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The dominant theoretical approach to causal learning
postulates the acquisition of associative weights between
cues and outcomes. These associative weights reflect the
amount of covariation between the learning events. In the
past few years, the associationist approach to causal
learning has been criticized by a number of researchers
(e.g., Cheng, 1997; De Houwer & Beckers, 2002; Gly-
mour, 2001, 2003; Gopnik et al., 2004; Lovibond, 2003;
Waldmann, 1996, 2000, 2001; Waldmann & Hagmayer,
2005; Waldmann & Holyoak, 1992; Waldmann, Holyoak,
& Fratianne, 1995). The main thrust of this critique is
that causality cannot be reduced to mere covariation de-
tection. Cues and outcomes may covary either because
they are causally related, or because they are spuriously
related, an important distinction to which associationist
models are not sensitive. In addition, there are cases in
which no statistical covariation can be measured (e.g.,
when the base rate of the effect is already at the ceiling
in the absence of the cause), but it is nevertheless not ap-
propriate to infer that the cause is not effective (see Wu
& Cheng, 1999). Finally, covariations are inherently sym-

metric and therefore insensitive to the crucial property
of causal directionality: Causes influence their effects
but not vice versa. Knowledge about the direction of
causality guides our actions. Causes can be set to achieve
effects whereas effects do not generate their causes. More-
over, patterns of causal directionality have statistical im-
plications that a learning mechanism could capitalize on
(see Waldmann et al., 1995). For example, multiple ef-
fects of a common cause (common-cause model) are
(spuriously) correlated but become independent condi-
tional upon the states of their cause, whereas multiple
causes of a common effect (common-effect model) tend
to be independent (unless they are part of a larger network)
but become dependent when the common effect is held
constant (see Pearl, 2000; Spirtes, Glymour, & Scheines,
1993). These structural differences have consequences
for how causal power normatively should be assessed,
but are neglected by associative theories that typically
impose the same type of network on learning events ir-
respective of their causal roles (Waldmann, 2000; Wald-
mann & Hagmayer, 2001).

Sensitivity to Causal Directionality: 
Current Controversies

In the past few years, a number of researchers have ad-
dressed the question of whether human learners are sen-
sitive to the aspect of causal directionality in learning.
Waldmann and Holyoak (1992) have proposed a causal-
model theory, which postulates that prior knowledge
about causal directionality guides processing of the learn-
ing input in causal induction. In a number of experi-
ments, they have observed that human learners are in-
deed sensitive to causal directionality, and are able to
differentiate between the order in which information is

211 Copyright 2005 Psychonomic Society, Inc.

Experiments 1 and 3 were conducted while M.R.W. was affiliated
with the Max Planck Institute for Psychological Research, Munich. Ex-
periment 2 was planned in collaboration with J.M.W. during a sabbati-
cal of M.R.W. from the University of Göttingen at the Department of
Psychology of the University of California, Los Angeles. The research
was supported by a DFG grant (Wa 621/5-2). We thank L. Allan,
P. Cheng, J. De Houwer, K. Holyoak, and J. Tangen for helpful com-
ments. Portions of this research were presented by M.R.W. at the invited
symposium “Is Everyday Causal Reasoning Rational?” of the 2000 An-
nual Meeting of the Psychonomic Society, New Orleans. Correspon-
dence should be sent to M. Waldmann, Department of Psychology, Uni-
versity of Göttingen, Gosslerstr. 14, 37073 Göttingen, Germany (e-mail:
michael.waldmann@bio.uni-goettingen.de).

Competence and performance in causal learning

MICHAEL R. WALDMANN
University of Göttingen, Göttingen, Germany

and

JESSICA M. WALKER
University of California, Los Angeles, California

The dominant theoretical approach to causal learning postulates the acquisition of associative
weights between cues and outcomes. This reduction of causal induction to associative learning implies
that learners are insensitive to important characteristics of causality, such as the inherent directional-
ity between causes and effects. An ongoing debate centers on the question of whether causal learning
is sensitive to causal directionality (as is postulated by causal-model theory) or whether it neglects this
important feature of the physical world (as implied by associationist theories). Three experiments
using different cue competition paradigms are reported that demonstrate the competence of human
learners to differentiate between predictive and diagnostic learning. However, the experiments also
show that this competence displays itself best in learning situations with few processing demands and
with convincingly conveyed causal structures. The study provides evidence for the necessity to dis-
tinguish between competence and performance in causal learning.



212 WALDMANN AND WALKER

presented within learning trials and the order of events in
the real world to which the trials are referring. However,
the conclusions drawn from these initial studies have
been hotly debated, and the conditions under which causal
learning is directional remain a focus of controversy.

The debate was initiated by Waldmann and Holyoak’s
(1992) experiments in which a two-phase blocking par-
adigm was used. Participants learned in Phase 1 that a
predictive cue, for example a light button (Experiment 3),
is perfectly correlated with the outcome, in this example
the state of the alarm in a bank. In Phase 2, an additional
button, previously not mentioned, was redundantly paired
with the predictive cue from Phase 1. Now, whenever
both buttons were on, the alarm was on, and when they
both were off, the alarm also was off. In the test phase,
participants were asked to rate how predictive of the state
of the alarm each button was individually. The crucial
manipulation involved the initial cover stories. In a 
predictive-learning condition, the buttons were described
as potential causes of the alarm (the effect), whereas in
the diagnostic-learning condition the buttons were char-
acterized as effects of the alarm (the cause). Thus, in the
predictive-learning condition, participants learned about
a common-effect model, whereas in the diagnostic-
learning condition, identical learning trials were used to
acquire a common-cause model.

Only the cover stories varied in this design; the learn-
ing trials and test questions were identical across both
conditions. Accordingly, associative theories such as the
Rescorla–Wagner theory (Rescorla & Wagner, 1972)
predict blocking of the redundant cue in both conditions.
According to this learning rule, learning takes place only
when something unexpected happens. Since the predic-
tive cue from Phase 1 perfectly predicts the outcome in
both phases, there is no reason to learn anything about
the redundant cue in Phase 2.

Contrary to this prediction, Waldmann and Holyoak
(1992) found that the blocking effect interacted with the
causal status of cues and outcomes: Blocking was ob-
served only in the predictive but not in the diagnostic
condition. This effect is predicted by causal-model the-
ory (Waldmann, 1996, 2000, 2001; Waldmann & Holyoak,
1992), which postulates that assumptions about abstract
causal models interact with the processing of the learn-
ing input. In the predictive condition, the cues are as-
signed the role of potential causes, and the outcome the
role of a common effect. Assessing causal strength within
common-effect models requires holding constant the po-
tential influence of alternative causes. A typical feature
of the blocking paradigm is that the redundant cue can
never be observed in the absence of the predictive cue,
which makes it impossible to assess the individual causal
power of the redundant cue. Although the redundant cue
can be observed in the presence of the alternative cue,
this cue represents a deterministic cause that creates a
ceiling effect so that the potential additional impact of
the redundant cue cannot possibly display itself (see also

Cheng, 1997; Wu & Cheng, 1999). Both factors should
lead to assessments that express uncertainty about the
causal status of the redundant cue. Thus, unlike associa-
tive theories, which predict full blocking of the redun-
dant cue (i.e., certainty that it is not a cause) in case
Phase 1 learning proceeded to the asymptote, causal-
model theory predicts partial blocking (i.e., uncertainty
rather than certainty about the redundant cue). Previous
experiments support causal-model theory. Participants
typically express uncertainty in their ratings (Waldmann,
2000, 2001; Waldmann & Holyoak, 1992). Only with ef-
fects with probabilities below the ceiling should full block-
ing be observed. This prediction is supported by recent
findings with continuous effect variables that showed that
the blocking effect in predictive learning is stronger
when the predictive cue causes an effect at a submaximal
intensity as compared with a maximal-intensity condi-
tion (De Houwer, Beckers, & Glautier, 2002).1 In the
submaximal scenario, the effect is not at the ceiling in
Phase 1, which allows the additional redundant cue to
display its potential causal impact.

By contrast, in the diagnostic condition, the cues are
assigned the role of potential effects of a common cause.
Assessing causal strength within a common-cause model
does not require holding constant alternative effects.
Thus, participants should have learned that the common
cause has two deterministic effects. Since no alternative
causes of these effects were mentioned, both effects
should be rated as equally diagnostic for their common
cause (i.e., blocking would be absent).

Complete absence of a descriptive blocking effect
(i.e., equal ratings for predictive and redundant cues) is,
even within the framework of causal-model theory, only
predicted in specific situations. Waldmann (2000, Exper-
iment 2) has shown that in the diagnostic-learning con-
dition, participants need to believe that the causal model
did not change between the learning phases. When they
learn about the redundant effect in Phase 2, they should
infer that this effect had already been produced by the
common cause in Phase 1, although no information was
given about its presence. If some participants believed
that the redundant cue was absent in Phase 1, different
ratings would be predicted. Similarly, De Houwer (2002)
has shown for a predictive-learning task that the size of
the blocking effect is dependent on whether participants
believed that the redundant cause was absent in Phase 1
or whether they retrospectively inferred its presence.
Only in the first condition was a blocking effect seen.
These effects are normative because the contingencies
underlying the judgments vary with different assump-
tions about presence and absence of cues in previous learn-
ing phases.

A second factor that normatively affects the blocking
effect is domain knowledge that might affect judgments.
Waldmann (2001) has shown in the diagnostic condition
of an overshadowing paradigm that the redundant cues
were rated slightly lower than the predictive cue when
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the task was about diseases. The difference between pre-
dictive and diagnostic learning was still highly signifi-
cant but the pattern was slightly different from the re-
sults of a second study that used the same learning trials
but instead presented an artificial device as a learning
domain (see also Waldmann, 2000, for similar descrip-
tive patterns in blocking experiments). Waldmann (2001)
argued that in the real world, diseases unlike devices,
typically are embedded in complex causal networks with
hidden causes (open-world scenarios). The flu causes
fever but fever can occur because of any number of al-
ternative, in part unknown, causes. In these domains,
causal-model theory and other normative theories pre-
dict lowered ratings for the redundant cue. In blocking
paradigms, the redundant symptom is always shown to-
gether with the predictive symptom as a sign of the dis-
ease. If in the test phase participants rate the redundant
symptom by itself, they seem to make the assumption
that this symptom individually might be caused by other,
unknown, causes, and therefore conservatively lower the
ratings slightly. This does not happen with devices be-
cause hidden causes are unlikely. Thus, on the assumption
that people are affected by abstract domain knowledge,
the observation of a small blocking effect in diagnostic-
learning conditions is consistent with causal-model theory.

Waldmann and Holyoak’s (1992) initial experiments
have faced a number of critiques. Some critics ques-
tioned the reliability of the effect (Cobos, López, Cano,
Alvarez, & Shanks, 2002; Matute, Arcediano, & Miller,
1996, Experiment 3; Price & Yates, 1995; Shanks &
López, 1996), but in the meantime the basic finding has
been replicated in several additional experiments that
used different cue competition paradigms (Matute et al.,
1996, Experiments 1, 2; Tangen & Allan, 2004; Tangen,
Allan, & Sadeghi, 2005; Van Hamme, Kao, & Wasser-
man, 1993; Waldmann, 2000, 2001). Tangen et al.’s study
is particularly interesting because it extends the findings
supporting causal-model theory to domains with proba-
bilistic relations.

Boundary Conditions for Causal Learning
Every theoretical account has to presuppose some

boundary conditions for the postulated learning pro-
cesses. For example, it is unlikely that associative learn-
ing mechanisms are unaffected by performance-limiting
factors such as the number of cues and outcomes and the
complexity of the causal relations. These restrictions are
rarely stated in the exposition of the theory but are part
of implicit knowledge guiding the design of experiments.
It seems plausible that human causal learning operates
optimally only in restricted circumstances. In principle,
causal models could be postulated for arbitrarily com-
plex models, but it seems obvious that very soon infor-
mation processing unaided by mechanical tools would
face capacity restrictions that limit the competence to
correctly learn and reason with these models (see also
Steyvers, Tenenbaum, Wagenmakers, & Blum, 2003).

As a matter of fact, partly because of these limitations, a
number of statistical tools have recently been developed
to aid researchers in the analysis of complex causal struc-
tures (e.g., structural equation modeling).

Causal-model theory can be used to analyze the po-
tential difficulties learners face with complex causal
learning tasks. The predictive as well as the diagnostic
component might be affected. Predictive learning from
multiple causes to a common effect requires holding co-
factors constant when learners are assessing the strength
of a target relation. Unlike most associative theories,
which have cue competition built into the learning mech-
anism (e.g., Rescorla & Wagner, 1972), causal-model
theory postulates a higher level process of selecting rel-
evant cofactors and of computing statistical contingen-
cies within subsets of the event space in which the states
of the cofactors are held constant (see Hagmayer & Wald-
mann, 2002; Waldmann, 1996; Waldmann & Hagmayer,
2001; Waldmann & Martignon, 1998). For generative
causes, the cases are most informative in which alterna-
tive causes are absent. Estimating conditional contin-
gencies is not too demanding when the target cause fre-
quently occurs in the absence of alternative causes because
learners can then easily focus on the most informative
segments of the data. If the presence and absence of the
cofactors are frequent and intermixed in the learning tri-
als, it should be harder to separately store the informa-
tive cases in memory. Waldmann and Hagmayer (2001)
have indeed shown that participants tended to control for
the cofactor only in a predictive trial-by-trial learning
task with a complex statistical structure (Simpson’s para-
dox) when the trials were blocked according to different
states of the cofactor. When the cases were intermixed,
however, the cofactor was neglected by many learners.

In the blocking paradigm, participants face an extreme
case of a potential cause whose observed relation with
the effect is perfectly confounded by an alternative cause
within every single learning trial. Therefore, learners are
confronted with two conflicting cues. Unconditionally,
the redundant cue is perfectly correlated with the out-
come. However, information about the conditional con-
tingency in the absence of the confound is not available,
which normatively should lead to the conclusion that the
information is insufficient to warrant any conclusions.
The redundant cue may be an individual cause, it may in-
teract with the predictive cue, or it may just be a spuri-
ous correlate of the cause. Because of the conflict be-
tween the cues, it is predicted that, under circumstances
of reduced capacity, learners should have difficulties
with grasping this situation, and rather fall back on the
simpler, salient cue of the perfect contingency within
Phase 2. Thus, a reduction of the blocking effect is pre-
dicted with increasing demands on information process-
ing capacity.

This prediction is supported by a study by De Houwer
and Beckers (2003). They showed that the blocking ef-
fect decreased when participants were presented with a
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difficult secondary tone-counting task as compared with
an easy secondary task. The difference was observed only
when the secondary task was presented in both the learn-
ing and test phases, not when the test phase was spared.
However, their interpretation of their finding of reduced
blocking with increasing load differed from ours. They
argued that full blocking relies on the inference that the
redundant cue did not add anything to the effect already
caused by the predictive cause. Increased processing
load might interfere with this inference, which should
lead to uncertainty (i.e., partial blocking in our termi-
nology) as opposed to full blocking (see note 1).

Diagnostic learning should also be affected by capac-
ity limitations, but for different reasons. Common-cause
models do not require holding alternative effects con-
stant. However, diagnostic learning requires other spe-
cific capacity-demanding processes that differentiate it
from predictive learning. Originally, causal-model the-
ory was developed to model the competence of causal
learning. Specifically, it was assumed that people learn
about cause–effect contingencies independently of the
order of learning events. For example, when a common-
cause model is being acquired, it should (normatively
and according to causal-model theory) not matter whether
learning proceeds in the cause–effect or the effect–cause
direction. However, psychologically it seems implausi-
ble that learning order does not play a role unless the
learning situations are fairly simple. In diagnostic tasks,
effect information is presented first (e.g., the symptom
of a disease); then later, after the diagnostic judgments,
learners receive feedback about the cause (the disease)
that produced the earlier observed effects. Thus, the se-
quence of learning events runs opposite to the sequence
of the real events that underlie them. We know that in the
real world, causes precede their effects, irrespective of
the order in which they are presented to us. Therefore,
the learning events need to be mentally reorganized to
lead to a causal model that is comparable with causal
models acquired in the predictive direction (from causes
to effects).

Preliminary evidence for the assumption that mis-
matches between presentation order and real-world tem-
poral order tax working memory comes from a text com-
prehension study by Münte, Schiltz, and Kutas (1998).
These investigators showed that reading sentences in
which the order in which events were mentioned in the
text runs opposite to the order of these events in the de-
scribed real-world situation (e.g., “Before the scientist
submitted the paper, the journal changed its policy”) re-
quired more working memory than reading sentences in
which the two orders corresponded (e.g., “After the sci-
entist submitted the paper, the journal changed its pol-
icy”). The neural correlate of working memory in the
prefrontal cortex was measured with electrophysiologi-
cal methods (event-related potentials). These results en-
courage the hypothesis that diagnostic learning will im-
pose higher working-memory demands than predictive
learning.

The hypothesis of greater demands of diagnostic rea-
soning is also supported by recent experiments by Fenker,
Waldmann, and Holyoak ( in press), who investigated a
semantic memory task. In the experiments, participants
received word pairs consecutively (e.g., spark–fire) and
had to assess as quickly as possible whether the word
pair referred to causally related events or not. With word
pairs that were equally associated in both directions, the
results showed that it takes longer to check whether a di-
agnostic effect–cause relation (fire–spark) is true than
whether a predictive cause–effect relation (spark–fire) is
true. No difference in reaction times was observed when
participants had to assess whether the words were merely
associated. These results provide evidence for the spe-
cial status of causal relations and for the greater diffi-
culty of accessing diagnostic knowledge.

A further asymmetry between predictive and diagnos-
tic learning is the relatively greater difficulty of updat-
ing causal strength estimates in diagnostic learning. Ac-
cording to causal-model theory, learning involves the
updating of conditional probabilities used to estimate
causal strength. In predictive learning, the cause infor-
mation is given first, which allows the learner to select
the relevant conditional probability estimates that are
going to be updated. In diagnostic learning, the effect in-
formation is presented first. Again, conditional proba-
bilities that are directed from causes to effects are going
to be updated (e.g., P(effect1|cause1), see Waldmann &
Martignon, 1998). However, in this situation the infor-
mation about the particular effect has to be stored until
after feedback about the corresponding cause is given.
An observed effect may be produced by alternative causes
so that it is not clear at first which estimate is going to
be updated. This is a consequence of the inherent asym-
metry between causes and effects. Multiple causes of an
observed effect compete, whereas multiple effects of a
common cause do not. Thus, the greater difficulty of as-
sessing causal strength in diagnostic-learning situations
provides a further reason for expecting that normatively
appropriate diagnostic learning may be found only in sit-
uations with relatively little complexity.

A final reason for difficulties with diagnostic learning
may be derived from evolutionary considerations. In our
natural environment, we typically perceive events in
their natural causal order. Causes precede effects, and
therefore our learning events are typically also ordered
in this direction. There is some evidence that animals are
able to reason backward in time (Esmoris-Arranz, Miller,
& Matute, 1997), but it is well known that this compe-
tence is harder to demonstrate than forward reasoning.
Also, there is evidence from studies with children show-
ing that backward memory–driven inferences are harder
to accomplish than reasoning processes that proceed in
line with the learning direction (Bindra, Clarke, & Shultz,
1980). These studies typically presented causes before
effects in the learning phase, but in diagnostic-learning
tasks the problems with reasoning from effects to causes
are exacerbated because participants perceive cause in-
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formation after effect information, which experientially
contradicts the natural order of events.

It is important to note that diagnostic reasoning and
diagnostic learning are two different notions. It is possi-
ble to learn a cause–effect relation in the predictive order
and then reason diagnostically back in time. This is dif-
ferent from diagnostic learning in which effect cues are
experienced prior to cause outcomes, although the events
in the real world to which they refer occur in the oppo-
site order. Diagnostic learning is only possible because
humans can use symbolic descriptions of causal situa-
tions that permit them to decouple the order of learning
events from the order of real events. It is likely that a
great deal of attention is required to separate learning
order from causal order. Unless the instructed causal
models are very plausible and accessible to participants,
there may be great danger of falling back on the default
assumption that the order of the experienced events fol-
lows the order of events in the world (i.e., predictive
learning).

All these reasons lead us to the prediction that in com-
plex conditions an increase of the blocking effect in di-
agnostic learning is predicted. Interestingly, causal-model
theory predicts opposite effects on cue competition for
predictive and diagnostic learning, less blocking in pre-
dictive but more blocking in diagnostic learning when
the task is complex. Whenever the causal model is not
salient or is unclear, we predict a tendency to fall back on
the default assumption that causes precede their effects
(i.e., predictive learning).

Distinguishing between competence and performance
in causal learning aids the explanation of the inconsis-
tent experimental evidence regarding sensitivity to causal
directionality. A general pattern seems to be that partic-
ipants tend to be capable of differentiating between pre-
dictive and diagnostic learning in relatively clear situa-
tions with few cues and outcomes in which intuitively
plausible causal cover stories were provided (see Cobos
et al., 2002; De Houwer & Beckers, 2002; Tangen &
Allan, 2004; Tangen et al., 2005, for similar hypotheses).

By contrast, studies failing to reveal sensitivity to
causal directionality tended to be more complex. More-
over, they often presented implausible or unclear causal
cover stories (see also Waldmann, 2000; Waldmann &
Holyoak, 1997). For example, Price and Yates (1995, Ex-
periment 4) used cover stories that mentioned indicator
lights or switches that were probabilistically related to
the power output level of a nuclear power plant. It is pos-
sible that participants found it implausible that lights in-
dicating nuclear power output level would give this in-
formation only probabilistically (see also Cobos et al.,
2002).

Some experiments also present learning data that con-
tradict the instructed causal model. For example, some
of the experiments of Cobos et al. (2002) presented dis-
eases with disjunctive effects (a disease could produce
Symptoms D and E or Symptom F, but no other combi-
nation of these three symptoms). This pattern is clearly

inconsistent with common-cause models, which would
predict three conditionally independent effects (see also
Waldmann, 2000; Waldmann & Holyoak, 1997). It is
therefore possible that participants ignored the causal
cover story, and fell back to predictive learning, the de-
fault learning procedure. In their Experiment 4, Cobos
et al. used an overshadowing paradigm that avoided this
problem. Unlike in Waldmann (2001) and Tangen and
Allan (2004), who also used different types of overshad-
owing tasks with results supporting causal-model theory,
Cobos and colleagues did not find a significant differ-
ence between predictive and diagnostic learning. The
large number of cues and outcomes (nine cues, six out-
comes) may be one reason for this failure. Additionally,
Tangen and Allan speculated that the large number of tri-
als may have been a contributing factor. Cobos et al.
trained participants with maximally 210 trials (means
over 64 trials), which according to the results of Tangen
and Allan’s experiments often lead participants to aban-
don the causal interpretation of cues and outcomes and
treat the task as a simple associative contingency learn-
ing task.

The following three experiments represent different
attempts in the direction of exploring boundary condi-
tions for causal learning. In general, it is expected that
human learners are sensitive to typical aspects of causal
relations, such as their inherent directionality, in learning
situations that place relatively low demands on process-
ing capacity and clearly convey the underlying causal
structure the learning events are referring to. Thus, in
these conditions we expect to find evidence for people’s
competence to correctly acquire knowledge about causal
models. Violations of these constraints, however, may
limit learners’ competency and foster the tendency to sim-
plify the learning situation, for example by imposing a
predictive-learning frame on the learning events or by 
ignoring relevant additional information, such as poten-
tial confounds.

Overview of Experiments
We have already pointed out that absence of blocking

in predictive learning or presence of blocking in diag-
nostic learning might also be generated by prior domain
assumptions (De Houwer, 2002; Waldmann, 2000, 2001).
In this case different sizes of cue competition effects
may be normative, so they do not count as evidence for
performance effects. To be able to isolate performance
limiting factors from such normative effects, in all three
experiments cover stories are used that present fictitious
devices. Since the devices are introduced as artifacts that
were constructed to study learning, people should be less
affected by prior assumptions about domains. Indeed,
our previous experiments with artificial devices demon-
strated that people had no problems grasping the in-
tended causal model (see Waldmann, 2000, 2001).

Experiment 1 used the standard blocking paradigm
with a predictive and a diagnostic cover story (see also
Waldmann, 2000; Waldmann & Holyoak, 1992). Two ad-
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ditional factors were manipulated: The plausibility and
tangibility of the causal model was varied by comparing
a standard task in which the states of a causal device
were verbally described on a computer screen with a task
in which these states could directly be observed on a real
device. Furthermore, information processing load was
manipulated by means of a double task paradigm (“tone
counting”). It is expected that sensitivity to causal direc-
tionality should display itself clearer in the conditions
without the secondary task load and in the conditions in
which the causal scenario was real.

Experiment 2 extends the range of cue competition
paradigms by testing our hypotheses with an overshad-
owing paradigm. As in Waldmann (2000, 2001), we used
fictitious devices with switches and lights as causes and
effects. One goal of this study was to investigate whether
the standard causal-model effect can also be shown with
more complex devices with six cues and four outcomes.
In the two standard conditions, a predictive version of
the task was compared with a diagnostic version. A novel
third condition presented a device in which participants
had to learn both predictive and diagnostic relations
within the same device. We expected this task to be con-
siderably more complex than the standard tasks, and thus
we were able to test our prediction that learning should
suffer as a result of complexity.

Finally, Experiment 3 used a more complex blocking
paradigm with diagnostic cover stories. Two slightly dif-
ferent phrasings of the cover stories were compared,
which varied the amount of detail that was given in the
introduction of the causal model. It is expected that the
predicted absence of blocking after diagnostic learning
depends on how the causal model is introduced in the
initial instruction.

EXPERIMENT 1

The goal of this experiment was to test whether a ma-
nipulation of the information processing load and of the
tangibility of the causal model affect sensitivity to causal
directionality in a blocking paradigm. The participants’
task was to learn about an artificial device, a black box
that had colored lights on both sides (see also Wald-
mann, 2000, Experiment 1). One side represented the
cause side, the other side the effect side. Each lamp on
the cause side was linked to a button that was placed di-
rectly below it. Participants were told that pressing the
button on the cause side caused the indicator light above
the button to be on. In the predictive condition, partici-
pants received information about the states of several in-
dicator lights on the cause side and had to predict whether
pressing the respective button additionally caused the in-
visible light on the other side, the effect side, also to be
on. After participants made their predictions, feedback
was given about the presence or absence of the effect. In
Phase 1, participants learned that one light on the front
side caused the light on the back side also to be on (pre-
dictive cue). In contrast, a second light was nonpredic-

tive (uncorrelated cue). In Phase 2, a third indicator light
(redundant cue) was redundantly paired with the predic-
tive cue. After each learning phase, participants were re-
quested to rate the predictiveness of each individual
light.

Associative theories as well as causal-model theory
predict a blocking effect in this condition. According to
the latter theory, two factors contribute to the predicted
uncertainty about the redundant cue. First, no informa-
tion is available about the influence of the redundant cue
in the absence of the predictive cue since they are always
presented together. Thus, it is impossible to compute the
contingency between the redundant cue and the effect in
the absence of the predictive cue. Second, the predictive
cue deterministically causes the effect, which creates a
ceiling situation when the predictive and redundant cues
are present together. This makes it impossible for the
new cue to display its potential causal power above the
already established influence of the predictive cue.

For the diagnostic condition, the device was turned
around. Two more lights were uncovered on the effect
side, whereas on the cause side all but one light was cov-
ered. Now participants watched several effect lights that
were potentially linked to the cause light on the invisible
back side. Their task was to judge, on the basis of the
state of the observed effect lights, whether the experi-
menter had pressed the button of this single cause light
or not. Cues and outcomes were identical in the predic-
tive and diagnostic conditions. Participants first saw the
state of the effect lights, then made a judgment, and fi-
nally received information about the state of the cause
light that indicated whether the experimenter had pressed
the attached button or not. Again, participants first learned
that one effect light (predictive cue) was turned on by the
cause light on the invisible back side, whereas a second
light was not causally affected by this light (uncorrelated
cue). Then in Phase 2, a third light was uncovered. Now
participants observed that two lights, the predictive and
the redundant cue, were on whenever the cause light also
was on. The same rating questions were used as in the
predictive conditions. Because identical cues, outcomes,
and test questions were used in the predictive and diag-
nostic conditions, associative theories again predict block-
ing of the redundant cue. By contrast, causal-model the-
ory predicts that both lights should be seen as equally
valid indicators of the cause light. Assessing contingen-
cies in the cause–effect direction reveals that the cause
light deterministically affects both the first and the third
light. 

To investigate performance limitations, two additional
factors were manipulated in Experiment 1, tangibility
and processing load. The tangibility and transparency of
the underlying causal model was varied by comparing a
condition in which participants learned about the causal
relations by observing a real black box with buttons and
lights with the standard case in experimental research
with humans, verbal descriptions of the states of cues
and outcomes on a computer screen. In general, com-



COMPETENCE AND PERFORMANCE 217

puter presentations require a leap of faith on the part of
participants. They read instructions about the causal
meaning of the observed events but are certainly aware
of the fact that the observed trials are just part of a com-
puter program, and not the outcome of the causal mech-
anism they are supposedly learning about. In such con-
ditions it may be tempting to forget about the causal
cover stories. By contrast, observing a real mechanism
should convince participants that the causal structure
they are learning about is real. It should also serve as a
constant reminder of the structure of the underlying causal
model. Thus, it was expected that sensitivity to causal di-
rectionality should be particularly strong in the condi-
tions in which participants learned about the real device.

To manipulate information processing load, a sec-
ondary tone-counting task was used in which partici-
pants were requested to count the occurrences of a high-
pitched tone in a sequence of high- and low-pitched
tones while learning about the device. It was expected
that the effects predicted by causal-model theory should
diminish in the conditions with tone counting. Both con-
ditions, the predictive and the diagnostic conditions,
should be affected. With additional complexity, partici-
pants are expected to prove reluctant to take cofactors
into account in predictive learning, which, according to
causal-model theory, underlies the blocking effect. Thus,
less blocking is expected in this condition (see also De
Houwer & Beckers, 2003). The diagnostic condition is
also expected to be affected, with the increased process-
ing load making it harder for participants to form and up-
date a causal model that is directed opposite to the input
order. These difficulties should increase the tendency to
impose a predictive frame on the learning items, which
should display itself in an increased tendency to block
the redundant cue.

It is unclear whether associative theories would pre-
dict any effects of the secondary task. Given that cue
competition is viewed as part of a basic, fundamental
learning mechanism, it may be reasonable to expect block-
ing in both conditions, especially when processing de-
mands prevent learners from using nonassociative strate-
gies (see Price & Yates, 1995).

Method
Participants and Design. One hundred twenty-eight students

from the University of Munich, Germany, participated in this ex-
periment. Sixteen participants were randomly assigned to each cell,
which was created by crossing the factors learning condition (pre-
dictive vs. diagnostic learning), tangibility of the causal model (real
vs. described box), and processing load (tone counting vs. no tone
counting).

Procedure and Materials. Prior to the learning task, partici-
pants in all conditions received written instructions (in German). In
the predictive-learning condition, the instruction stated that the task
would be to learn about causal relations. Participants read that they
should imagine a box with three lamps on the front side and one
lamp on the back side. Only the front side but not the back side
could be seen from the perspective of the learner. Buttons were at-
tached to the lamps on the front side. Pressing these buttons switched
on the corresponding indicator light. The task was to learn to pre-

dict whether the button also turned on the light on the back side of
the box. Furthermore, the instructions stated that during the learn-
ing task information about the current state of the lights on the front
side would be given (“on” or “off ”). Whenever a light was on, par-
ticipants should imagine that the experimenter had switched on the
light.

In the diagnostic-learning condition, similar instructions were
given. The only difference was that no buttons for the three visible
lights on the front side were mentioned, and that the lights were
characterized as potential effects of the light on the invisible back
side. Now the light on the back side contained a button that the
imaginary experimenter occasionally, invisible to the learner, turned
on or off. Again it was stated that participants were going to receive
information about the states of the visible lights on the front side,
and they were expected to judge whether, as a consequence of the
presumed actions of the experimenter, the indicator light of the
cause was also lit.

The ensuing learning phase presented identical learning trials to
participants in all conditions. The only difference was that the tri-
als were either presented on a real box, or they were verbally de-
scribed on a computer screen. In the computer version, participants
were told that they were going to receive information about the
states of three colored lamps on the visible front side. These lamps
were either on or off. Furthermore, it was mentioned that instead of
this information, four question marks might also be shown that in-
dicate that the current state of the lamp could not be seen during the
respective trial. The task was to say “yes” when the participants be-
lieved that the light on the back side also was on and to say “no”
when it was presumably off. After their decision, they would be
given immediate feedback. Then participants were alerted that later
they would be asked about the different lamps, so it would be use-
ful to memorize the positions of the colors.

The learning trials showed a screen with the header “front side”
above the three capitalized color names blue, yellow, and green next
to each other on one line. In Phase 1, only information about two
lights, the predictive and the uncorrelated cue, was given, and the
other light was marked with question marks (e.g., “BLUE light: ON
YELLOW light: OFF GREEN light: ????”). Thus, this example in-
dicates that the blue light on the left side is on, the yellow light off,
and the current state of the green light is unknown. The correct an-
swer was to say “yes” when the predictive light (i.e., blue in this ex-
ample) was on and “no” when it was off. The uncorrelated (yellow)
light also varied between on and off, and the correct answer was al-
ways “no.” This light was on only when the predictive light was off.
Thus, there were three patterns in Phase 1 (correct responses in
parentheses): on-off-???? (“yes”), off-off-???? (“no”), off-on-????
(“no”). After each judgment, the experimenter hit a key that dis-
played a screen with the feedback. Each pattern was presented eight
times in random order. The feedback screen showed the header
“back side” on top and below information about the state of the
lamp on this side (e.g., “Lamp: ON”). For half of the participants,
the colors green and blue were exchanged. Thus, for these partici-
pants the green light was presented on the left side as the predictive
cue.

After this learning phase, participants were requested to rate the
predictiveness of the light they had seen using a number between 0
(“you are certain that the light on the back side is off ”) and 100
(“you are certain that the light on the back side is on”). The rating
instructions stated that the participants should rate how predictive
each light individually was for the state of the light on the back side
of the box. The sequence of colored lights followed the left-to-right
sequence in the learning phase.

Before Phase 2 started, participants read further instructions stat-
ing that they were going to receive information about the uncov-
ered third light. In the subsequent learning phase, three different
trial types were presented again. These trials were identical with re-
spect to the first two lights, the predictive and the uncorrelated cue.
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The only difference was that now information about the third light
(e.g., green) was also given. This light, the redundant cue, was al-
ways on when the predictive light was on (e.g., “BLUE light: ON
YELLOW light: OFF GREEN light: ON”) and off when the pre-
dictive light was off. Again, each pattern was presented eight times
before the final ratings were collected.

The conditions in which a real box was used were run as closely
as possible to the computer version. As a learning device, we built
a box that was painted black and was 52 cm long, 31 cm wide, and
15.2 cm high. In the predictive condition, participants saw only the
front side, and the back side was shielded by a black screen. The
box was covered until after the initial instructions had been deliv-
ered. Then, participants in the predictive condition saw two (Phase 1)
or three (Phase 2) colored lights (size 2.2 � 3.3 cm) that were con-
nected to metal buttons. The buttons were placed directly below the
indicator lights. Corresponding to the question marks in the verbal
condition, the third light in Phase 1 was covered by a black metal
plate so that the light underneath the plate was invisible. During the
learning phase, the experimenter pressed the buttons on the cause
side, which turned on the respective indicator lights. The pattern
and sequence of buttonpresses corresponded to the trials in the ver-
bal condition. Again, participants’ task was to judge whether the
light on the back side of the box was also on or off. After each of
the initial trials in Phase 1, the shield was removed so that partici-
pants could check the state of the white outcome light on the back
side. Later only verbal feedback was given. As in the verbal condi-
tion, participants saw each trial type eight times in each learning
phase in random order. The colors of the predictive and redundant
lights were also counterbalanced.

For the diagnostic condition, the box was turned around so that
participants faced three effect lights. (The two additional lights vis-
ible in this condition were covered in the predictive condition, in
which only one effect light was presented.) Otherwise, the cues,
outcomes, trial types, and number of randomized trials were simi-
lar, as in the predictive condition. Participants observed the state of
two (Phase 1) or three (Phase 2) lights on the visible front side. The
only difference was that these lights did not have a visibly attached
button. Instead the task was to judge whether the experimenter had
pressed the button on the back side of the box, the cause side, which
was attached to the white indicator light. Again a screen prevented
participants from seeing the experimenter pressing the button. In-
stead they had to learn to use the visible effect lights as diagnostic
cues. After each of the initial trials, the shield was removed after the
judgment so that participants could see whether the experimenter
had pressed the button by checking the state of the indicator light.
Then the experimenter reset all the lights to being off. As in the pre-
dictive context, participants learned first that in Phase 1 one effect
light (predictive cue) was perfectly correlated with the state of the
cause light, whereas a second light was uncorrelated. In Phase 2, a
third, redundant effect light was constantly paired with the predic-
tive light. Now participants learned that the cause light was always
on when both effect lights were on. After each phase, ratings were
collected using the same instructions as in the verbal conditions.

The third factor manipulated the processing load. Half of the par-
ticipants were confronted with an additional tone-counting task.
During the learning phases, these participants heard a sequence of
two different tones (1000 or 2500 Hz) in random order with inter-
vals randomly varying between 3 and 7 sec. Each tone was pre-
sented for 0.5 sec. The task was to count the occurrences of the
high-pitched tone.

Results and Discussion
The predictive cue received uniformly high ratings

(M � 96.5) after Phase 1 training, which is a precondi-
tion for a potential blocking effect. These ratings did not

differ across conditions.2 By contrast, the uncorrelated
cue received mean ratings of 6.68. Figure 1 shows the
mean ratings for the predictive (P cue), redundant
(R cue), and uncorrelated (U cue) cues, which were ob-
tained after Phase 2. A 2 (predictive vs. diagnostic learn-
ing) � 2 (real box vs. described box) � 2 (tone counting
vs. no tone counting) � 2 (predictive vs. redundant cue)
analysis of variance (ANOVA) with the latter factor con-
stituting a repeated measurement factor revealed a sig-
nificant blocking effect (predictive vs. redundant cue)
[F(1,120) � 95.4, MSe � 219.4, p � .001] that interacted
with learning condition (predictive vs. diagnostic learn-
ing) [F(1,120) � 25.4, MSe � 219.4, p � .001] and the
factor tangibility (real vs. described box) [F(1,120) �
19.1, MSe � 219.4, p � .001]. Furthermore, the three-
way interactions between the factors blocking, learning
condition, and tangibility [F(1,120) � 4.02, MSe � 219.4,
p � .047], and between the factors blocking, learning
condition, and processing load (tone counting vs. no tone
counting) [F(1,120) � 6.30, MSe � 219.4, p � .013],
were significant. The four-way interaction was not sig-
nificant.

To test the specific predictions of causal-model theory,
we conducted a limited number of more specific analy-
ses. A first analysis focused on the conditions without
tone counting, which corresponded most closely to pre-
vious experiments (e.g., Waldmann, 2000). In this condi-
tion, behavior consistent with the normative predictions
of causal-model theory should be observed in the condi-
tion with the real box. Thus, it is expected that blocking
occurs only in the predictive condition and not in the di-
agnostic conditions, and that there is an interaction be-
tween the blocking effect and the learning condition.
Moreover, it is expected that lowering tangibility by pre-
senting the trials on a computer screen should weaken the
predicted difference between predictive and diagnostic
learning relative to the condition with the real box.

A 2 (predictive vs. diagnostic learning) � 2 (real box
vs. described box) � 2 (predictive vs. redundant cue)
ANOVA revealed a significant blocking effect [F(1,60) �
69.09, MSe � 158.8, p � .001] that was moderated by
two-way interactions with the factors learning condition
[F(1,60) � 39.4, MSe � 158.8, p � .001] and tangibility
[F(1,60) � 8.07, MSe � 158.8, p � .006]. Most impor-
tantly, the three-way interaction also proved significant
[F(1,60) � 4.88, MSe � 158.8, p � .031]. These results
replicate previous findings (Waldmann, 2000; Wald-
mann & Holyoak, 1992) in that they show that partici-
pants were sensitive to causal directionality. Whereas the
ratings between the predictive and the redundant cue
clearly differed in the predictive conditions [F(1,30) �
73.7, MSe � 229.2, p � .001], these cues failed to be sig-
nificant in the diagnostic conditions [F(1,30) � 3.7,
MSe � 88.4, p � .063]. The latter result also rules out a
possible alternative explanation of a blocking effect that
attributes differential ratings to the unequal number of
presentations of the predictive and redundant cue. If this
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was the crucial factor, no interaction with learning con-
dition should be observed (see also Waldmann, 2000).

In the predictive condition, the blocking effect was
moderated by a significant interaction with the factor
tangibility [F(1,30) � 8.84, MSe � 229.2, p � .006]. As
predicted, the blocking effect was more pronounced in
the condition in which participants learned about the
causal relations with a real box as opposed to a symbolic
representation of learning trials on a computer screen. In
the diagnostic conditions (without tone counting), tangi-
bility did not have a detectable influence (F � 1, for the
interaction).

The difference between the predictive and the diag-
nostic condition is also evident in the ratings of the re-
dundant cues. These cues received higher ratings in the
diagnostic than in the predictive condition with the real
box [F(1,30) � 46.8, MSe � 244.5, p � .001]. In con-
trast, there was a considerably weaker effect in the same
direction in the condition with the computer presentation
[F(1,30) � 5.33, MSe � 493.1, p � .028].

The next analyses focused on the conditions with tone
counting. Tone counting is also predicted to weaken the
differences between predictive and diagnostic learning
with respect to blocking. The analysis in which the pre-
dictive conditions were compared with the diagnostic

condition again showed a significant blocking effect
[F(1,60) � 35.6, MSe � 279.9, p � .001] that was mod-
erated by a two-way interaction with the factor tangibil-
ity [F(1,60) � 11.1, MSe � 270.9, p � .001]. However,
the two-way interaction between the blocking effect and
learning condition [F(1,60) � 2.51, MSe � 279.9, p �
.12] and the three-way interactions (F � 1) both failed to
be significant. The main reason for this new pattern is
the fact that in this condition the redundant cue was rated
significantly lower than the predictive cue not only in the
predictive condition [F(1,30) � 36.8, MSe � 217.1, p �
.001] but also in the diagnostic condition [F(1,30) � 7.8,
MSe � 342.8, p � .009]. It is true that the effect in the
diagnostic condition is clearly descriptively smaller than
in the predictive condition, which indicates sensitivity
for causal directionality also within this group of partic-
ipants. But apparently the higher processing load had a
detrimental effect on participants’ ability to form causal
models with learning input that was directed in the diag-
nostic direction. As in the conditions without tone count-
ing, the blocking effect interacted with the factor tangi-
bility in the predictive condition [F(1,30) � 11.2, MSe �
217.1, p � .002], with a stronger blocking effect in the
condition with the real box than in the context in which
the trials were only verbally described on a computer
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Figure 1. Mean “predictiveness” ratings (after Phase 2) for the predictive (P), redundant (R), and uncorrelated (U)
cues in the predictive- (left) or diagnostic- (right) learning conditions. Learning trials were presented with or without a
secondary tone-counting task either on a real box with buttons and lights, or verbally on a computer screen. The error
bars represent standard errors of the mean calculated for each condition separately.
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screen. In contrast, the diagnostic condition was not af-
fected by tangibility [F(1,30) � 2.52, MSe � 342.8, p �
.12, for the interaction].

Unlike in the condition without tone counting, there was
no significant difference in the ratings of the redundant
cues, either in the condition with the real box [F(1,30) �
2.57, MSe � 951.6, p � .12] or in the condition with the
computer presentation [F(1,30) � 1.18, MSe � 396.5,
p � .29], in the conditions with tone counting. This can
be seen as evidence for the impact of the higher pro-
cessing load caused by the tone-counting task.

In the final analyses, we checked the effect of tone
counting. Generally, tone counting had a smaller effect
on blocking than tangibility in the present experiment.
However, in the condition with a real box, a significant
three-way interaction between causal condition, the pro-
cessing load factor, and the blocking effect [F(1,60) �
4.03, MSe � 272.8, p � .049] was observed. As pre-
dicted, the blocking effect was smaller in the predictive
condition when a tone-counting task added complexity
to the task than without tone counting. The blocking ef-
fect was generally smaller in the diagnostic condition
than in the predictive condition, which demonstrates
sensitivity to causal directionality, but it can also be seen
that the tendency to give lower ratings to the redundant
cue than to the predictive cue (i.e., blocking) somewhat
increases in the condition with tone counting. In the ver-
bal condition, the three-way interaction did not prove sig-
nificant, however [F(1,60) � 2.28, MSe � 165.9, p � .14].

In summary, the results of the experiment showed
once again that participants attempted to differentiate
between diagnostic and predictive learning (see also
Tangen & Allan, 2004; Waldmann, 2000; Waldmann &
Holyoak, 1992). These findings are at odds with asso-
ciative learning theories, which generally predict identi-
cal learning with identical cues and outcomes. However,
the results also show that this competence may be cor-
rupted by conditions that affect the salience of the causal
relations as well as by the difficulty of the task. In the
predictive conditions, blocking was more pronounced in
the conditions in which participants were confronted
with a real causal device as opposed to verbal descrip-
tions of the learning trials on a computer screen. Appar-
ently, the necessity to hold cofactors constant becomes
more apparent in a situation in which the converging
causal influences could be imagined more vividly. Pro-
cessing load also had a small effect on learning. The nor-
mative predictions of causal-model theory were borne
out in the conditions without tone counting (especially
when participants learned with the real box). In the con-
ditions with increased processing load, the blocking ef-
fect slightly decreased in the predictive and increased in
the diagnostic conditions relative to the corresponding
conditions without tone counting. This pattern of oppo-
site influences of performance limiting factors on pre-
dictive versus diagnostic learning can be predicted by an
extension of causal-model theory, whereas it appears hard
to reconcile these findings with associationist theories.

The decrease of the blocking effect in the predictive-
learning conditions is consistent with the study of De
Houwer and Beckers (2003). One interesting difference
is that De Houwer and Beckers found an effect of the
secondary task only when it was presented during both
learning and test phases, whereas we found an effect, al-
beit a small one, in a task in which participants were con-
fronted with the secondary task only during the learning
phase. Possibly our task was more sensitive to differ-
ences because we compared learning with and without a
secondary task, whereas De Houwer and Beckers used
two differently difficult versions of the tone-counting
task.

One interesting difference between our theory of the
effect of processing load and the theory of De Houwer
and Beckers (2003) concerns the underlying mechanism.
Whereas our theory claims that people should tend to fall
back to using simple unconditional contingencies under
conditions of heavy load, De Houwer and Beckers pre-
dict that a secondary task should prevent learners from
making the right inferences about the causal status of the
redundant cue, and therefore lead to uncertainty. In our
view, the results of the present experiment favor our the-
ory. We used deterministic relations, which according to
De Houwer and Beckers should already create uncer-
tainty about the causal status of the redundant cue in reg-
ular learning situations without a secondary task. Never-
theless we found an effect of tone counting and tangibility
in our deterministic scenario. Moreover, the ratings of
the redundant cue were on an intermediate level (far
from the ones for the uncorrelated cue) in the conditions
without tone counting and the real box, and moved to-
ward the predictive cue in the conditions with tone count-
ing and verbal descriptions. Thus, there was a tendency
to move from partial blocking toward absence of block-
ing with increasing processing load and decreasing tan-
gibility, rather than a tendency to move from absence of
blocking toward partial blocking (see note 1), which is
consistent with our theory. More experiments are cer-
tainly needed to conclusively resolve this issue.

In summary, the results of the experiment demonstrate
that people attempt to learn correctly about causal mod-
els if possible. However, they often fail in situations with
increased processing load and decreased tangibility of
the causal model.

EXPERIMENT 2

Experiment 1 has shown that both predictive and di-
agnostic learning suffer when there is a secondary task,
or when the tangibility of the causal domain is low. How-
ever, the detrimental effect on diagnostic learning (i.e.,
blocking) was relatively small. This is peculiar because
other research groups have found much larger blocking
effects in diagnostic-learning tasks (e.g., Cobos et al.,
2002; Price & Yates, 1995). There are several possible
reasons for these divergences. Typically more cues, out-
comes, and learning trials have been used, all of which



COMPETENCE AND PERFORMANCE 221

may lower the plausibility of the causal nature of the task
and lead participants into an associative learning mode
(see De Houwer & Beckers, 2002; Tangen & Allan, 2004).
Differences in domain characteristics may also be a fac-
tor. Devices with switches and lights are domains in
which the underlying causal structure is very salient in
comparison with more opaque domains, such as diseases
(see Waldmann, 2001).

The goal of Experiment 2 was to test predictive and
diagnostic learning in conditions that are more demand-
ing while sticking to artificial devices. The most impor-
tant novel contribution of this experiment is that we in-
cluded a mixed-learning condition in which learners
were confronted with a device in which causes and ef-
fects were both presented as cues. Thus, participants had
to learn both predictive and diagnostic relations within a
single device. We used a device with two halves. On one
half, participants learned about three cause cues and two
effect outcomes, whereas on the other half, three effect
cues and two cause outcomes were presented (Figure 2).
The two halves were presented consecutively prior to the
test phase with the predictiveness rating questions for
both halves.

We expected that this condition would be particularly
hard because participants learn about identical statisti-
cal relations for the cue–outcome relations on both sides,
which nevertheless should be processed differently, de-
pending on the underlying causal model. Thus, identical
statistical relations between cues and outcomes had to be
assigned to different causal models (common cause vs.
common effect), which makes it necessary to mentally
reorganize the learning input in a way that predictive and
diagnostic relations are correctly represented within a
single coherent causal model of the device. To adequately
learn the predictive relations, confounded causes have to
be taken into account, whereas correctly learning the di-
agnostic relations implies a mapping from cues to effects
and outcomes to causes and the assessment of uncondi-
tional contingencies in the cause–effect direction. We
expected that in this mixed condition participants might
tend to fall back on the more natural predictive-learning
mode and show a clear cue competition effect for both
predictive and diagnostic relations. For the predictive re-
lations, the effect might be smaller due to the heightened
complexity.

To compare performance in the mixed condition with
that in our standard conditions, we also ran a pure 
predictive-learning condition with six cause cues and
four effect outcomes that were also arranged on two
halves of the device. In the corresponding pure diagnostic-
learning condition, we presented six effect cues and four
cause outcomes in a similar fashion.

To test our hypotheses with a paradigm different from
blocking, we chose an overshadowing task (see also Wald-
mann, 2001). In all conditions a single predictive cue on
each side was deterministically connected with one out-
come. Trials showing the single predictive cues were in-
termixed within each side with trials that showed two re-

dundant cues followed by a second outcome. Associative
learning theories (e.g., Rescorla & Wagner, 1972) pre-
dict an overshadowing effect, which should display itself
in lower ratings of the redundant cues compared with the
single cues. Causal-model theory (see Waldmann, 2001)
predicts overshadowing in the predictive conditions but
not in the diagnostic conditions, at least in the pure con-
ditions. In the predictive conditions, only the single
cause is presented by itself as a deterministic cause,
whereas none of the redundant causes are presented in
the absence of the potential alternative cause. Thus par-
ticipants should prove uncertain about the status of the
redundant causes, which both are perfectly confounded.
In contrast, in the diagnostic conditions, all effects are
deterministically generated by a single unique or a sin-
gle common cause. Given that alternative hidden causes
seem implausible in such devices, participants should
tend to give similarly high diagnostic ratings for single
and redundant effects.

Method
Participants and Design. Eighty-four undergraduate psychol-

ogy students from the University of California, Los Angeles, par-
ticipated in exchange for course credit. Twenty-eight of those stu-
dents participated in the pure predictive, 28 in the pure diagnostic,
and 28 participated in the mixed-learning condition.

Materials and Procedure
The experiment was presented to each participant on a personal

computer. Each condition was based on the overshadowing para-
digm (see also Waldmann, 2001). For all conditions, participants
were given the same cover story, stating that we were interested in
investigating how people learn to operate devices such as VCRs and
computers. Participants were then told that we had constructed an

LIGHTS

SWITCHES

Figure 2. Example of a device used in the mixed condition of
Experiment 2. Switches represent causes, and lights effects. In
this particular counterbalancing condition, the left half was used
for predictive learning of the relation between three causes and
two effects (cues on the bottom), and the right half for diagnostic
learning of three effects and two causes (cues on the top). The two
other conditions (pure predictive or diagnostic) used devices that
duplicated either the left or the right half of this device.
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artificial device that we would present to them on the computer
screen, and that the device has both lights and switches. We pointed
out that lights are only turned on by switches to discourage the as-
sumption of hidden causes. Finally, participants were told that it
was their task to learn the relationships between those switches and
lights, and that we would check at the end of the experiment if they
knew how to operate the device. In the initial instructions, we
showed participants a picture depicting the full device with six cues
and four outcomes (see Figure 2 for an example from the mixed
condition).

In each condition, participants then entered a learning phase in
which they learned the particular relationships between the cues
and outcomes. In all cases, the causes were switches and the effects
were lights. Each device in each condition had six cues and four
outcomes. All presented cue–outcome relations were determinis-
tic; that is, the cue predicted the outcome in 100% of the trials. Also
in all conditions the switches (i.e., causes) were on one side of the
device (top or bottom) and the lights (i.e., effects) on the other side
(see Figure 2 for an example). The mapping of causes and effects
to either of these sides was counterbalanced across participants. We
decided to present the device this way to simplify the device and the
assignment of the causal status to cues and outcomes.

Table 1 displays the design and trial types for all three conditions.
In the mixed-learning condition, the device was divided in half so
that half of the device contained three causes and two effects (for
predictive learning), and the other half contained two causes and
three effects (for diagnostic learning) (see Figure 2). While partic-
ipants were learning about one half of the device (left or right), the
other half was covered. The participants were told that this would
help them concentrate by eliminating distraction. Whether partici-
pants started with predictive or diagnostic learning was counter-
balanced.

In the predictive-learning part of the task, participants received
two blocks with 15 trials each presented in random order. Five tri-
als were shown in which participants observed the presence of a
single predictive cause (switch), which deterministically led to the
presence of the corresponding effect (light). Five trials presented
two causes (switches) simultaneously (redundant cues) paired with
the second effect, and five trials presented cases in which all causes
and consequently all effects were absent. Each trial consisted of a
question, a response, and then feedback as to whether the answer
was right or wrong and what the right answer was. First we showed
participants which switch(es) were on and then asked them, “Which
light is on?” Participants were instructed to press the appropriate
key to indicate their response. To help them choose the right key, we
gave them a printed sheet that showed which light or switch corre-
sponded to which key (e.g., “if you think the blue light is on, press
B,” etc.).

After the first learning phase, the half of the device that partici-
pants had just learned about was covered, and the other half was
shown. If the first task was a predictive-learning task, the second
task was a diagnostic-learning task with three effect cues (lights)
and two cause outcomes (switches) (see Figure 2). Now participants
received information about the presence or absence of lights (effect
cues), and were asked, “Which switch is on?” As in the predictive-
learning phase, there were two blocks of 15 trials in random order.
Each block consisted of 5 trials in which one light was caused by
one of the two switches, and two lights that were on together were
caused by the second switch (Table 1). There were also five trials
in which all lights and switches were off.

The learning trials were blocked according to the half of the de-
vice, and the position of cues and outcomes (bottom or top side)
was counterbalanced across participants. The order of blocks was
counterbalanced across participants. Also, whether a particular side
of the device was for predicting or diagnosing was counterbalanced
across participants. Thus, in one counterbalancing condition, par-
ticipants might receive three cause cues on the lower side of the de-

vice and learn to predict two effect cues on the upper side first (pre-
dictive learning), and then they were presented with three effect
cues on the upper side of the device, and learned to diagnose two
cause cues on the lower side (diagnostic learning).

In the test phase, which followed the learning phase, the ratings
for all six cues (three causes, three effects) were collected. In the di-
agnostic part of the test phase, participants were asked to rate how
predictive each light (i.e., effect cue) was for a particular switch
(i.e., cause outcome) being on, and, in the predictive part, how pre-
dictive each switch (i.e., cause cue) was for a particular light (i.e.,
effect outcome) being on. Thus, in the diagnostic part, the lights
(effects) are treated as cues, and in the predictive part, the switches
(causes) are treated as cues. Each half was presented separately
with the other half being covered. For each test question, all but one
cue was covered by a rectangular area that allowed learners to see
only the current state of the cue that should be rated. Participants
were not informed about the state of the switches or lights that were
covered. Participants were instructed to press the “P” key if they
wanted to answer “perfectly predictive,” the “M” key if they wanted
to answer “medium predictiveness,” and the “N” key to answer “not
predictive.” We chose these three responses because previous re-
search has shown that in deterministic situations, participants tend
to spontaneously say that a causal relation is either present or ab-
sent, or that they do not know on the basis of what they saw. We
counterbalanced the order in which the halves were presented across
the learning phase and the rating phase so that we had every possi-
ble combination of orders represented (e.g., learn about the right
half then the left, and then the rating questions start on the left; learn
about right half then left half, and then the rating questions start on
the right half, etc.). Because every cue had to be rated with respect
to two outcomes on the respective half, overall each participant was
presented with 12 test questions (6 on each half ).

The procedure of the “pure” conditions closely mirrored that of
the mixed condition. Basically the pure predictive condition dupli-
cated the predictive-learning part of the mixed condition, and the
pure diagnostic condition the diagnostic-learning part (see Table 1).
Thus participants in the pure predictive condition were presented
with a device that again was divided in half. During the learning
and the final rating phase, one half was always covered before
learning or testing proceeded to the other half. Each half showed
three switches as cause cues on one side and two effect lights as
outcomes on the other side. On each of the two halves, one switch
(cause) predicted one effect, and two switches together the second
effect. Learning instructions, task, and number of trials for each
half were identical to the one in the predictive-learning part of the

Table 1
Design and Trial Types of Experiment 2

Learning Condition Trial Type

Pure predictive Cause A→Effect 1
Causes B � C→Effect 2
Cause D→Effect 3
Causes E � F→Effect 4

Pure diagnostic Effect A→Cause 1
Effects B � C→Cause 2
Effect D→Cause 3
Effects E � F→Cause 4

Mixed predictive and Cause A→Effect 1
mixed diagnostic Causes B � C→Effect 2

Effect D→Cause 3
Effects E � F→Cause 4

Note—The cues are listed on the left side and the outcomes on the right
side of the arrows, which represent learning order. The letters of the
cues and the numbers of the outcomes denote different colors of switches
(causes) and lights (effects).
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mixed condition. Again the test phase followed learning of the two
halves, with virtually the same procedure as in the predictive part
of the mixed condition.

In the pure diagnostic condition, participants were presented
with six effect cues (lights) and four cause outcomes (switches) (see
Table 1). This condition duplicated the diagnostic-learning part of
the mixed condition. Thus, learning and testing were directed in the
effect-cause direction on each half. On each half, one effect (light)
was caused by one cause (switch) and the two remaining effects by
the second cause. Otherwise the same procedure and the same
counterbalancing of the position of switches and lights were used
as in the other conditions.

Results and Discussion
We assigned a numerical value to each type of re-

sponse for the rating phase (not predictive � 0, medium
predictiveness � 1, and perfectly predictive � 2). A pre-
liminary analysis showed that predictive and redundant
cues were rated similarly within each learning condition.
Therefore, we used the mean ratings for the average of
the single cues and the mean ratings for the average of
the redundant cues as dependent variables.

Figure 3 shows these mean ratings for the predictive
and diagnostic conditions. As can be seen from the fig-
ure, all participants gave a rating of perfectly predictive
for the single cue (in all conditions). Also, nearly all par-
ticipants in the pure diagnostic condition rated the redun-
dant cues as “perfectly predictive.” In contrast, the ratings
for the redundant cues in the pure predictive condition
were nearly all at the level of “medium predictiveness” de-
spite the fact that these participants received the same
learning input as the ones in the diagnostic condition. All
participants in all conditions rated the nonrelated cue–out-
come pairs (not shown in Figure 3) as “not predictive”
(M � 0). These relations were not further analyzed.

Thus, in the pure conditions participants showed 
assessments that support the normative predictions of
causal-model theory. Whereas overshadowing was ob-
served in the pure predictive condition, no such effect is
seen in the pure diagnostic condition. The results look dif-
ferent in the mixed condition, though—both the predictive
and diagnostic ratings center on “medium predictiveness.”

The statistical analyses confirm this impression. We
used an initial ANOVA for repeated measurements to
show that the difference between the mixed-predictive
and mixed-diagnostic redundant cue ratings was not sig-
nificant [F(1,27) � 1.85, MSe � .02, p � .18], which
supports our prediction of overshadowing in the diag-
nostic phase during the complex task. The absence of a
reliable difference between the redundant cue ratings re-
veals that participants in this condition apparently were
not sensitive to the difference between the two learning
conditions within this complex task, predictive and di-
agnostic learning. A 3 (pure predictive vs. pure diagnos-
tic vs. mixed) � 2 (single cue vs. redundant cues) ANOVA
with cue type as a within-subjects factor and the redun-
dant cue averaged over all four measurements in all con-
ditions yielded a highly significant interaction between
learning condition and cue type [F(2,81) � 82.6, MSe �
0.04, p � .001], a significant effect of cue type [F(1,81) �
356.5, MSe � 0.04, p � .001], and a highly significant
main effect for learning condition [F(2,81) � 62.9, MSe �
0.06, p � .001].

The following planned comparisons provided a more
direct test of our hypotheses. First we focused on the
pure conditions, comparing the averaged redundant cues
with the single predictive cues, which tests for the pres-
ence of an overshadowing effect. For these analyses, the
four ratings of each of the pure conditions and the two
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Figure 3. Mean “predictiveness” ratings for the averaged single and redundant cues in
the conditions “pure diagnostic” (PD), “pure predictive” (PP), “mixed predictive” (MP),
and “mixed diagnostic” (MD). The error bars represent standard errors of the mean
(which are �.01 when invisible) calculated for each condition separately.
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ratings of either the predictive or the diagnostic subtask
of the mixed condition were averaged. These tests showed
a significant overshadowing effect only in the predictive
condition [F(1,27) � 1,514.1, MSe � 0.009, p � .001],
but not in the diagnostic condition [F(1,27) � 1.86,
MSe � 0.005, p � .18]. The ratings for the redundant
cues were clearly different in the pure predictive and
pure diagnostic conditions [F(1,54) � 532.5, MSe �
0.02, p � .001]. This pattern is consonant with causal-
model theory, which predicts overshadowing in the pre-
dictive but not in the diagnostic task.

In the mixed condition, however, there was a signifi-
cant overshadowing effect for both the predictive-learning
component [F(1,27) � 74.1, MSe � 0.14, p � .001] and
the diagnostic-learning component [F(1,27) � 90.9,
MSe � 0.10, p � .001]. The comparisons of the ratings
for the redundant cues for the predictive-learning com-
ponent showed no significant difference from the ratings
in the pure predictive condition [F(1,54) � 1.08, MSe �
0.15, p � .30], whereas there was a clear difference be-
tween the ratings of the redundant cues in the mixed diag-
nostic-learning versus the pure diagnostic-learning con-
ditions [F(1,54) � 68.9, MSe � 0.12, p � .001]. This
pattern supports the hypothesis that diagnostic learning
should suffer in a mixed-learning task. Apparently there
was a tendency to fall back on predictive learning be-
cause the task became too complex.

In the present experiment, we did not see a significant
decrease of blocking for the predictive component. How-
ever, descriptively there was a tendency in this direction.
There were fewer “medium predictiveness” responses in
the mixed predictive condition than in the pure predic-
tive condition; perhaps the rating measures were not sen-
sitive enough to pick up a reliable difference. It may also
be the case that a decreased cue competition effect with
additional processing load is more likely in two-phase
blocking designs than in overshadowing tasks because in
blocking designs the redundant cue is directly paired
with a perfectly predictive cue.

One practically interesting result of this experiment is
that people had difficulty learning about mixed devices
that contained both cause–effect and effect–cause com-
ponents. This is peculiar because real devices (e.g., VCRs)
often have both switches (causes) and indicator lights
(effects) on the front side. One important difference is
that our devices, which were introduced as artificial de-
vices designed for studying human learning, violated the
one cause–one effect constraint typical of such devices.
Usually a switch has a single function, and an indicator
light signals one type of state. Also, in real-world learn-
ing we would test each switch individually to avoid the
confounds inherent in cue competition paradigms. Thus,
the learning device in our experiment is more difficult to
learn than most real devices (which often are also hard
to understand). We expect that people can learn about
mixed devices when the causal relations are simplified
or when the task and the instructions are presented in a
way that makes learning easier. Thus, we do not claim

that people are generally incapable of learning about mixed
devices; rather, we believe that these devices are more dif-
ficult to learn than similarly complex pure devices.

EXPERIMENT 3

A further factor contributing to performance limita-
tions may be the plausibility and clarity of the cover sto-
ries. As was pointed out in the introduction, recent failures
to find sensitivity to causal directionality in diagnostic-
learning tasks (i.e., absence of blocking with common-
cause structures) may have been partly due to the fact
that the chosen cover stories were implausible or the
mapping of cues and outcomes to the roles of causes and
effects was not clearly conveyed in the instructions (see
Waldmann & Holyoak, 1997).

The present experiment explored the role of the phras-
ing of the cover stories in a diagnostic-learning task.
Again we used a device with switches and lights as the
learning task (similar to the one in Experiment 1). All
participants received information about the trials on a
computer screen. The crucial manipulation involved the
cover stories. A similar cover story was used as in the di-
agnostic condition of Experiment 1. Thus, participants
read about a box with lamps on the front side and a sin-
gle lamp on the back side. In one condition, the elaborate
condition, participants were instructed that occasionally
a person presses a button attached to the indicator light
on the invisible back side that causes this light to go on.
The question was whether the pressing of the button ad-
ditionally has an effect on the lamps on the visible front
side. The participants’ task would be to learn to infer the
behavior of the lamp on the back side on the basis of the
behavior of the lamps on the visible front side. Thus, the
light on the back side was introduced as an indicator of a
potential common cause of the states of the lights on the
visible front side, which therefore were potential effects.

In the contrast condition, the vague condition, the in-
struction was slightly altered. Instead of mentioning a
person occasionally pressing the causal button on the
back side, participants just read that the lamp on the back
side was a potential cause of the lighting up of the lamps
on the front side. Again it was pointed out that the goal
was to find out which lamps on front side were influenced
by the lamp on the back side, and that the task would in-
volve inferring the behavior of the lamp on the back side
on the basis of the behavior of the lamps on the front side.

It was expected that participants in the vague condi-
tion would have greater difficulty forming a sensible
causal model with a common-cause structure. Even
though it was mentioned that the lamp on the back side
was a potential cause, these instructions are, at least, in-
complete. According to prior world knowledge, lamps
by themselves are not causes. Typically they are effects
(of switches) or indicators of intermediate causal events
in a causal chain. Thus, unlike in the elaborate instruc-
tions, the cover story in the vague condition leaves open
how the light can possibly be a cause of the lights on the
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front side. The opaqueness of the cover story may lead
many participants to ignore the cover stories and resort
to a simpler strategy in which the temporal order of the
learning events corresponds to the causal order, thus
treating the cues like causal indicators or noncausal pre-
dictors of the predicted event.

A causal scenario slightly more complex than that of
Experiment 1, with four lamps on the front side, was
used in this experiment (see also Waldmann, 2000, Ex-
periment 1). In Phase 1, participants learned that the
lamp on the back side was causally related to one light on
the front side (predictive cue). The other lights were cov-
ered so that information about the potential causal influ-
ence on the remaining three lights was not available. In
Phase 2, two pairs of lamps were alternately uncovered.
Thus, in each trial participants only received information
about two lights. Either participants saw the predictive
light from Phase 1 along with a second light, the redun-
dant cue, lighting up together, or the remaining two lights
could be seen lighting up together (the informative cues).
In both cases, the lighting up of the visible pair of lights
indicated that the causal light on the back side had been
switched on. Thus, participants should learn that the
light on the back side deterministically influenced all
four lights on the front side, although there were no tri-
als on which every light was visible. Eventually all lights
should, according to causal-model theory, be viewed as
equally valid effect indicators of the cause light by the
learners, which indeed was demonstrated in Experiment 1
of Waldmann (2000).

This paradigm, which was adapted from studies by
Chapman and Robbins (1990) and Williams, Sagness,
and McPhee (1994), allows testing of the blocking effect
by comparing ratings of cues that have been presented
an identical number of trials within compounds (see also
Waldmann, 2000). Full blocking of the redundant cue by
the predictive cue should be indicated by a significant
difference between the ratings of the redundant and the
informative cues, which correspond to an overshadow-
ing control condition (see also note 1). According to the
Rescorla–Wagner (1972) rule, the predictive cue, in case
it is trained to the asymptote in Phase 1, should com-
pletely block the redundantly paired cue in Phase 2. In
contrast, the two informative cues in Phase 2 should rise
at equal pace until the sum of their associative strengths
fully predicts the outcome. Assuming equal salience and
equal learning rates, the two informative cues should
gain intermediate associative strength, whereas the re-
dundant cue should be kept at a lower level by the pre-
dictive cue.

This task is more complex than the task in Experi-
ment 1 not only because of the increase in the number of
cues but also because it requires learners to continually
keep track of currently visible and invisible lights. Ac-
cording to causal-model theory, the inference that all
lights were always on when the cause was present re-
quires the (plausible) background assumption that the
causal influence of the common cause remains stable

during the learning period so that the contingencies ob-
served for the visible cues can be generalized to trials in
which they were temporarily covered. It seems likely that
participants would be more willing to make these induc-
tive generalizations when they are confident about the
structure of the underlying causal model.

Method
Participants and Design. Forty-eight students from the Uni-

versity of Munich, Germany, participated in this experiment. Half
of this group was randomly assigned to the condition with the elab-
orate instruction, the other half to the condition with the vague 
instruction.

Procedure and Materials. Participants received written in-
structions (in German); these were summarized in the introduction
to this experiment. In the condition with the elaborate instruction,
the cause light on the back of the black box was introduced as being
connected to a button that a person occasionally pressed. Pressing
the button causes the corresponding indicator light to go on, and
the question was to find out whether the pressing also causally in-
fluences the visible lights. The task was to infer the state of the light
on the back side on the basis of the behavior of the lights on the front
side. Participants were requested to say “yes” or “no” depending on
whether they thought the light on the back side was on or off.

In the condition with the vague instruction, neither a button nor
a person who manipulated the cause light was mentioned. The light
on the back side was simply introduced as a potential cause for the
lighting up of the lights on the front side. Otherwise the instruc-
tions were as in the elaborate condition.

Next, the learning trials on the computer started. All participants
received identical learning trials with identical learning instruc-
tions. These instructions pointed out that participants were going to
receive information about the state of four colored lamps on the vis-
ible front side. These lamps were either on or off. Furthermore it
was stated that instead of this information, four question marks
might also be shown indicating that the current state of the respec-
tive lamp could be seen during the respective trial. The task was to
say “yes” when the participants believed that the light on the back
side also was on, and to say “no” when it was presumably off. After
their decision, they would be given immediate feedback. Then par-
ticipants were alerted to memorize the positions of the lamps be-
cause later they would be asked about the different lamps.

The learning trials showed a screen with the header “front side”
above the four capitalized color names red, green, white, and blue
next to each other on one line. In Phase 1, only information about
one light, the predictive cue, was given, and the other three lights
were marked with question marks (e.g., “RED: ON GREEN: ????
WHITE: ???? BLUE: ????”). Thus, this example indicates that the
red light on the left side is on, whereas the current state of the other
three lights is unknown. The correct answer was to say “yes” when
the predictive light was on and “no” when it was off. After each de-
cision, the experimenter hit one key that displayed a screen with the
feedback. The feedback screen showed the header “back side” on
top and below information about the state of the lamp on this side
(e.g., “Lamp: ON”). Six trials were presented to the participants in
this phase (three “yes” trials, three “no” trials). For half of the par-
ticipants, the red light on the left side and for the other half the blue
light on the right side was the predictive cue.

After this learning phase, participants were requested to rate the
predictiveness of the lights they had seen using a number between
0 (“you are certain that the light on the back side is off ”) and 100
(“you are certain that the light on the back side is on”). The rating
instructions stated that the participants should imagine, for exam-
ple, that the blue light on the front side was on. Then they should
judge how well this light by itself predicted the state of the light on
the back side of the box.
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In Phase 2 of the learning procedure, four different trial types
were presented in which information about two lights was given
while the states of the other two lights were masked with question
marks. Two trial types consisted of pairing the predictive light from
Phase 1 with a new redundant light. Either both lights were off or
both lights were on (e.g., “RED: ON GREEN: ???? WHITE: ON
BLUE: ????”). The other two trial types presented the two other
lights either both on or both off (e.g., “RED: ???? GREEN: ON
WHITE: ???? BLUE: ON”). Whenever the lights in either of the
two trial types were on, the light on the back side also was on
(“yes”); otherwise it was off (“no”). These patterns were presented
three times each in a random order. The assignment of the redun-
dant cue to one of the three lights that were uncovered in Phase 2
was counterbalanced. After the learning phase, participants again
rated the predictiveness of the four lights. The order of the rating
questions corresponded to the left-to-right sequence of the four
lights in the particular counterbalancing condition to which the par-
ticipant was assigned.

Results and Discussion
All participants gave the predictive cue the maximal

rating of 100 after Phase 1. Figure 4 shows the mean rat-
ings of the three cue types after Phase 2. The two infor-
mative cues were averaged. All cues received virtually
identical mean ratings in the condition with the elabo-
rate instructions, whereas clear differences can be seen
in the contrasting condition with the vague instruction.

The strongest test of a full blocking effect involves a
comparison between the redundant and the average of
the informative cues (i.e., the overshadowing control).
Both types of cues have been presented an equal number
of times as parts of compounds. A 2 (redundant vs. in-
formative cues) � 2 (elaborate vs. vague instructions)
ANOVA with the f irst factor constituting a repeated
measurement factor showed a significant difference be-
tween the two cues [F(1,46) � 14.22, MSe � 333.7, p �

.001] that interacted with the type of instruction
[F(1,46) � 4.39, MSe � 333.7, p � .042]. Whereas no
significant difference between the two cue types was ob-
served in the elaborate condition [F(1,23) � 1.86, MSe �
251.4, p � .19], the ratings clearly differed in the vague
condition [F(1,23) � 13.8, MSe � 416.1, p � .001].

In summary, the condition with elaborate instructions
replicates previous experiments (e.g., Waldmann, 2000,
Experiment 1) and confirms, once again, causal-model
theory’s prediction that no blocking should be observed
with effect cues that are equally influenced by a common
cause. This finding is at odds with the predictions of as-
sociative learning theories. However, the condition with
the vague instruction shows results that are virtually
identical to the results typically seen for predictive ver-
sions of the task (see Waldmann, 2000, Experiment 1).
As predicted, the vague and incomplete nature of the
cover story in this condition seems to have weakened the
tendency of participants to map the learning cues to the ef-
fect layer in a common-cause model. Not only did the
task used in this experiment require reorderings of the
learning events from their diagnostic effect–cause pre-
sentation order to the cause–effect order in the causal
model; the difficulty of the task was furthermore exac-
erbated by the fact that periodically information about
the cues was withheld from the participants. The cues
were alternately hidden so that it was necessary to infer
the states of hidden cues on the basis of previous learn-
ing trials. The conclusion that all cues were equally af-
fected by the common cause relied on the assumption
that the cause did not change its deterministic capacity
between trials in which the effects were visible and trials
in which they were not. It seems plausible that this addi-
tional inductive step made the task more demanding,
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Figure 4. Mean “predictiveness” ratings after Phase 2 of diagnostic learning for 
the predictive (P), redundant (R), or average of the informative (I) cues in the condi-
tions with elaborate or vague causal instructions. The error bars represent standard
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separately.
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which may have increased the tendency to ignore the
common-cause instructions in the condition in which the
instructions were more implausible and vague.3

GENERAL DISCUSSION

One goal of the experiments was to provide further ev-
idence for causal-model theory’s claim that human learn-
ers attempt to form representations of the world that
honor physical characteristics of causality, such as the
inherent directionality of cause–effect relations. The
three experiments showed that in conditions with rela-
tively little processing demands and with clearly con-
veyed causal models, most participants correctly learned
different causal models. These findings replicate previ-
ous experiments (Waldmann, 2000, 2001; Waldmann &
Holyoak, 1992) and provide further support for the claim
that associative theories, being insensitive to the causal
roles of cues and outcomes, are unable to model human
learners’ competence to acquire causal knowledge.

However, the experiments furthermore show that this
competence does not display itself in all circumstances.
In particular, when the task is complex or the causal
structure is not salient or sufficiently transparent, par-
ticipants tended to fall back on a modus that corresponded
to predictive cause–effect learning even when the cues
were meant to represent effects and the outcome a cause.
In predictive learning, the temporal order of learning
events matches the temporal order of causal events,
whereas in diagnostic learning, there is a mismatch.
Thus, this type of learning task requires a cross-mapping
between cues and effects, and outcomes and causes,
which is computationally demanding.

The results also show that performance factors not
only jeopardize diagnostic learning but also affect pre-
dictive learning. With increased processing load and less
tangibility of the causal structure, learners showed less
blocking, which, according to causal-model theory, is a
consequence of the reduced ability to control for the in-
fluence of cofactors (see also De Houwer & Beckers,
2003). In an overshadowing paradigm (Experiment 2),
we did not find a significant decrease of cue competi-
tion in the mixed condition, however. We speculate that
the direct pairing of a redundant cue with a predictive
cue in the blocking paradigm is an important factor that
may tempt participants to give similar ratings when the
task is difficult.

These results raise the question of what relevance
competence versus performance has for everyday learn-
ing. Cobos et al. (2002) acknowledged that normative
learning might be seen in simple scenarios but argued
that in more “realistic” domains people learn using as-
sociative learning mechanisms. We believe that this eval-
uation is inadequate. Very little is known about how peo-
ple learn about causal relations in the real world. The
tasks typically studied in the laboratory are certainly dif-
ferent from those in real-world learning contexts. People
usually do not have to learn about complex causal mod-

els with nine cues and six outcomes within a brief learn-
ing period. It is more natural that we only learn about
small fragments of causal models, and later integrate the
fragments to more complex models. The present research
shows that people try to form adequate representations
of causal models in situations that do not transcend their
capacity. In laboratory experiments, people are often
forced to learn anyway, but in the real world they might
select their learning environment in a way that matches
their capacity.

Another unrealistic feature of many laboratory exper-
iments is that in virtually all studies people learn about
an artificial domain on a computer with stimuli that, as
every participant knows, are generated by a programmer
and not by the causal mechanisms mentioned in the in-
structions. This often leads participants to ignore the ini-
tial instructions, especially when there are many trials
(see De Houwer & Beckers, 2002; Tangen & Allan, 2004,
in press). In our research, we often let participants sum-
marize the cover story prior to learning to make sure that
the cues and outcomes are interpreted causally. In real
causal contexts, this may not be necessary because the
learning events normally remind people of their causal
nature (see Experiment 1).

The results of the experiments raise the question of
learning mechanisms that may account for the data pat-
tern. It is clear that both associative theories and causal-
model theory in its original version cannot account for
the full pattern of results. One obvious alternative, sug-
gested by Price and Yates (1995), is a two-process theory
that embodies both an associative learning component
and a rule-based component (see also Tangen & Allan,
2004). According to this theory, trial-by-trial on-line
learning is managed by an associative learning mecha-
nism that is directed from cues to outcomes. In parallel,
event frequencies are stored that are handled by the rule-
based component. Whenever the judgment task is di-
rected from cues to outcomes, the associative weights
are accessed, whereas other tasks (e.g., estimation of fre-
quencies or of the strength of the outcome–cue relation)
are processed by the rule-based component, which com-
bines frequency information according to judgment rules.
Price and Yates also speculated that rule-based process-
ing is more likely with tasks that are not too demanding.

Although it is likely that several processes interact in
learning, this particular two-process model (Price &
Yates, 1995) explains the present results only in part. The
results that conform to the predictions of causal-model
theory may be accounted for by the rule-based compo-
nent. However, it is less clear how the impact of the
phrasing of the cover stories or the mode of presentation
of learning trials would be integrated in this model. The
greatest problems arise with the finding that cue compe-
tition seems to decrease in predictive learning when the
complexity of the task is increased or when the causal
structure is presented less saliently. If anything, these
conditions seem to be harder than the contrast condi-
tions, which, according to the two-process model, should
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increase the likelihood that an associative mechanism
with its built-in mechanism of cue competition would
take over.

In our view, the most promising general approach to
the psychology of causality is the research strategy most
linguists choose for the analysis of language (Chomsky,
1965). We should start with models that describe our
competence before we deal with conditions that prevent
people from displaying their competence. If we want to
learn about our language faculty, then we should give
participants the opportunity to show what they can do.
Later we can study errors people make under different
conditions. Similarly, it is more informative to explore
what people can do when learning about causal relations
under optimal conditions before we investigate condi-
tions in which their competence fails. The models de-
scribing competence can then be used to pinpoint poten-
tial break points that cause people to make errors.
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NOTES

1. The term blocking is not consistently used in the literature. For ex-
ample, De Houwer et al. (2002) contrast blocking (i.e., certainty that
the redundant cue is not a cause) with overshadowing (i.e., uncertainty
about the causal status of the redundant cue). According to this termi-
nology, uncertainty signifies absence of blocking (see also Williams,
Sagness, & McPhee, 1994). However, this use collapses cases in which
the redundant cue is rated lower than the predictive cue (but equal to the
overshadowing control) with cases in which no difference is observed.
We did not adopt this use because we wanted to differentiate full block-
ing (certainty that the redundant cue is not a cause or effect), partial
blocking (uncertainty), and absence of blocking (certainty that the re-
dundant cue is a cause or effect), which are all possible outcomes pre-
dicted by causal-model theory.

2. Our statistical conclusions are based on a significance level of .05
in all experiments. This value is also used for the interpretation of the
theoretically derived specific comparisons, thus controlling the per-
comparison error rate. However, we generally report the mean square
errors and the descriptive p values (to three decimal places) (see also
Goedert & Spellman, 2005, note 4). All our planned comparisons are

based on the restricted error term. Thus, following the advice of Kep-
pel and Wickens (2004, p. 520), we focus our analyses on the subset of
the data we are currently analyzing. This strategy has the advantage of
being more sensitive to possible differences of variance, and is in most
cases also more conservative (because of the loss of degrees of free-
dom).

3. An interesting additional finding of this experiment is the fact that
we found a blocking effect that differed from overshadowing (see
note 1). The redundant cue was rated lower than the informative cues.
Waldmann (2000, Experiment 1) found a similar effect in a predictive-
learning condition using a similar task. According to a normative analy-
sis (see introduction), participants should be as uncertain about the sta-
tus of the redundant cue as they are uncertain about the two informative
cues because the predictive cue is deterministic (see also De Houwer
et al., 2002). Since this cue already generates an effect at the ceiling, the
redundant cue cannot possibly display its power. We believe that the dif-
ference in the ratings is due to the fact that the redundant cue and the
informative cues were both rated by the same participants, who intended
to express that the redundant cue and the informative cues differed. For
the redundant cue, which is paired with a deterministic cause, the data
are consistent with the whole range of possibilities from being non-
causal to also being a redundant deterministic cause. The most parsi-
monious assumption, which avoids redundant overdetermination, is to
attribute the causal effect to the predictive cue only. In contrast, there is
no reason to favor one of the two informative cues. Here the most par-
simonious strategy is to divide causal strength between them or express
equal uncertainty.
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