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Abstract 
 

The causal impact of an observable cause can only be esti-
mated if assumptions are made about the presence and impact 
of possible additional unobservable causes. Current theories 
of causal reasoning make different assumptions about hidden 
causes. Some views assume that hidden causes are always 
present, others that they are independent of the observed 
causes. In two experiments we assessed people’s assumptions 
about the occurrence and statistical relations involving a hid-
den cause. In the experiments, participants either only ob-
served a cause or actively manipulated it. We assessed par-
ticipants’ assumption online after each learning trial and at 
the end of the learning phase. The results show an interesting 
dissociation. Whereas there was a tendency to assume nega-
tive correlation in the online judgments, the final judgments 
tended more in the direction of an independence assumption. 
It could also be shown that the judgments were generally co-
herent with the learning data. These results are consistent 
with normative theories that drop independence as the default 
assumption. 

Introduction 
Most events are causally influenced by more than a single 
cause. Unfortunately, very often these other causes are un-
known or cannot be easily observed. Therefore we often 
have to rely on the observed statistical relationship between 
cause and effect when assessing causal strength. For exam-
ple, whenever a new influenza virus invades East Asia, 
health representatives try to estimate its health risks, well 
aware of the fact that many other factors determine whether 
a patient will die or not. The question of how to assess 
causal strength when there are hidden causes has challenged 
normative theories of causality and psychological theories of 
causal reasoning for some time. A number of different ac-
counts have been proposed analyzing how the causal impact 
of an observed factor can be accurately estimated if certain 
assumptions are made about potential hidden causes. In this 
report we will first give a brief overview of how two current 
theories of causal reasoning handle hidden causes. In the 
second part of the report we will present two experiments in 
which we assessed the assumptions of learners about the 
impact and probability of hidden causes. In the final section 
we will discuss potential theoretical implications of these 
findings. 

Theoretical Accounts of Hidden Causes 
We are going to focus on a simple causal structure consist-
ing of a single observable cause C and one possible hidden 
cause A both influencing a joint observable effect E. The 
two observable events C and E are statistically related. 
Cause C is neither sufficient nor necessary for the effect, 
P(e|c)<1 and P(e|~c)>0. How can the causal impact of the 
observed and - if possible - the impact of the hidden cause 
be assessed in such a situation?  

Associative Theories and the Constant-Background 
Assumption 
Associative theories, such as the Rescorla-Wagner theory 
(Rescorla & Wagner, 1972), would model this task as learn-
ing about the association between a cue representing the 
observed cause and an outcome representing the effect. 
Along with the cause cue a second background (or context) 
cue would be part of the model. This background cue is as-
sumed to be always present and to represent all other factors 
that might also generate the outcome. Thus, the background 
cue would play the role of representing the hidden cause A 
in the outlined causal model. According to the Rescorla-
Wagner rule, only weights of cues that are present in a cer-
tain trial are being updated. Therefore the permanently pre-
sent background cue will generally compete with the cause 
cue in cases in which the cause cue is present. If the out-
come is also present the associative weights of both cues 
will be raised, if the outcome is absent, the weights will be 
lowered. However, in cases in which the cause cue is absent, 
only the weight of the background cue will be altered. At the 
asymptote of learning the associative weight of the observed 
cause will equal the contingency (i.e., ∆P=P(e|c)–P(e|~c)) of 
the cause cue and the outcome. The associative weight of the 
background cue will correspond to the probability of the 
outcome in the absence of the cause cue. Thus, the more 
often the outcome (=effect) occurs on its own, the higher the 
associative weight of the background cue will be.  



 

 

Power PC Theory and the Independence Assump-
tion 
Cheng’s (1997) Power PC analysis of the causal impact of a 
single cause can be viewed as a special case of a causal 
Bayes net in which two causes independently influence a 
joint common effect (Glymour, 2001, Tenenbaum & Grif-
fiths, 2003). The theory states that the occurrence of the 
effect E is a consequence of the causal powers of the ob-
served cause C and a hidden cause A (pc and pa), and of their 
base rates P(c) and P(a). Formally the probability of the 
effect equals the sum of the base rates of the two causes 
multiplied by their causal power minus the intersection of 
the causes multiplied by both causal powers:  

P(e) = P(c)·pc + P(a)·pa – P(c)·P(a)·pc·pa. 
Therefore the probability of the effect E given that the ob-
served cause C has occurred is 

P(e|c) = pc + P(a|c)·pa – P(a|c)·pc·pa   [1], 
and the probability of the effect given that the observed 
cause is absent is  

P(e|~c) = P(a|~c)·pa     [2]. 
Equations [1] and [2] offer an account for hidden causes 
irrespective of whether they are dependent or independent of 
the observed cause C. However, if they happen to covary, 
the power of the causes cannot directly be estimated by the 
observable data because there are four unknown parameters 
to be estimated by two observable conditional probabilities. 
Therefore Power PC theory makes the assumption that the 
observed and the hidden causes are independent, P(a|c) = 
P(a|~c) = P(a). Based on this assumption the causal power 
of the observable cause can be calculated by 

pi = (P(e|c) – P(e|~c)) / (1-P(e|~c)).  
The independence assumption of Power PC theory implies 

that the probability of the hidden cause stays the same re-
gardless of whether the observed cause has occurred or not. 
If this assumption holds, Equation [2] defines lower bounda-
ries for the base rate and the causal strength of the hidden 
cause. The causal power of the hidden cause and its base 
rate have to be at least as big as the probability of the effect 
in the absence of the observed cause, pa ≥ P(e|~c) and P(a) ≥ 
P(e|~c). Equation [2] also defines a coherence criterion for 
estimates about hidden causes. In order to be compatible 
with the observed data, the estimates must honor this equa-
tion.  

It is important to note that even if independence is not as-
sumed, Equations [1] and [2] still hold and have implica-
tions for the unobservable cause. The power of the hidden 
cause and its probability in the absence of the observed 
cause are still determined by Equation [2]. Therefore esti-
mates for both values should be constrained by P(e|~c). 
Moreover, Equation [1] provides constraints for the admis-
sible probabilities of the hidden cause in the presence of the 
observable one. However, this constraint is fairly complex 
and does not provide the same straightforward implications 
as Equation [2].  

Summary 
Both theories consider hidden causes. Associative theories 
assume that a hidden cause (i.e., the constant background) is 
always present. In contrast, Power PC and other causal 

Bayes net theories assume that the hidden cause is inde-
pendent of the observed cause and that its probability is con-
strained by the data. The probability of the effect in the ab-
sence of the cause marks its lower boundary. These theories 
also permit to model statistical dependence between the ob-
served and the hidden causes. 

Both theoretical accounts agree that P(e|~c) is to a certain 
degree indicative of the causal strength of the hidden cause. 
But whereas associative theories generally regard this prob-
ability as a valid indicator, Power PC and other causal Bayes 
net theories view this conditional probability as a lower 
boundary of the causal impact of the hidden cause. 

Experiments 
The following two experiments explore what assumptions 
participants make about the presence and impact of a hidden 
cause in a trial-by-trial learning task, and whether these as-
sumptions conform to the predictions of any of the discussed 
theoretical models. Thus far very little research has been 
conducted about naïve participants’ assumptions about hid-
den causes. An exception is a study by Luhmann and Ahn 
(2003). They found that participants judged the impact of a 
hidden cause to be higher if P(e|~c) was 0.5 than if it was 
zero. The experiments presented in this report will go be-
yond these findings. In addition to causal strength estimates, 
we collected assessments of the probability of the hidden 
cause using different kinds of measures. We also varied the 
learning conditions.  

In both experiments participants learned about the causal 
relation between an observable cause and a single effect. 
Additionally participants were told that there was one other 
possible but unobservable cause of the effect. The statistical 
relation between the observable cause and the effect was 
manipulated in the two experiments while either keeping the 
contingency (Experiment 1) or the causal power (Experi-
ment 2) constant. In Experiment 1 participants could only 
passively observe the cause, which occurred at its natural 
base rate, in Experiment 2 participants were allowed to ma-
nipulate the cause. A number of dependent variables were 
collected to assess participants’ estimates of the probability 
of the hidden cause and the impact of both the observed and 
the unobserved causes. Participants were asked to guess the 
presence of the hidden cause on each trial during learning, 
and they were asked to give summary estimates after learn-
ing was completed. In one condition (“prediction before 
effect”) participants were first informed about the presence 
or absence of the cause in each trial, and then they were 
asked to guess the presence of the hidden cause without re-
ceiving feedback about this alternative cause. Finally they 
were informed whether the effect has occurred at this par-
ticular trial or not. Predictions of the hidden cause prior to 
effect information can only be guesses based on observed 
frequencies of the effect in past trials. Based on normative 
theories (e.g., Power PC theory) we expected participants to 
generate independence between the causes. In the second 
condition (“prediction after effect”) participants received 
information about the presence of both the cause and the 
effect and then had to predict the hidden cause. As before no 
feedback was provided about the hidden cause. In this situa-
tion participants had complete information about the cause 



 

 

and the effect which should allow them to make more in-
formed guesses about the hidden cause, especially if the 
observed cause is absent: If in this case the effect is present, 
participants should conclude that the hidden cause is also 
present. However if the effect is absent, they should have the 
intuition that the hidden cause is absent. Predictions based 
on the presence of the observed cause are more difficult. If 
in this case the effect is absent, participants should infer that 
the hidden cause is more likely to be absent than present; if 
the effect is present the hidden cause should also be given a 
higher probability of being absent. Based on the theories 
outlined above, we expected that participants in both condi-
tions would generate independence between the causes in 
their trial-by-trial predictions. A third control condition left 
out the trial-by-trial predictions. In this condition partici-
pants rated the causal strength of the observed and the hid-
den cause as well as the probability of the hidden cause in 
the presence and in the absence of the observed cause after 
the learning phase. Again we expected participants to rate 
the causes to be independent. We also expected that the 
strength ratings for the observed cause would be based on 
causal power, and that the ratings for the hidden cause 
would be influenced by P(e|~c). 

Experiment 1 
With Experiment 1 we pursued two goals. The first was to 
investigate whether participants would assume independence 
between the observable and unobservable cause. The second 
goal was to find out whether the power estimates for the 
unobservable cause would be influenced by the probability 
of the effect in the absence of the observed cause. Partici-
pants were given the task to assess the causal relation be-
tween a fictitious microbe (“colorophages”) and the discol-
oration of certain flowers. In addition they were told that 
there was only one other possible cause of the effect, an in-
fection with another fictitious microbe (“mamococcus”), 
which was currently not observable. Participants were then 
directed to a stack of index cards providing information 
about individual flowers. The front side of each index card 
showed whether the flower was infected by colorophages  or 
not, and the backside informed about whether the flower was 
discolored or not. Then participants were instructed about 
the specific learning procedure in their condition. The learn-
ing conditions were manipulated as a between-subjects fac-
tor. In Condition 1 (“prediction before effect”) participants 
were first shown the front side of the card, then they had to 
guess whether the flower was also infected by the other mi-
crobe, and finally the card was turned around by the experi-
menter revealing whether the flower was in fact discolored 
or not. In contrast, in Condition 2 (“prediction after effect”) 
the card was first turned around and then the participant 
made her guess about the hidden cause. Guesses were re-
corded without giving feedback. In the third, control condi-
tion cards were simply shown and turned around by the ex-
perimenter.  

As a second factor the statistical relation between the ob-
served microbe and discoloration was manipulated. Three 
different data sets consisting of 20 cases each were con-
structed. Table 1 summarizes the statistical properties of the 
three data sets. As the table shows, the contingency ∆P was 

constant across the data sets, whereas both P(e|~c) and 
causal power were rising. All three data sets were shown to 
every participant in a within-subjects design. Different data 
sets were introduced as data from different species of flow-
ers. It was pointed out to participants that the effectiveness 
of the microbes might vary depending on the species. The 
order of the presented data sets was counterbalanced. 

 
Table 1: Statistical properties of data sets shown  

in Experiment 1 
 
 Data Set 1 Data Set 2 Data Set 3 
P(c) 0.50 0.50 0.50 
P(e|c) 0.60 0.80 1.00 
P(e|~c) 0.10 0.30 0.50 
∆P  0.50 0.50 0.50 
Power pc 0.56 0.71 1.00 

 
After each learning phase participants were asked to rate 

the causal influence of the observed and the hidden cause on 
a scale ranging from 0 (“no impact”) to 100 (“deterministic 
impact”). Participants were also asked to estimate how many 
of ten flowers that were infected with the observed microbe 
were also infected with the other microbe, and how many of 
ten flowers that were not infected with the observed microbe 
were instead infected with the other microbe. No feedback 
was provided about these assessments. 

36 students from the University of Göttingen were ran-
domly assigned to one of the learning conditions. Figure 1 
shows the mean ratings of the impact of the observed and 
the hidden causes.  
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Figure 1: Mean ratings of causal impact for the observed 
cause (left) and the unobserved cause (right) in Exp. 1. 

 
An analysis of variance revealed a significant increase in 

impact ratings for the observed cause, F(2,66)=12.7, 
MSE=296.6, p<.01, supporting the predictions of Power PC 
theory. The same analysis for the hidden cause resulted also 
in a significant main effect of the factor data set, 
F(2,66)=4.92, MSE=408.1, p<.05, which indicates that with 
increasing P(e|~c) participants tended to assume a stronger 
impact of the hidden cause. This result is in accordance with 
the predictions of all theoretical accounts. However, the 
interaction between data sets and learning condition also 



 

 

turned out to be significant, F(4,66)=4.55, MSE=408.1, 
p<.05. The observed increase was strongest in the ‘predic-
tion after effect’ condition followed by the control condi-
tion. This interaction might be due to the learning procedure. 
In the ‘prediction after effect’ condition participants were 
sensitized to the possible presence and impact of the hidden 
cause more than in the other two conditions. Being informed 
about the occurrence of the effect in the absence of the ob-
servable cause is a strong cue pointing to the presence of the 
hidden cause. 

Table 2 shows the results concerning participants’ as-
sumptions about the dependence between the causes. The 
online predictions of the hidden cause in the presence and 
absence of the target cause were transformed into condi-
tional frequencies, and combined into subjective contingen-
cies, ∆P=P(a|i) – P(a|~i). On the left side of Table 2 the 
generated contingencies underlying online predictions are 
listed, the right hand side shows the corresponding contin-
gencies based on the final probability ratings. 

 
Table 2: Mean estimates of dependence between observed 

and unobserved cause. Numbers indicate contingencies 
(possible range:-100 to +100). 

 
 Generated  

Dependence 
Estimated  

Dependence 
 Data 

Set 1 
Data 
Set 2 

Data 
Set 3 

Data 
Set 1 

Data 
Set 2 

Data 
Set 3 

Before Eff. 33.3 8.3 -21.7 30.0 5.8 -3.3 
After Eff. 17.0 17.5 -28.8 0.8 0.0 -22.6 
Control  - - - 14.4 5.8 -4.2 

 
An analysis of variance of the generated contingencies 
yielded a significant trend from positive to negative assess-
ments which proved independent of learning condition, 
F(2,44)=22.1, MSE=749.8, p<.01. The estimated contingen-
cies showed a similar trend, F(2,66)=4.2, MSE=753.9, 
p<.05. The mean contingencies in the different data sets 
varied slightly across learning conditions, F(2,33)=2.8, 
MSE=1646.4, p<.10. The generated contingencies were sig-
nificantly above zero if P(e|~c) was zero, and significantly 
below zero if P(e|~c) was 0.5. The estimated contingencies 
showed a similar but only marginally significant pattern. 
Thus, there was a hint of a dissociation between online and 
post hoc assessments which will be followed up in Experi-
ment 2. 

These results do not conform to the theoretical assump-
tions of the discussed theories. Participants did not assume 
that the hidden cause was always present or that the two 
causes were independent. 

A closer analysis of the conditional probabilities revealed 
that the negative trend was due to an increase in the gener-
ated and estimated probability of the hidden cause in the 
absence of the observed cause, whereas the subjective prob-
ability of the hidden cause in the presence of the observed 
cause remained relatively stable. This pattern is in part con-
sistent with the analysis outlined in the introduction, P(a|~c) 
seems directly constrained by P(e|~c). In contrast, the con-

straint for P(a|c) is more complex, which may be  the reason 
why participants had more difficulties honoring it. 

Even if participants’ answers did not conform to the inde-
pendence assumption, their answers still might be coherent 
with the observed data. Both Power PC theory and Bayesian 
models can model dependence between observed and hidden 
causes. Although precise power estimates might be impossi-
ble, the data still yields constraints on plausible estimates. 
The most important constraint is that the product of the 
causal power (or strength) of the hidden cause and the prob-
ability of the hidden cause in the absence of the observed 
cause must equal the probability of the effect in the absence 
of the observed cause. To find out whether participants 
honor this constraint we used their ratings to recalculate the 
probability of the effect when cause C was absent:  

P(e|~c)rec = Rating Impact A · Rating P(a|~c). 
The results are shown in Figure 2. It can be seen that the 
recalculated probabilities in the ‘prediction after effect’ con-
dition were surprisingly close to the actually observed prob-
abilities. In contrast, the recalculated probabilities in the 
other two conditions were inaccurate. Apparently, partici-
pants had to be sensitized by the learning procedure to the 
presence and impact of the hidden cause to be able to derive 
coherent estimates. Learning that the effect is present in the 
absence of the target cause apparently provided the neces-
sary information to make educated guesses about the hidden 
cause. Without this information the guesses showed some 
systematicity but did not conform very well to the observed 
data. 
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Figure 2: Mean recalculated probabilities of the effect in 

the absence of the observed cause (Experiment 1).  

Experiment 2 
In Experiment 1 we used a scenario in which the observable 
cause could only be passively observed. Therefore a de-
pendence of the observed and unobserved cause was possi-
ble and maybe for some participants plausible. In Experi-
ment 2 we allowed participants to arbitrarily manipulate the 
observable cause. Since these random interventions cannot 
be based on the presence or absence of the hidden cause, 
they should make the independence between the alternative 
causes more salient than in the observation context. Thus, 
we expected that participants would now assume the causes 
to be independent in all conditions of the present experi-
ment. 



 

 

Participants were instructed to imagine being a captain on 
a pirate ship firing his battery at a fortress. A second ship, 
which cannot be seen, was also firing at the fortress. Partici-
pants had a certain number of shells available and had to 
decide on each trial whether to fire or not. This procedure 
ensured that all participants saw the same data despite the 
fact that they set the cause themselves. The three learning 
conditions of Experiment 1 were used again. Participants 
had to guess whether the other ship currently fires either 
before they were informed about the occurrence of an explo-
sion in the fortress (“prediction before effect”), or they had 
to predict the other ship’s action after they had learned 
whether the fortress was hit (“prediction after effect”). In a 
third, control condition no predictions were requested.  

Three data sets consisting of 60 cases each were con-
structed. Table 3 shows the statistical properties of the data. 
In contrast to Experiment 1 the contingency between the 
observed cause and the effect decreased across the data sets, 
whereas the causal power remained stable. Participants 
learned about all the three data sets with order being coun-
terbalanced. 

 
Table 3: Data shown in Experiment 2 

 
 Data Set 1 Data Set 2 Data Set 3 
P(c) 0.50 0.50 0.50 
P(e|c) 0.70 0.80 0.90 
P(e|~c) 0.00 0.33 0.67 
∆P  0.70 0.47 0.23 
Power  pc 0.70 0.70 0.70 

 
60 students from the University of Göttingen were randomly 
assigned to one of the three learning conditions. The same 
dependent variables as in Experiment 1 were collected. 

Figure 3 shows the results for the estimates of the causal 
impact of the observed and the hidden cause.  
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Figure 3: Mean ratings of causal impact for the observed 
cause (left) and the unobserved cause (right)  

in Experiment 2. 
 
An analysis of variance of the impact ratings for the ob-
served cause yielded no significant effects, which is in line 
with the predictions of Power PC theory. As in Experiment 1 
the estimated impact of the hidden cause rose significantly 

across the data sets, F(2,114)=65.7, MSE=408.2, p<.01. 
This finding is consistent with the predictions of all dis-
cussed theories. There was also a significant difference be-
tween learning conditions, F(2,57)=4.06, MSE=591.8, 
p<.05. Participants in the ‘prediction after effect’ condition 
rated the impact of the hidden cause to be higher than in the 
other two conditions. This results points in the same direc-
tion as the results of Experiment 1 indicating that predic-
tions with effect information may have sensitized partici-
pants to the role of the hidden cause. 
 

Table 4: Mean estimates of dependence between  
observed and unobserved causes.  

The numbers express contingencies. 
 

 Generated  
Dependence 

Estimated  
Dependence 

 Data 
Set 1 

Data 
Set 2 

Data 
Set 3 

Data 
Set 1 

Data 
Set 2 

Data 
Set 3 

Before Eff. -23.8 -33.2 -29.2 -4.1 8.2 -8.2 
After Eff. -3.9 -20.4 -35.4 12.8 -10.8 -1.0 
Control  - - - 9.5 9.2 -6.0 

 
Table 4 shows the results concerning the assumed de-

pendence between the two causes. Although the random 
interventions were expected to increase the salience of inde-
pendence, participants generated a negative dependence 
between the two causes which rose across the data sets, 
F(2,76)=6.97, MSE=510.1, p<.01. The interaction also 
turned out to be significant, F(2,76)=3.57, MSE=510.1, 
p<.05. The negative ratings decreased more strongly when 
participants had received effect information than in the con-
trasting condition (“prediction before effect”). As in Ex-
periment 1 this trend can be traced to an increase in the gen-
erated probability of the hidden cause in the absence of the 
observed cause. In contrast, the estimated dependencies did 
not statistically differ. The results are consistent with an 
independence assumption. Thus, in this experiment there 
was a clear dissociation between online and posthoc judg-
ments. 
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Figure 4:  Mean recalculated probabilities of the effect in the 

absence of the observed cause (Experiment 2). 
 



 

 

Figure 4 is based on an analysis of the coherence of the es-
timates with the constraints from the learning data (using the 
same method as in Experiment1). It can again be seen that 
participants honored the normative constraints. 

Conclusions 
All current theories of causal reasoning consider hidden 
causes that may also influence observable effects. In most 
theories independence between the observable cause and the 
hidden cause is the default assumption, which is a precondi-
tion for giving precise estimates for the causal strength of 
the observed cause-effect relation. Whereas associative 
theories create independence by assuming constant presence 
of alternative causes, Power PC theory and Bayesian models 
are more flexible. Typically these models assume a varying 
independent hidden cause. However, these theories can also 
model situations violating the independence assumption by 
providing bounds for consistent estimates. All theoretical 
accounts agree that the impact of the hidden cause has to be 
at least as high as P(e|~c). We found evidence in both ex-
periments that participants honored this constraint. More-
over, our analyses showed that participants’ judgments 
about the probability and impact of the hidden cause were in 
most conditions coherent with the data.  

Furthermore, we assessed participants’ assumptions about 
the statistical relation between the observed and the hidden 
causes. In Experiment 1 learners passively observed the 
causal relations. In this experiment participants expressed 
that the causes were positively correlated when P(e|~c) was 
low but they assumed a negative correlation when P(e|~c) 
was high. The generated and estimated probabilities suggest 
that participants may have assumed that P(e|~c) is an indica-
tor of the probability of the hidden cause in the absence of 
the observed cause (P(a|~c)) and an indicator of the impact 
of the hidden cause (pa) but that P(e|c) conveys little infor-
mation about the probability of the hidden cause conditional 
upon the presence of the observed cause (P(a|c)). As a con-
sequence participants only adapted their guesses about 
P(a|~c) to the observed P(e|~c) while sticking with the initial 
assumption about P(a|c) irrespective of P(e|c).  

In Experiment 2 we increased the salience and plausibility 
of independence between the alternative causes by letting 
participants randomly manipulate the observable cause. And 
indeed the final estimates expressed the assumption of inde-
pendence. However, surprisingly participants generated a 
negative correlation in their trial-by-trial predictions. Using 
the explanation we gave for Experiment 1, this pattern im-
plies that the initial assumption of P(a|c) was at a relatively 
low level. People may find it unlikely that two independent 
actions are performed simultaneously by coincidence. In 
addition participants may erroneously overapply the ‘princi-
ple of explaining away’ (Pearl, 1988) in this task. This prin-
ciple states that it is generally true that alternative independ-
ent causes are less likely in the subset of events in which the 
cause and effect are present as compared to the whole set of 
events in which only the effect has occurred. However, in 
the overall set of events causes should still exhibit inde-
pendence regardless of the order in which the causal events 
are experienced. Another related possible explanation might 
be that people are reluctant to consider overdetermination of 

effects. Since one cause suffices to explain the effect, assum-
ing a second hidden cause is not necessary. Intuition tells us 
that one cause is enough for the presence of an effect. It is 
interesting to see that this intuition seems particularly strong 
when participants consider single trials of cause-effect pat-
terns. In this situation learners have to decide whether one or 
two causes generated the effect. Looking back at the learn-
ing set at the end of the learning phase seems to decrease the 
salience of these possible cases of overdetermination, which 
may be the reason for the interesting dissociation between 
the tendency to assume negative correlations in online 
judgments but independence in the summary judgments at 
the end. 

Theoretical Implications 
Our results contradict the assumption of associative theories 
that learners assume constant presence of alternative, hidden 
causes. The results also indicate that independence of vary-
ing causes is not the general default assumption. The online 
predictions revealed a tendency to assume correlations be-
tween alternative causes. Both Power PC theory and causal 
Bayes nets allow modeling this assumption. Although causal 
power may in these cases not always be numerically identi-
fiable, these theories can provide constraints for plausible 
estimates. Future research will have to explore the boundary 
conditions and the generality of people’s assumption across 
different tasks. The observed dissociations in the present 
studies indicate that a simple account may be unlikely. 

References 
Cheng, P. W. (1997). From covariation to causation: A 

causal power theory. Psychological Review, 104, 367-
405. 

Glymour, C. (2001). The mind’s arrow. Bayes nets and 
graphical causal models in psychology. Cambridge, MA: 
MIT Press. 

Luhmann, C. C., & Ahn, W.-K. (2003). Evaluating the cau-
sal role of unobserved variables. Proceedings of the 
Twenty-fifth Annual Conference of the Cognitive Science 
Society, Mahwah, NJ: Erlbaum. 

Pearl, J. (1988). Probabilistic reasoning in intelligent sys-
tems: Networks of plausible inference. San Francisco, CA: 
Morgan Kaufmann. 

Pearl, J. (2000). Causality: Models, reasoning, and infer-
ence. Cambridge, MA: Cambridge University Press. 

Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pav-
lovian conditioning: Variations in the effectiveness of re-
inforcement and non-reinforcement. In A. H. Black & W. 
F. Prokasy (Eds.), Classical conditioning II. Current re-
search and theory (pp. 64-99) New York: Appleton-
Century-Crofts.  

Tenenbaum, J. B., & Griffiths, T. L. (2003). Theory-based 
causal inference. Advances in Neural Information Proc-
essing Systems, 15, 35-42. 


