal candidates in situations with multiple potential causes.  Learners are 

typically confronted with situations which contain a large number of potentially related 

events.  It seems plausible that there is a tendency to pre-structure the event space into likely 

candidates of causally related events.  In the present experiment we tested the hypothesis that 

assumptions about probable time lags between causes and effects will lead participants to 

estimate contingencies only for event pairs that fall within the time window specified by the 

temporal assumption. 

To test this hypothesis we gave participants the task to find out the cause of nausea 

among passengers on a cruiser. All participants received identical information about the menu 

of the passengers, the time the passengers had this menu, and whether they suffered from 

nausea or not. We manipulated the assumptions about the time lag of nausea after eating 

spoiled oysters and spoiled fish. Participants either had no assumptions, or they assumed that 

one of the food items had an incubation period of one and the other food item one of two 

days. 

We expected that participants who had no assumptions about temporal lags should 

assess all passengers.  This group served as a control group to show that in this particular, 

fairly simple, learning situation it is possible to take a non-selective stance.  However, we 

expected that temporal assumption should be used to select possible causes. For example, if it 

takes two days until spoiled fish generates nausea, we expected participants to assess only 

passengers who ate fish two days ago.  



Temporal Assumptions         15 

Participants received data which yielded different contingencies depending on whether 

temporal assumptions were used or not.  If temporal aspects were not considered, all data 

should be assessed which yielded a contingency of zero between the two potential causes and 

the effect. Applying temporal assumptions and selecting the data accordingly yielded a 

positive contingency for one cause and a negative for the other. 

Method 

Participants and Design.  30 students from the University of Tübingen, Germany, 

participated in this experiment.  They were randomly assigned to one of three conditions. In 

the control condition no information about latencies of nausea was provided. Temporal 

assumptions were manipulated in two experimental conditions. In one of these conditions 

participants were told that the time lag of nausea due to spoiled fish was two days and one day 

for spoiled oysters. In the second condition, oysters were assigned a two-day lag and fish a 

one-day lag. 

Procedure and Materials.  In the initial instructions participants were told that they 

should imagine to a be in the role of a physician on board of a cruiser.  One day an epidemic 

of nausea occurred.  The symptoms suggested that either spoiled fish or oysters might be the 

cause of the disease.  To find out more about the cause a short survey was conducted.  

Randomly selected passengers were asked whether they had eaten fish or oysters one or two 

days before, and whether they suffered from nausea or not.  In the control condition no 

information was given about temporal lags, in the experimental conditions participants were 

either told that according to medical knowledge fish typically takes two days and oysters one 

day to show an effect (“fish longer than oysters”), or vice versa (“oysters longer than fish”). 

No further information about any underlying mechanism leading to nausea was provided. 

Participants’ task in all conditions was to assess whether fish or oysters are the cause of 

nausea on the cruise ship. 
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All participants received identical learning data.  The data were presented on a list.  In 

the first column it was shown whether and when the passenger had eaten fish (“none,” 

“yesterday,” “the day before yesterday”).  The second column provided the corresponding 

information about oysters.  In the third column it was listed whether the particular passenger 

had contracted nausea or not.  Participants were asked to study the list carefully to be able to 

judge whether fish or oysters caused nausea.  They were requested to express their impression 

on a rating scale ranging from –10 (“strongly reduces nausea”) over 0 (“does not influence 

nausea”) to +10 (“strongly generates nausea”).  Again it was not mentioned in the rating 

instructions that time should be considered.  Participants were allowed to take notes on a 

separate sheet of paper. 

____________________ 
Insert Table 1 about here 

                                                  ____________________ 
 

Table 1 displays the structure of the learning data.  Each cell contains the proportion of 

passengers that suffered from nausea after having eaten the particular combination of food. 

Disregarding temporal information should lead participants in the control condition to lump 

together the corresponding cases in the cells that contain temporal information.  Thus, 31 out 

of 62 people had nausea after eating fish, the same proportion as after having eaten oyster. 

Since these proportions are identical to the proportions of people with nausea who did not eat 

fish (18 out of 36), oysters (18 out of 36) or neither (8 out of 16), a contingency based 

assessment of causal influence should arrive at the conclusion that both fish and oysters are 

not causally relevant.  A more sophisticated analysis may take into account that the 

simultaneous presence of an alternative cause presents the problem of a possible confound.  

This problem may be overcome by using conditional contingencies as indicators of causalities 

in which the causal relations are assessed when the co-factors are either constantly present or 

absent (see Spellman, 1996; Spellman et al., 2001; Waldmann & Hagmayer, 2001).  However, 
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this strategy would not change the conclusions for the data presented in this experiment.  

Checking, for example, the effect of fish for people who did not eat oysters yields the same 

result as the overall analysis (10 out of 20).  The same holds true for oysters. Participants in 

the experimental conditions were expected to be sensitive to the hints about temporal lags.  

These participants should select cases on the basis of temporal plausibility.  In the “fish longer 

than oysters” condition, passengers who had eaten oysters two days before and persons who 

consumed fish the day before should be eliminated from the analysis.  If cases are selected 

according to this strategy, oysters seem to inhibit nausea, whereas fish appears to be a risk 

factor.  11 out of 34 passengers who ate oysters the day before suffered from nausea, 

compared with 38 out of 64 who did not ate oysters the day before.  Eating fish two days 

before led to nausea in 20 out of 28 cases compared to only 29 out of 70 who did not eat fish 

during the critical period of time. In the second experimental condition (“oysters longer than 

fish”), the data indicate the opposite pattern, with oysters generating and fish inhibiting 

nausea.  Again some participants may decide to control for the potential impact of co-factors 

and only check cases in which the other factor is constantly present or absent.  However, 

controlling for the confounded cause would again not change the statistical relations. In this 

case the data would lead to qualitatively identical conclusions which allowed us to assess the 

role of temporal assumptions independent of whether co-factors were held constant or not. 

Results and Discussion 

The results conformed to our predictions showing that participants used prior 

information about temporal lags in the selection of relevant events.  An analysis of variance 

computed over all conditions with the two judgments for fish and oysters constituting a 

within-subjects factor yielded a significant interaction between condition and ratings of causal 

efficacy, F(2, 27) = 12.49, p<.01, MSE = 7.4.  No significant main effects were observed. 

In the control condition in which no prior information about temporal lags was 

provided, the ratings were close to zero for both potential causal factors, oysters (M=-.50) and 
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fish (M=-.10).  By contrast,  in the experimental conditions in which information about 

temporal lags was given, the results indicate that participants only analyzed data about events 

that were temporally relevant.  Consistent with the pattern of contingencies, in the “fish 

longer than oyster” condition participants tended to give a negative causal rating for oysters 

(M=-2.2) and a positive rating for fish (M=2.6), F(1, 9) = 14.05, p<.05, MSE = 8.2.  The 

opposite pattern was observed in the “oyster longer than fish” condition (M=1.7 for oyster and  

M=-2.10 for fish), F(1, 9)=6.64, p<.05, MSE = 10.9.  To summarize, the experiment clearly 

showed that participants selected relevant data on the basis of temporal plausibility before 

they computed statistical indicators of causal strength.  This finding is particularly interesting 

because the results of the control group showed that participants were in principle capable in 

this situation to process all the data. Nevertheless, prior assumptions about temporal delays 

led participants in the experimental groups to ignore data that they deemed irrelevant. 

Experiment 3 

Experiments 1 and 2 showed that temporal assumption about causal lags can influence 

the selection of relevant events which enter contingency estimates.  Temporal assumptions 

may also affect the categorization of learning events which in turn will influence the 

contingencies seen in the data.  The aim of Experiment 3 is to study how temporal 

assumptions influence the aggregation of events into causally relevant event categories.  

As in the introductory example we used a drug test scenario for this experiment. Both 

short-term as well as long-term causal effects are of potential interest in such a situation. We 

assumed that if participants are interested in short term effects of the drug they would conduct 

a local analysis. In this case single intakes and their immediate effects should be analyzed.  

By contrast, if participants are interested in the long term effects the singular events should be 

aggregated into a pre-treatment, a treatment and a post-treatment phase and a global analysis 

should be conducted. We assume that in this case participants would ignore the short-term 

fluctuations and compare the pre-treatment with the post-treatment phase. 
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 To test whether learners are sensitive to the pragmatic consequences of different 

temporal focuses we gave participants the task to find out whether a newly developed drug 

cured a patient suffering from a certain disease. All participants received identical learning 

data about the treatment and the patient’s state of health. The presented data were divided into 

a pre-treatment phase, a treatment phase, and a post-treatment phase. We manipulated 

whether participants were interested in short-term effects or on long-term effects.  We 

expected that the first group would conduct a local analysis of the immediate effects of the 

drug, whereas the second group should globally divide the events into three stages and base 

their decisions on a comparison of the global probabilities of the effect within these stages. 

 The structure of the learning data allowed us to distinguish between these two 

strategies.  It was constructed in a way that a local analysis yielded a positive result for the 

efficacy of the drug, whereas a global analysis revealed a negative effect.  

Method 

Participants and Design.  20 students from the University of Tübingen participated in 

this experiment. They were randomly assigned to one of two conditions in which the 

pragmatic goals of the learners were manipulated.  

Procedure and materials.  The initial instructions stated (in German) that the task was 

to assess the causal efficacy of a newly developed drug which was designed to improve the 

state of health of patients suffering from a rare tropical disease.  Participants received written 

instructions.  The two conditions differed in one sentence.  Either participants were told that 

they should imagine to be a physician who is interested in the acute effects of the drug, or 

they were instructed to imagine to be a researcher who is interested in the long-term effects of 

the drug.  Otherwise, the instructions were identical.  All participants had the same task, 

namely to assess the effect of the drug on the patient.   

Participants in both conditions received identical learning data.  The data were 

presented as a patient’s record (see Table 2).  On three pages information was given about the 
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patient’s health (“bad” or “good”) on consecutive days of eight weeks. On the top of pages 1 

and 3 it was pointed out that no intervention was conducted, whereas the second page 

contained data from the intervention phase in which the drug was given.  This phase lasted 

four weeks, whereas the other two encompassed two weeks each.  After studying the data, all 

participants received identical rating instructions.  They were requested to express their 

judgment of the causal efficacy of the drug on a rating scale ranging from –10 (“very 

negative”) to +10 (“very positive”).  Participants were allowed to take notes on a separate 

sheet of paper. 

____________________ 
Insert Table 2 about here 

                                                  ____________________ 
 
The presented data allowed us to empirically distinguish between the two strategies.  

Across all three stages (pre-treatment, treatment, post-treatment) the patient was in good 

condition on 8 days out of 12 (75%) when the drug was given, whereas his health was good 

on 6 days out of 44 (14%) when no intervention was conducted.  This difference indicates that 

the drug generally seemed to improve the state of health.  Thus, based on this local analysis 

the drug seemed to have a positive effect.  However, a comparison of the pre- with the post-

treatment phase (global analysis) revealed that the patient was in a good condition on 4 out of 

14 days before the treatment and on 2 out of 14 days after the treatment phase.  Thus, the 

health of the patient slightly deteriorated in the post-treatment stage relative to the pre-

treatment stage.   

Results and Discussion 

The results of the experiment show that participants’ strategies were guided by the one 

differing sentence in the instructions that expressed the pragmatic focus.  Participants who 

imagined to be in the role of a physician interested in short-term effects concluded that the 

drug had a positive effect on the state of health of the patient (M=2.8), whereas participants 

who assumed the role of a researcher interested in the long-term effect arrived at the opposite 
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conclusion.  In their view, the drug had a negative effect on health (M=-2.5). This difference 

was statistically significant, F(1, 18) = 5.29, p < .05, MSE = 26.6.  These ratings were 

consistent with the contingencies in the data.  The local analysis, focusing on single 

occurrences of the cause and its immediate effects, yielded a positive contingency, whereas 

the global analysis, which segments the data into three stages and compares the pre- with the 

post-treatment phase, indicated a negative outcome. These conclusions were supported by an 

analysis of the notes some participants took.  These notes showed an aggregation of the data 

in the predicted fashion. 

General Discussion 

Causal learning generally faces the problem of selecting appropriate induction 

strategies within a space of possibilities that typically surpasses the capacity of our 

information processing system.  These restrictions have often been circumvented in research 

on causal induction by presenting a pre-selected, clearly interpretable set of causal 

information to learners.  In everyday life we are not guided by helpful experimenters, 

however.  We need to impose restrictions on the complexity of the learning situation 

ourselves.  Causal-model theory is a theory that explicitly postulates the interaction of prior 

assumptions about causality and the processing of the learning input (see Waldmann, 1996).  

Prior knowledge about causal mechanisms may guide learning but often this type of 

knowledge is not available to learners.  However, there are other constraints that may reduce 

the complexity of the induction task.  A number of studies have shown that learners use 

knowledge about causal directionality (e.g., Waldmann, 2000, 2001; Waldmann & Holyoak, 

1992; Waldmann et al., 1995) and assumptions about causal relevance (Waldmann & 

Hagmayer, 2001) to guide their strategies of assessing causal strength.  The present paper 

reports three experiments that add to this set of findings. Experiment 1 showed that 

assumptions about probable temporal lags between causes and effects may guide the choice of 

appropriate statistical indicators for causality.  The results of this experiment demonstrate that 
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learners tend to focus on contingencies between events that are within the expected temporal 

window specified by prior assumptions and tend to neglect other possible statistical relations. 

Experiment 2 supported these findings by showing that participants’ choice of a likely cause 

of an observed effect is guided by prior assumptions about temporal lags.  The assumptions 

about time lags were used as criteria for the selection of possible causes.  Events that occurred 

too long or too short before the effect were neglected as candidate causes.  Furthermore, this 

experiment shows that temporal assumptions are also used in situations which do not surpass 

capacity limitations.  If participants had no assumptions about time lags all cases were 

considered.  Apparently, participants’ previous experience with complex learning situations 

outside the laboratory led to a general tendency to reduce complexity in line with prior 

assumptions even in relatively simple learning situations. Experiment 3 also demonstrates the 

importance of assumptions about temporal lags and additionally shows that these assumptions 

may also lead to different levels of aggregating the observed events.  The events were either 

considered individually or were aggregated into phases (pre-treatment, treatment, post-

treatment) depending on the focus upon short-term or long-term effects. 

Temporal Assumptions and Perceived Temporal Delays 

Different research paradigms have investigated the question how the perceived 

temporal relations between learning events affect the outcome of learning and found 

interesting and important effects (Schmajuk et al., 1998; Shanks & Dickinson, 1990; 

Wasserman & Neunaber, 1986; see also the introduction).  Different theories have been 

proposed to account for these findings (Gallistel & Gibbon, 2000; Barnet & Miller, 1996).  In 

contrast to these studies, we did not manipulate the timing of the learning events.  All 

participants in the experiments saw identical events.  Furthermore, the temporal relations 

between the events were represented symbolically rather than being observable in real time. 

This procedure was used to study the influence of temporal assumption without any 

interference of perceivable temporal sequences.  As elaborated in the introduction, our study 
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focuses on the role of temporal assumptions on the processing of described events. Whereas 

animals are restricted to learning situations in which they directly perceive events in real time 

(e.g., Lieberman, McIntosh, & Thomas, 1979), humans additionally are capable of learning 

about events that are described to them in communicative contexts. To a large extent human 

knowledge is based on communicated data, and in fact the majority of studies on human 

learning presents learning events in processed form (e.g., event descriptions on lists, index 

cards, or computer displays).  Thus far, the difference between perceived and described events 

has not been sufficiently acknowledged in the literature.  Most theories of learning treat these 

two situations as identical.  

Given that the present research is restricted to the investigation of the role of temporal 

assumptions in processing described events, an interesting question is how observable 

temporal relations and temporal assumptions interact in causal learning.  The standard finding 

in research about the role of time in real time learning contexts is that learners have a hard 

time detecting statistical relations when the events are separated by a temporal lag (see 

Domjan, 1998).  There is also strong evidence from developmental studies for a general 

contiguity bias in causal reasoning (see Schlottmann, 1999).  However, there are some studies 

showing that temporal assumptions and knowledge of causal mechanisms are able to overrule 

perceived temporal contiguity (Bullock et al., 1982; Schlottmann, 1999; Mendelson & Shultz, 

1976).  Despite these interesting initial findings the interplay between top-down temporal 

assumptions and the timing of learning events has not been sufficiently addressed in extant 

theories specifying the processes of causal reasoning.  In our opinion, the relation between 

time and causality in experienced and described events will prove a theoretically and 

empirically challenging field for future psychological research. 
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Footnotes 

1Shanks (1991) also presents a distinction between experienced and described events that is 

different from ours. He separates trial-by-trial learning which, according to his view, is 

handled by associative learning mechanisms, and verbal descriptions of causal situations (e.g., 

stories, summary data) that trigger judgmental processes.  However, on this account learning 

trials may consist of verbal descriptions of cues and outcomes (as in disease classification 

tasks), which, according to our view, is an example of described rather than directly 

experienced causal scenarios. 

2Alternative measures of causal strength have been proposed (e.g., Cheng’s (1997) power PC 

theory).  Since it was not our goal to differentiate between competing theories of causal 

strength we used materials that lead to qualitatively similar patterns of results independent of 

the statistical indicator of causal strength that is being used. 

3As contingencies between events are asymmetric, there are six unconditional contingencies 

between three events and twelve conditional contingencies. Furthermore possible interactions 

between events have to be considered, resulting in even more contingencies that can 

potentially be assessed. 

 



Temporal Assumptions         29 

Author Note 

Experiments 2 and 3 reported in this article were planned and conducted at the Department of 

Psychology of the University of Tübingen, Germany. The research was in part funded by a 

grant from the Deutsche Forschungsgemeinschaft (Wa 621/5-2,3).  We thank S. Sloman and 

P. White for their helpful comments. Correspondence concerning this article should be sent to 

Y. Hagmayer, Department of Psychology, University of Göttingen, Gosslerstr. 14, 37073 

Göttingen, Germany. Electronic mail may be sent to: york.hagmayer@bio.uni-goettingen.de. 

 

mailto:york.hagmayer@bio.uni-goettingen.de


Temporal Assumptions         30 

Appendix 

_______________ 
Insert Table 3 here 
_______________ 
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Table 1. Structure of data (proportion of patients with nausea) presented in Experiment 2. 

 

Oysters  

  
Two  

Days before 

One  

Day before 

No Oysters Total 

Two Days 

before 
9 / 10 5 / 10 6 / 8 20/28 

Fish  

One Day 

before 
5 / 10 2 / 12 4 / 12 11/34 

No fish  6 / 8 4 / 12 8 / 16 18/36 

Total  20/28 11/34 18/36  
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Table 2. Structure of data presented in Experiment 3. 

 

Pre-Treatment Phase 

Weeks 1-2 

Treatment Phase 

Weeks 3-6 

Post-Treatment Phase 

Weeks 7-8 

Treatment 

Days: 0 

Relative 

Frequency of 

Good Health: 

0 / 0 days 

No-Treament 

Days: 14 

Relative 

Frequency of 

Good Health: 

4 / 14 days 

Treatment 

Days: 12 

Relative 

Frequency of 

Good Health:

8 / 12 days 

No-Treament 

Days: 16 

Relative 

Frequency of 

Good Health:

0 / 16 days 

Treatment 

Days: 0 

Relative 

Frequency of 

Good Health: 

0 / 0 days 

No-Treament 

Days: 14 

Relative 

Frequency of 

Good Health:

2 / 14 days 
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Table 3. Data presented in Experiment 1. See text for further explanations 

 

Year 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

Intervention I  I   I   I  I  I   I  I   

Mosquito 

Plague 
P  P P    P  P P   P P P  P  P 

 

Year 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

Intervention I  I  I   I  I   I  I   I   

Mosquito 

Plague 
 P P  P P P P  P  P P   P    P 
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Figures Captions 

Figure 1. Influence of temporal assumptions upon the structuring of a sequence of events 

(Panel A shows related events when no temporal delay of the effect is assumed, Panel B 

shows the same events when a time lag of ∆t = 1 is expected). 

Figure 2. Influence of temporal assumptions upon the aggregation of data (Panel A represents 

a global analysis, Panel B a local analysis of the efficacy of the cause). 
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