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Abstract 
Causal knowledge serves two functions: it allows us to predict 
future events on the basis of observations and to plan actions. 
Although associative learning theories traditionally 
differentiate between learning based on observations 
(classical conditioning) and learning based on the outcomes of 
actions (instrumental conditioning), they fail to express the 
common basis of these two modes of accessing causal 
knowledge. In contrast, the theory of causal Bayes nets 
captures the distinction between observations (seeing) and 
interventions (doing), and provides mechanisms for predicting 
the outcomes of hypothetical interventions from observational 
data. In two experiments, in which participants acquired 
observational knowledge in a trial-by-trial learning procedure, 
the adequacy of causal Bayes nets as models of human 
learning was examined. To test the robustness of learners’ 
competency, the experiments varied the temporal order in 
which the causal events were presented (predictive vs. 
diagnostic). The results support the theory of causal Bayes 
nets but also show that conflicting temporal information can 
impair performance. 

Introduction 
The ability of acquiring and using causal knowledge is a 
central competency necessary for explaining past events, 
predicting future events, and planning actions. But how do 
people infer the consequences of their actions when 
planning interventions in causal systems? In some cases 
they might have tried out the interventions on previous 
occasions so that they already know the potential outcomes 
of their actions. But what if only knowledge about 
observational relations between causal events is available? 
A tempting solution would be to equate observational 
knowledge with instrumental knowledge and proceed from 
there. Unfortunately this strategy will often lead to 
ineffective actions. For example, the status of a barometer is 
statistically related to the upcoming weather, but 
manipulating the barometer does not affect the weather. 
Barometer readings and weather are spuriously related due 
to their common cause, atmospheric pressure. As a 
consequence, observational predictions can capitalize on the 
spurious statistical relation, whereas instrumental 
predictions cannot. Effects do not change their causes; thus, 
manipulating the barometer does not affect its cause 
atmospheric pressure, and therefore has no causal influence 
on the weather.  

The difference between observing (seeing) and 
intervening (doing) is compelling in the barometer example. 
Nevertheless, most theories of causal cognition do not 
distinguish between different modes of accessing identical 
causal knowledge. For example, associative theories of 

causal learning are sensitive to covariations but do not 
distinguish between causal and spurious relations. It is true 
that these theories distinguish between observational 
(classical conditioning) and interventional learning 
(instrumental conditioning), but, as the barometer example 
shows, they fail when predictions for instrumental actions 
have to be derived from observational learning.  

Causal Bayes nets (Pearl, 2000; Spirtes, Glymour, & 
Scheines, 1993; Woodward, 2003) provide a formal account 
of causal representations and inference that allows it to 
derive precise predictions for hypothetical interventions 
from observational knowledge. The goal of the present 
experiments is to investigate whether people who have 
observed individual trials presenting the states of a complex 
causal model can later access their causal knowledge to 
derive observational and interventional predictions in a 
fashion anticipated by causal Bayes nets. To test the 
robustness of this competency we manipulated the temporal 
cues in the learning data (predictive learning from causes to 
effects vs. diagnostic learning from effects to causes). 

Seeing vs. Doing in Causal Bayes Nets 
The formal framework of causal Bayes nets uses directed 
acyclic graphs (DAGs) to represent causal relations between 
variables, and parameters to express the strength of these 
relations (e.g., conditional probabilities). A complete causal 
model therefore combines qualitative assumptions about the 
structure of the causal model with quantitative knowledge 
about the size of the parameters associated with these causal 
relations (e.g., base rates, causal strength, integration rules). 
An example is given in Figure 1. This causal model consists 
of four (binary) variables A, B, C, and D, in which A can 
cause D either via B or via C. 

In the causal Bayes nets framework, the joint probability 
distribution of this model can be factored into: 
 

p(A.B.C.D)=p(A) · p(B|A) · p(C|A) · p(D|B.C) 
 

This decomposition follows from applying the causal 
Markov condition (Spirtes et al., 1993; Pearl, 2000) to the 
causal model. The causal Markov condition (informally) 
states that the state of any variable Xj in the system is 
independent of all other variables (except for its causal 
descendants) conditional on the set of its direct causes, pax. 
For example, the causal Markov condition implies for the 
causal model shown in Figure 1 that variable D is 
independent of A conditional on its direct causes B and C. 
Relations of conditional dependence and independence are 
critical for deriving observational and interventional 
inferences. 
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Observational Predictions 
Based on the structure of the causal model and its 
parameters, the probabilities implied by observations of the 
states of observed variables can be computed using 
probability calculus. For example, if variable C in the causal 
model shown in Figure 1 is observed, the probability of A 
being present can be computed using Bayes rule, 
 

p(a|c)=p(c|a) · p(a)/[p(c|a) · p(a)+p(c|¬a) · p(¬a)].  
 

This computation models a diagnostic inference from C to 
its cause A. A more interesting example is the prediction of 
variable D from an observation of variable C. Obviously 
there is the direct causal link connecting C to D. But there is 
also a second causal pathway connecting C to D via A and 
B. If C is present, the probability of A increases, which in 
turn increases the probability of B leading to an increase of 
D. Pearl (2000) vividly calls such confounding pathways 
backdoors. Formally the probability for D given C can be 
calculated by: 
 

p(d|c)=p(a|c)·p(b|a)·p(d|b.c)+p(a|c)·p(¬b|a)·p(d|¬b.c)+ 
p(¬a|c)·p(b|¬a)·p(d|b.c)+p(¬a|c)·p(¬b|¬a)·p(d¬b.c). 

Interventional Predictions 
The literature on causal Bayes nets has focused on ideal 
interventions in which the actions change the value of a 
variable independent of the state of its parents (for more 
precise characterizations of these interventions, see, for 
example, Woodward, 2003). For example, if we arbitrarily 
change the reading of the barometer our action renders the 
barometer independent of its usual cause, atmospheric 
pressure. Thus, interventions create independence, which 
can be expressed by removing the causal links between the 
variable that is targeted by the interventions and its parents. 
For example, if variable C in the causal model depicted in 
Figure 1 is set to a specific value through an intervention, 
the causal arrow from A to C can be eliminated. Following 
previous work of Spirtes et al. (1993), Pearl (2000) 
describes this process as ‘graph surgery’. Interventional 
predictions should be based on this modified manipulated 

graph and not on the original graph. Because of graph 
surgery, interventions in contrast to observations do not 
provide diagnostic evidence for the causes of the 
manipulated variable.  

To formalize the idea that a variable’s state is not based 
on the ‘natural course of events’ but was determined by an 
external intervention, Pearl (2000) introduced the so-called 
‘Do-Operator’, written as Do (•).The expression ‘Do C=c’ 
is read as “variable C is set to state c by means of an 
intervention”. Formally, the Do-operator renders a variable 
independent of its direct causes, which is equivalent to 
deleting all causal links pointing towards the variable fixed 
by the intervention. Based on the modified causal model, the 
probabilities of the other events can be computed. For 
example, the probability of A=a given that C is caused by an 
intervention equals the base rate of A=a because the causal 
link connecting these two events was eliminated by the 
intervention,  

 

p(a|Do(C=c)) = p(a|Do(C= ¬c)) = p(a). 
 

In the same way the probability of D=d can be calculated 
using the modified causal model. Generating a value of C 
through an intervention closes the backdoor, hence no 
second causal pathway remains. Nevertheless the initial 
cause A may occur and influence D via B. Therefore the 
correct formula to calculate the probability of D=d given a 
(generative) intervention in C is: 
 

p(d|Do(c))=p(a)·p(b|a)·p(d|b.c)+p(a)·p(¬b|a)·p(d¬b.c)
+p(¬a)·p(b|¬a)·p(d|b.c)+p(¬a)·p(¬b|¬a)·p(d|¬b.c). 

 

Note that variable A is no longer conditionalized on C in 
this formula. This implies that the interventional probability 
is necessarily lower than the observational probability, 
provided that A and B are positively related.  

On the right hand side of the equations only parameters 
are involved which can be derived from observational 
learning. Thus, subsequent to observational learning of a 
causal model and of its parameters, the consequences of 
hypothetical interventions can be predicted without prior 
instrumental learning. 

Psychological Evidence 
The examples described above show that normatively 
diagnostic and predictive inferences differ depending on 
whether they are based on interventions or observations. 
The interesting question is whether people make these 
distinctions as well. Thus far, very few experiments have 
addressed this question (see Hagmayer, Sloman, Lagnado, 
& Waldmann, in press, for an overview). 

Sloman and Lagnado (2005) have studied counterfactual 
inferences in given causal structures and have compared 
causal with logical arguments. For example, participants 
were given a causal chain model consisting of three events 
that were all described to be present. Participants were then 
requested to imagine that the intermediate event was either 
removed by an intervention or observed to be absent. In 
accordance with the predictions of causal Bayes nets 
participants inferred that the initial cause in the chain would 
be absent if the intermediate event was observed to be 
absent, but not if it was actively removed. Overall the 

 

Figure 1: A parameterized causal model. Arrows indicate 
causal relations between variables; conditional probabilities 
encode the strength of these relations. All parameters were 
set except p(d|b.c) which is computed by a noisy-OR-gate.
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results of Sloman and Lagnado’s experiments were 
consistent with causal Bayes nets. Because the focus of 
these studies was on comparing logical with causal 
reasoning, only qualitative reasoning based on the structure 
of causal models was investigated.  

Waldmann and Hagmayer (2005) wondered whether a 
dissociation between seeing and doing can also be found in 
the realm of learning, and whether learners’ inferences 
would be sensitive to the size of the parameters that were 
gleaned from the learning data. Participants in their 
experiments were given instructions about the structure of 
causal models and subsequently received a list of cases on a 
single page that could be used to estimate the parameters of 
the models. Participants were then requested to derive 
predictions for new hypothetical observations and 
hypothetical interventions. The results showed a surprising 
grasp of the differences between seeing and doing, which 
manifested itself in predictions that took into account the 
size of the parameters which were estimated on the basis of 
the learning data.   

The present experiments move one step further in the 
realm of learning. In Waldmann and Hagmayer (2005) the 
parameters could be estimated on the basis of a list of cases 
which provided simultaneous information about the 
presence or absence of the variables. It can be argued that 
this task is still more a reasoning task than a learning task. 
The typical temporal characteristics of causal learning are 
better mirrored in trial-by-trial learning than in a highly 
processed list that lacks natural temporal cues. In fact, 
Shanks (1991) has hypothesized that induction on the basis 
of aggregated data is handled by different learning 
mechanisms than trial-by-trial learning. Thus, a 
demonstration of the competency to distinguish seeing and 
doing in the context of trial-by-trial learning would further 
weaken associative theories as models of causal induction. 

Moreover, studying inferences based on trial-by-trial 
learning introduces cues to causal structures that might 
compete with the instructed causal models. The arrows 
within causal models express our natural intuition about the 
asymmetry of causes and effects: Causes generate effects 
but not vice versa. In the real world causal order is often 
signaled by the temporal order in which causes and effects 
are experienced. However, there are cases in which 
temporal order and causal order mismatch. For example, 
physicians often observe symptoms (i.e., effects) prior to 
learning about their causes. In these cases it is crucial that 
the temporal order of experiencing events is ignored as a 
cue to causality.  

Trial-by-trial learning which presents learning events in a 
temporal order allows it to test the impact of temporal cues 
on causal induction. A number of experiments designed to 
test causal-model theory (Waldmann, 1996) have pitted 
temporal order against causal order. In these experiments it 
could be shown that learners are capable of learning causal 
models regardless of whether temporal order matches or 
mismatches causal order. However, this competency breaks 
down when complexity is increased (Waldmann & Walker, 
2005). Moreover, the competency was only tested with test 
questions that requested observational predictions. 
Interventional questions are more complex because they 

require a stage of model manipulation (e.g., graph surgery) 
prior to using the manipulated model for the predictions. To 
test whether learners distinguish between seeing and doing 
even in conditions in which the temporal order of learning 
events mismatches causal order, we varied learning order in 
the experiments.  

In Experiment 1 the temporal order during each trial 
conformed to the causal order of the events in the causal 
model (see Fig. 1). Information about A was given first, 
followed by information about the presence or absence of B 
and C, and finally information about D was provided. In 
Experiment 2 the temporal order was reversed and no longer 
matched the causal order of events. In this experiment it is 
necessary to suppress temporal cues and estimate the 
parameters on the basis of data that is presented in the 
reverse order (see Waldmann & Martignon, 1998). For 
example, in the causal model we have used in the 
experiments (Fig. 1), the final effect D is dependent on 
patterns of its two causes B and C. When temporal order is 
reversed in Experiment 2, participants observed the 
probability of B and C given D and the probability of A 
given B and C but have to infer the probabilities of B and C 
conditional upon A, and of D conditional upon B and C.  
Note that the patterns of covariation are nevertheless exactly 
the same across Experiments 1 and 2, that is, participants’ 
judgments are based on the very same data. Only the order 
in which information about the events was given is 
manipulated across the two experiments. Although we 
expect that, consistent with causal-model theory, learners 
will attempt to correctly learn the causal model regardless of 
learning order, and will differentiate between seeing and 
doing, this competency might be marred by performance 
deficits caused by the complexity of the task (see also 
Waldmann & Walker, 2005).  

A further novel aspect of this study is the presentation of a 
causal model that contains two parallel pathways that 
represent mutual confounds (i.e., backdoors). One additional 
goal of the experiments was to test whether learners are 
sensitive to the fact that interventions and observations 
differ with respect to the way the second confounding 
pathway needs to be taken into account.  

Experiment 1 
The goal of the first experiment was to investigate whether 
learners differentiate between seeing and doing after a trial-
by-trial learning phase in which learning order corresponds 
to causal order. Twenty-four students from the University of 
Göttingen participated. The model underlying the learning 
data and its parameterization are shown in Figure 1. After 
the observational learning phase participants were asked to 
imagine new cases in which either variable C was observed 
to be present or absent, or C was generated or eliminated by 
an intervention. All participants had to estimate the 
probability of A and D in each of these four cases (i.e., eight 
questions).  

Learning Phase. The variables of the causal model were 
introduced as four fictitious chemical substances causally 
interacting in wine casks. Participants were told that 
substance A causes the generation of substances B and C, 
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which then can independently cause substance D (see Fig. 
1). It was also pointed out that the causal relations are 
probabilistic. In addition, participants were shown the graph 
of the causal model. They were instructed to learn the 
strength of the causal relations from the learning data. The 
kind of questions they would have to answer after the 
learning phase was not mentioned until the test phase. The 
learning phase consisted of 40 trials which implemented the 
probabilities shown in the causal graph in Figure 1. The 
trials presented information on a computer screen about the 
states of the variables. The temporal order corresponded to 
causal order in Experiment 1. Thus, first information about 
variable A was presented, then, simultaneously, variables B 
and C were shown, and finally information about event D 
was given.  

Test Phase. The learning phase was followed by a test 
phase in which participants had to answer eight questions. 
The questions first stated the current status of variable C 
(present vs. absent) and then asked about A (i.e., the cause 
of C) or D (i.e., the effect of C). Thus, one question was 
diagnostic, the other predictive. For the observational 
predictions, participants were instructed to imagine 
observing substance C in 40 previously unseen wine casks 
and to estimate the number of casks in which substance A 
would also be found, (i.e., they estimated p(a|c) in a 
frequency format).  Participants were also asked to estimate 
the conditional frequency of A for 40 casks in which C was 
observed to be absent (p(a|¬c)). Two further questions 
referred to interventions. These questions asked learners to 
imagine that substance C was added to 40 casks 
(p(a|Do(c))), or that C was inhibited in 40 casks 
(p(a|Do(¬c))). The same set of questions was asked about 
D, the effect of C. Thus, participants estimated the number 
of casks in which D would be found (i.e., p(d|c), p(d|¬c), 
p(d|Do(c)), p(d|Do(¬c)). Interventional and observational 
questions were blocked; the order of blocks was 
counterbalanced. 

Causal Bayes Net Predictions. For the diagnostic 
inferences, the crucial test for assessing whether participants 
differentiated between observations and interventions 
concerns the comparison of the two observational 
probabilities p(a|c) versus p(a|¬c) to the two corresponding 
interventional probabilities p(a|Do(c)) versus p(a|Do(¬c)). 
Whereas observing C=c or C=¬c is diagnostic evidence for 
the state of A, generating C=c or C=¬c by an intervention is 
not diagnostic for A. Therefore, the observational 
probabilities should differ, whereas the interventional 
probabilities should stay at a constant level. According to 
causal Bayes nets, A should be expected to occur with the 
probability that corresponds to its base rate.  

The predictive inferences are more complicated because 
the second causal pathway generating D has to be taken into 
account. Participants should consider both C’s direct causal 
relation to D but also the alternative path A B D. The 
observation of C opens the backdoor to the second pathway 
(i.e., the presence of C indicates that A is likely to be 
present). Therefore, participants should infer that D is more 
likely to be present if C is observed than when it is absent. 

In contrast, if C is manipulated by an intervention the 
backdoor is closed because the link between A and C needs 
to be removed. However, D is still more likely when C is 
generated than when it is inhibited because of C’s direct 
causal influence. The difference, however, should be 
smaller for the interventional than for the observational 
probabilities. 

A further test of sensitivity to the difference between 
seeing and doing is provided by comparing the estimated 
probabilities of D given observations of C or interventions 
in C. In the section about causal Bayes nets it was 
mentioned that the probability of D is higher if C is 
observed than when it is generated by an intervention. The 
parameters of the presented causal model imply that the 
interventional probability of observing C (p(d|c)) is only 
slightly higher than the probability of generating C 
(p(d|Do(c)). But the probability of D is considerably higher 
when C is prevented p(d|Do(¬c)) than when it is observed 
to be absent (p(d|¬c)).  

Results and Discussion 
Diagnostic inferences. The results for the diagnostic test 
questions are shown in Table 1 along with the predictions 

derived from causal Bayes nets. The pattern of estimated 
conditional frequencies qualitatively conformed to the 
pattern of the predicted values. As anticipated by causal 
Bayes nets, participants gave different estimates for the two 
observational probabilities but judged the interventional 
probabilities to be at the same level. An analysis of variance 
with the factors ‘intervention vs. observation’ and ‘presence 
vs. absence of C’ as within-subjects factors yielded a 
significant interaction, F(1,23)=23.78, p<0.001, 
MSE=57.75. As predicted by the causal Bayes nets 
framework, there was no difference between the 
interventional questions, F<1, but a significant difference 
between the observational questions, F(1,23)=35.51, 
p<0.001, MSE=59.17. Although participants’ estimates did 
not perfectly match the normative causal Bayes net 
predictions, the results provide evidence for participants’ 
sensitivity to the difference between seeing and doing in 
diagnostic judgments. 
Predictive inferences. The results for the predictive 
questions concerning the probability of D are shown in 
Table 2. This type of inference is more complicated than the 
diagnostic inference in the chosen causal model. Whereas 
the latter only requires considering the direct causal relation 
between A and C (with the rest of the causal model being 

Table 1: Responses to diagnostic inference questions in 
Experiment 1 (N=24) (Numbers indicate means of 

conditional frequency estimates for 40 cases.) 

 Observation Intervention 
 

p(a|c) p(a|¬c) p(a|Do( c)) p(a|Do(¬c)) 

Causal Bayes 
net predictions 

38 4 20 20 

Mean 30.50 17.08 25.54 27.25 
SD 7.56 10.37 10.57 8.59 
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irrelevant for this task), the inference concerning variable D 
requires taking into account the complete model. In 
particular, the alternative confounding pathway A B D 
needs to be considered. 

As can be seen in Table 2, participants were surprisingly 
sensitive to the second confounding causal pathway: As 
predicted by causal Bayes nets, the difference between 
responses to the observational questions proved larger than 
the difference between the responses to the interventional 
questions. An analysis of variance with ‘intervention vs. 
observation’ and ‘presence vs. absence of C’ as within-
subjects factors yielded a significant interaction, 
F(1,23)=8.73, p<0.01, MSE=54.65. In accordance with the 
parameterization of the causal model, there was only a 
slight, non-significant difference between p(d|c) and 
p(d|Do(c)), F(1,23)=1.0, p=0.33. This is important as there 
might have been a general tendency to answer interventional 
questions differently from observational questions. The 
crucial test of the predictions of causal Bayes nets is 
provided by the comparison between p(d|¬c) and 
p(d|Do(¬c)). Participants judged the probability of the 
occurrence of D to be significantly higher when C was 
prevented by an intervention than when it was merely 
observed to be absent, F(1,23)=9.57, p<0.01, MSE=57.83. 

The results demonstrate a remarkable grasp of the 
difference between intervening and observing after trial-by-

trial learning of a causal model. Both diagnostic and 
predictive inference proved sensitive to the distinction 
between seeing and doing. The experiment also provides 
evidence for learners’ sensitivity to the implications of 
alternative confounding pathways (i.e., backdoors) for 
observations and interventions. Although the statistical 
patterns correspond to the predictions of causal Bayes nets, 
the estimates were not perfect, of course. Specifically, 
learners had difficulties with correctly assessing cases in 
which events were observed to be absent (see also 
Waldmann & Hagmayer, 2005). The complexity of the 
model and the limited number of learning trials might have 
contributed to the imperfections. Nevertheless, the 
competency of the participants was remarkable and provides 
clear evidence against traditional learning theories that fail 
to account for complex causal model learning.  

Experiment 2 
The main goal of Experiment 2 was to test whether people 
learn and access causal models adequately when the 
learning order does not match causal order. Previous 
research has shown that people can make correct predictions 

after diagnostic learning (effects presented prior to their 
causes) but this competency was only tested with 
observational test questions and displayed itself only with 
causal models that were less complex than the causal model 
used in the present experiments (see Waldmann & Walker, 
2005). Experiment 2 used the same experimental design, 
cover story, and instructions as Experiment 1. Thus, 
participants received instructions about the causal model 
displayed in Figure 1. Again 24 participants from the 
University of Göttingen participated. In contrast to 
Experiment 1, the temporal order of learning events did not 
match their causal order (i.e., diagnostic learning). In each 
trial, participants were first informed about the status of 
effect D, then simultaneously about the mediating variables 
B and C, and finally about the initial cause A. Participants 
had to mentally reverse the observed statistical relations to 
correctly estimate the parameters of the causal model. As in 
Experiment 1, participants were requested to estimate the 
conditional frequencies of A and D given observations of or 
interventions in C.  

Results and Discussion. Tables 3 and 4 show the means of 
the conditional frequency estimates along with the 
predictions derived from causal Bayes nets. 

Diagnostic inferences. The mean estimates for the 
conditional frequency of A given C closely resemble the 
ones in Experiment 1. Again the general pattern corresponds 
to the predictions of causal Bayes nets. An analysis of 
variance with the factors ‘intervention vs. observation’ and 
‘presence vs. absence of C’ as within-subjects factors again 
yielded a significant interaction, F(1,23)=28.15, p<0.001, 
MSE=47.96. The difference between the two estimated 
observational probabilities proved considerably larger than 
the one between the two interventional probabilities. Again 
participants judged the probability of A to be at a similar 
level regardless of whether C was generated or prevented. 
Specifically, the observational questions differ significantly, 
F(1,23)=63.88, p<0.001, MSE=61.43 while there is no 
difference between the interventional questions, 
F(1,23)=1.52, p=0.23. The diagnostic inferences show a 
remarkable grasp of the difference between seeing and 
doing despite the added complexity of the diagnostic 
learning procedure. In this task, participants proved capable 
of ignoring the misleading temporal cue of the learning 
procedure. 
Predictive inferences. As in Experiment 1, participants were 
asked to estimate the probability of D when C was observed 

Table 2: Responses to predictive inference questions in 
Experiment 1 (N=24) (Numbers indicate means of 

conditional frequency estimates for 40 cases.) 
 Observation Intervention 
 

p(d|c) p(d|¬c) p(d|Do(c)) p(d|Do(¬c)) 

Causal Bayes 
net predictions 36 5 33 14 

Mean 29.67 14.79 27.54 21.58 
SD 10.04 11.56 11.64 12.55 

Table 3: Responses to diagnostic inference questions in 
Experiment 2 (N=24) (Numbers indicate means of 

conditional frequency estimates for 40 cases.) 
 Observation Intervention 
 

p(a|c) p(a|¬c) p(a|Do(c)) p(a|Do(¬c)) 

Causal Bayes net 
predictions 38 4 20 20 

Mean 33.46 15.38 25.50 22.42 
SD 8.59 11.20 11.16 10.31 
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or manipulated by an external intervention. However, in 
contrast to Experiment 1, the estimates considerably 
deviated from the causal Bayes net predictions (see Table 
4). An analysis of variance yielded no significant 
interaction. In addition, the observational probability 
estimate of p(d|¬c) did not differ significantly from the 
corresponding interventional probability estimate of  
p(d|Do(¬c)), F<1. Thus, there was no evidence that 
participants correctly differentiated between seeing and 
doing in the predictive task. Probably the increased 
complexity caused by the misleading temporal cue and the 
complicated inference, which required taking into account a 
secondary confounding pathway (i.e., backdoor), exceeded 
the information processing capacity of learners  

 General Discussion 
Taken together, the results of the two experiments provide 
convincing evidence that learners are capable of 
distinguishing between observations and interventions even 
in a more naturalistic learning environment. These findings 
contradict traditional associative learning theories, which 
fail to model causal-model learning and which are incapable 
of deriving correct predictions for actions after purely 
observational learning. The present experiments also 
demonstrate a surprising grasp of the implications of 
confounding pathways. Thus, the experiments strongly 
support causal-model theory and causal Bayes nets as 
theoretical accounts of causal induction. 

However, Experiment 2 also shows that the competence 
of learners only displays itself when the complexity of the 
task does not exceed learners’ information processing 
capacity (see also Waldmann & Walker, 2005). A popular 
strategy to deal with such impairments is to postulate two 
systems, a reasoning component that handles summarized 
data, and an associative learning component that is 
specialized for trial-by-trial learning (Price & Yates, 1995; 
Shanks, 1991). Although Experiment 1, which used a trial-
by-trial learning procedure, already weakens this account, it 
might still be speculated that learners fell back on an 
associative mode in Experiment 2 in which the learning task 
was more complex. However, the data of Experiment 2 are 
inconsistent with this theory. Learners were not generally 
impaired, only the predictive inferences were affected. The 
less complex diagnostic inferences showed a remarkable 
grasp of the differences between seeing and doing despite 
the misleading temporal cue. Only the more complex 
predictive inferences were negatively affected.  

We believe that the reason for this difference is located in 
the parameter estimation processes. Participants in 
Experiment 2 observed the probability of B and C given D 
but had to infer the probability of D given B and C as a 
parameter of the causal model. Such an inversion is 
complicated and demanding. Therefore, the learning process 
may have led to inadequate estimates of the model’s 
parameters. The diagnostic questions could be correctly 
answered by recognizing that interventions render the 
manipulated variables independent of their actual causes, 
which implies that solely the base rate p(A) needs to be 
accessed for giving a correct response. In contrast, the 
predictive questions can only be answered correctly if the 
parameters of the full causal model are correctly estimated, 
and if the model is correctly altered for the intervention 
questions. Thus, if the parameters are not acquired correctly 
during learning the inferences are likely to be wrong. This 
account explains the deficits shown in Experiment 2 using a 
causal Bayes net analysis of the task. Future research will 
have to develop psychological models of learning that 
integrate competence and performance. 

References 
Hagmayer, Y., Sloman, S. A., Lagnado, D. A., & 

Waldmann, M. R. (in press). Causal reasoning through 
intervention. In A. Gopnik & L. Schulz (Eds.): Causal 
learning: Psychology, philosophy, and computation. 
Oxford: Oxford University Press. 

Pearl, J. (2000) Causality. Cambridge: Cambridge 
University Press. 

Price, P. C., & Yates, J. F. (1995). Associative and rule-
based accounts of cue interaction in contingency 
judgment. Journal of Experimental Psychology: Learning, 
Memory, and Cognition, 21, 1639-1655.  

Shanks, D. R. (1991). On similarities between causal 
judgments in experienced and described situations. 
Psychological Science, 5, 341-350. 

Sloman, S. A., & Lagnado, D. A. (2005). Do we “do”? 
Cognitive Science, 29, 5-39. 

Spirtes, P., Glymour, C., & Scheines, P. (1993). Causation, 
prediction, and search. New York: Springer-Verlag. 

Waldmann, M. R. (1996). Knowledge-based causal 
induction. In D. R. Shanks, K. J. Holyoak, & D. L. Medin 
(Eds.), The psychology of learning and motivation, Vol. 
34: Causal learning (pp. 47-88). San Diego: Academic 
Press.  

Waldmann, M. R., & Hagmayer, Y. (2005). Seeing versus 
doing: Two modes of accessing causal knowledge. 
Journal of Experimental Psychology: Learning, Memory, 
and Cognition, 31, 216-227. 

Waldmann, M. R., & Martignon, L. (1998). A Bayesian 
network model of causal learning. In M. A. Gernsbacher 
& S. J. Derry, Proceedings of the Twentieth Annual 
Conference of the Cognitive Science Society (pp. 1102-
1107). Mahwah, NJ: Erlbaum. 

Waldmann, M. R., & Walker, J. M. (2005). Competence and 
performance in causal learning. Learning & Behavior. 

Woodward, J. (2003) Making things happen. A theory of 
causal explanation. Oxford: Oxford University Press. 

Table 4: Responses to predictive inference questions in 
Experiment 2 (N=24) (Numbers indicate means of 

conditional frequency estimates for 40 cases.) 
 Observation Intervention 

 p(d|c) p(d|¬c) p(d|Do(c)) p(d|Do(¬c)) 

Causal Bayes 
net predictions 36 5 33 14 

Mean 30.54 18.33 29.71 20.33 
SD 10.10 13.26 10.90 11.74 
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