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Abstract

Causal knowledge serves two functions: it allows us to predict
future events on the basis of observations and to plan actions.
Although associative learning theories traditionally
differentiate between learning based on observations
(classical conditioning) and learning based on the outcomes of
actions (instrumental conditioning), they fail to express the
common basis of these two modes of accessing causal
knowledge. In contrast, the theory of causal Bayes nets
captures the distinction between observations (seeing) and
interventions (doing), and provides mechanisms for predicting
the outcomes of hypothetical interventions from observational
data. In two experiments, in which participants acquired
observational knowledge in a trial-by-trial learning procedure,
the adequacy of causal Bayes nets as models of human
learning was examined. To test the robustness of learners’
competency, the experiments varied the temporal order in
which the causal events were presented (predictive vs.
diagnostic). The results support the theory of causal Bayes
nets but also show that conflicting temporal information can
impair performance.

Introduction

The ability of acquiring and using causal knowledge is a
central competency necessary for explaining past events,
predicting future events, and planning actions. But how do
people infer the consequences of their actions when
planning interventions in causal systems? In some cases
they might have tried out the interventions on previous
occasions so that they already know the potential outcomes
of their actions. But what if only knowledge about
observational relations between causal events is available?
A tempting solution would be to equate observational
knowledge with instrumental knowledge and proceed from
there. Unfortunately this strategy will often lead to
ineffective actions. For example, the status of a barometer is
statistically related to the upcoming weather, but
manipulating the barometer does not affect the weather.
Barometer readings and weather are spuriously related due
to their common cause, atmospheric pressure. As a
consequence, observational predictions can capitalize on the
spurious  statistical relation, whereas instrumental
predictions cannot. Effects do not change their causes; thus,
manipulating the barometer does not affect its cause
atmospheric pressure, and therefore has no causal influence
on the weather.

The difference between observing (seeing) and
intervening (doing) is compelling in the barometer example.
Nevertheless, most theories of causal cognition do not
distinguish between different modes of accessing identical
causal knowledge. For example, associative theories of

causal learning are sensitive to covariations but do not
distinguish between causal and spurious relations. It is true
that these theories distinguish between observational
(classical ~conditioning) and interventional learning
(instrumental conditioning), but, as the barometer example
shows, they fail when predictions for instrumental actions
have to be derived from observational learning.

Causal Bayes nets (Pearl, 2000; Spirtes, Glymour, &
Scheines, 1993; Woodward, 2003) provide a formal account
of causal representations and inference that allows it to
derive precise predictions for hypothetical interventions
from observational knowledge. The goal of the present
experiments is to investigate whether people who have
observed individual trials presenting the states of a complex
causal model can later access their causal knowledge to
derive observational and interventional predictions in a
fashion anticipated by causal Bayes nets. To test the
robustness of this competency we manipulated the temporal
cues in the learning data (predictive learning from causes to
effects vs. diagnostic learning from effects to causes).

Seeing vs. Doing in Causal Bayes Nets

The formal framework of causal Bayes nets uses directed
acyclic graphs (DAGs) to represent causal relations between
variables, and parameters to express the strength of these
relations (e.g., conditional probabilities). A complete causal
model therefore combines qualitative assumptions about the
structure of the causal model with quantitative knowledge
about the size of the parameters associated with these causal
relations (e.g., base rates, causal strength, integration rules).
An example is given in Figure 1. This causal model consists
of four (binary) variables 4, B, C, and D, in which 4 can
cause D either via B or via C.

In the causal Bayes nets framework, the joint probability
distribution of this model can be factored into:

p(4.B.C.D)=p(4) - p(B|4) - p(C|4) - p(D|B.C)

This decomposition follows from applying the causal
Markov condition (Spirtes et al., 1993; Pearl, 2000) to the
causal model. The causal Markov condition (informally)
states that the state of any variable X; in the system is
independent of all other variables (except for its causal
descendants) conditional on the set of its direct causes, pa,.
For example, the causal Markov condition implies for the
causal model shown in Figure 1 that variable D is
independent of 4 conditional on its direct causes B and C.
Relations of conditional dependence and independence are
critical for deriving observational and interventional
inferences.
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Figure 1: A parameterized causal model. Arrows indicate
causal relations between variables; conditional probabilities
encode the strength of these relations. All parameters were
set except p(d|b.c) which is computed by a noisy-OR-gate.

Observational Predictions

Based on the structure of the causal model and its
parameters, the probabilities implied by observations of the
states of observed variables can be computed using
probability calculus. For example, if variable C in the causal
model shown in Figure 1| is observed, the probability of 4
being present can be computed using Bayes rule,

plale/=p(cla) - p@/[p(cla) - p@-p(c|=a) - p(~a)].

This computation models a diagnostic inference from C to
its cause 4. A more interesting example is the prediction of
variable D from an observation of variable C. Obviously
there is the direct causal link connecting C to D. But there is
also a second causal pathway connecting C to D via 4 and
B. If C is present, the probability of A increases, which in
turn increases the probability of B leading to an increase of
D. Pearl (2000) vividly calls such confounding pathways
backdoors. Formally the probability for D given C can be
calculated by:

p(d|e)=p(alc)p(bla)p(db.c)+p(ale)p(~bla)p(d|-b.c)/+
p(=alc)p(b|=a)p(d|b.c}p(~alc)p(~b|~a)p(d=b.c).

Interventional Predictions

The literature on causal Bayes nets has focused on ideal
interventions in which the actions change the value of a
variable independent of the state of its parents (for more
precise characterizations of these interventions, see, for
example, Woodward, 2003). For example, if we arbitrarily
change the reading of the barometer our action renders the
barometer independent of its usual cause, atmospheric
pressure. Thus, interventions create independence, which
can be expressed by removing the causal links between the
variable that is targeted by the interventions and its parents.
For example, if variable C in the causal model depicted in
Figure 1 is set to a specific value through an intervention,
the causal arrow from 4 to C can be eliminated. Following
previous work of Spirtes et al. (1993), Pearl (2000)
describes this process as ‘graph surgery’. Interventional
predictions should be based on this modified manipulated

graph and not on the original graph. Because of graph
surgery, interventions in contrast to observations do not
provide diagnostic evidence for the causes of the
manipulated variable.

To formalize the idea that a variable’s state is not based
on the ‘natural course of events’ but was determined by an
external intervention, Pearl (2000) introduced the so-called
‘Do-Operator’, written as Do (¢).The expression ‘Do C=¢’
is read as “variable C is set to state ¢ by means of an
intervention”. Formally, the Do-operator renders a variable
independent of its direct causes, which is equivalent to
deleting all causal links pointing towards the variable fixed
by the intervention. Based on the modified causal model, the
probabilities of the other events can be computed. For
example, the probability of 4=a given that C is caused by an
intervention equals the base rate of A=a because the causal
link connecting these two events was eliminated by the
intervention,

p(alDo(C=c)) = p(a|Do(C= ~c)) = p(a).

In the same way the probability of D=d can be calculated
using the modified causal model. Generating a value of C
through an intervention closes the backdoor, hence no
second causal pathway remains. Nevertheless the initial
cause 4 may occur and influence D via B. Therefore the
correct formula to calculate the probability of D=d given a
(generative) intervention in C is:

p(d\Do(c))=p(a)-p(bla)p(d|b.c)tp(a)p(~bla)p(d—b.c)
+p(~a)p(bl=a) p(d|b.c)tp(~a)p(—b|~a)p(d|=b.c).

Note that variable 4 is no longer conditionalized on C in
this formula. This implies that the interventional probability
is necessarily lower than the observational probability,
provided that 4 and B are positively related.

On the right hand side of the equations only parameters
are involved which can be derived from observational
learning. Thus, subsequent to observational learning of a
causal model and of its parameters, the consequences of
hypothetical interventions can be predicted without prior
instrumental learning.

Psychological Evidence

The examples described above show that normatively
diagnostic and predictive inferences differ depending on
whether they are based on interventions or observations.
The interesting question is whether people make these
distinctions as well. Thus far, very few experiments have
addressed this question (see Hagmayer, Sloman, Lagnado,
& Waldmann, in press, for an overview).

Sloman and Lagnado (2005) have studied counterfactual
inferences in given causal structures and have compared
causal with logical arguments. For example, participants
were given a causal chain model consisting of three events
that were all described to be present. Participants were then
requested to imagine that the intermediate event was either
removed by an intervention or observed to be absent. In
accordance with the predictions of causal Bayes nets
participants inferred that the initial cause in the chain would
be absent if the intermediate event was observed to be
absent, but not if it was actively removed. Overall the
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results of Sloman and Lagnado’s experiments were
consistent with causal Bayes nets. Because the focus of
these studies was on comparing logical with causal
reasoning, only qualitative reasoning based on the structure
of causal models was investigated.

Waldmann and Hagmayer (2005) wondered whether a
dissociation between seeing and doing can also be found in
the realm of learning, and whether learners’ inferences
would be sensitive to the size of the parameters that were
gleaned from the learning data. Participants in their
experiments were given instructions about the structure of
causal models and subsequently received a list of cases on a
single page that could be used to estimate the parameters of
the models. Participants were then requested to derive
predictions for new hypothetical observations and
hypothetical interventions. The results showed a surprising
grasp of the differences between seeing and doing, which
manifested itself in predictions that took into account the
size of the parameters which were estimated on the basis of
the learning data.

The present experiments move one step further in the
realm of learning. In Waldmann and Hagmayer (2005) the
parameters could be estimated on the basis of a list of cases
which provided simultaneous information about the
presence or absence of the variables. It can be argued that
this task is still more a reasoning task than a learning task.
The typical temporal characteristics of causal learning are
better mirrored in trial-by-trial learning than in a highly
processed list that lacks natural temporal cues. In fact,
Shanks (1991) has hypothesized that induction on the basis
of aggregated data is handled by different learning
mechanisms  than trial-by-trial learning. Thus, a
demonstration of the competency to distinguish seeing and
doing in the context of trial-by-trial learning would further
weaken associative theories as models of causal induction.

Moreover, studying inferences based on trial-by-trial
learning introduces cues to causal structures that might
compete with the instructed causal models. The arrows
within causal models express our natural intuition about the
asymmetry of causes and effects: Causes generate effects
but not vice versa. In the real world causal order is often
signaled by the temporal order in which causes and effects
are experienced. However, there are cases in which
temporal order and causal order mismatch. For example,
physicians often observe symptoms (i.e., effects) prior to
learning about their causes. In these cases it is crucial that
the temporal order of experiencing events is ignored as a
cue to causality.

Trial-by-trial learning which presents learning events in a
temporal order allows it to test the impact of temporal cues
on causal induction. A number of experiments designed to
test causal-model theory (Waldmann, 1996) have pitted
temporal order against causal order. In these experiments it
could be shown that learners are capable of learning causal
models regardless of whether temporal order matches or
mismatches causal order. However, this competency breaks
down when complexity is increased (Waldmann & Walker,
2005). Moreover, the competency was only tested with test
questions that requested observational predictions.
Interventional questions are more complex because they

require a stage of model manipulation (e.g., graph surgery)
prior to using the manipulated model for the predictions. To
test whether learners distinguish between seeing and doing
even in conditions in which the temporal order of learning
events mismatches causal order, we varied learning order in
the experiments.

In Experiment 1 the temporal order during each trial
conformed to the causal order of the events in the causal
model (see Fig. 1). Information about 4 was given first,
followed by information about the presence or absence of B
and C, and finally information about D was provided. In
Experiment 2 the temporal order was reversed and no longer
matched the causal order of events. In this experiment it is
necessary to suppress temporal cues and estimate the
parameters on the basis of data that is presented in the
reverse order (see Waldmann & Martignon, 1998). For
example, in the causal model we have used in the
experiments (Fig. 1), the final effect D is dependent on
patterns of its two causes B and C. When temporal order is
reversed in Experiment 2, participants observed the
probability of B and C given D and the probability of 4
given B and C but have to infer the probabilities of B and C
conditional upon A4, and of D conditional upon B and C.
Note that the patterns of covariation are nevertheless exactly
the same across Experiments 1 and 2, that is, participants’
judgments are based on the very same data. Only the order
in which information about the events was given is
manipulated across the two experiments. Although we
expect that, consistent with causal-model theory, learners
will attempt to correctly learn the causal model regardless of
learning order, and will differentiate between seeing and
doing, this competency might be marred by performance
deficits caused by the complexity of the task (see also
Waldmann & Walker, 2005).

A further novel aspect of this study is the presentation of a
causal model that contains two parallel pathways that
represent mutual confounds (i.e., backdoors). One additional
goal of the experiments was to test whether learners are
sensitive to the fact that interventions and observations
differ with respect to the way the second confounding
pathway needs to be taken into account.

Experiment 1

The goal of the first experiment was to investigate whether
learners differentiate between seeing and doing after a trial-
by-trial learning phase in which learning order corresponds
to causal order. Twenty-four students from the University of
Gottingen participated. The model underlying the learning
data and its parameterization are shown in Figure 1. After
the observational learning phase participants were asked to
imagine new cases in which either variable C was observed
to be present or absent, or C was generated or eliminated by
an intervention. All participants had to estimate the
probability of 4 and D in each of these four cases (i.e., eight
questions).

Learning Phase. The variables of the causal model were
introduced as four fictitious chemical substances causally
interacting in wine casks. Participants were told that
substance 4 causes the generation of substances B and C,
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which then can independently cause substance D (see Fig.
1). It was also pointed out that the causal relations are
probabilistic. In addition, participants were shown the graph
of the causal model. They were instructed to learn the
strength of the causal relations from the learning data. The
kind of questions they would have to answer after the
learning phase was not mentioned until the test phase. The
learning phase consisted of 40 trials which implemented the
probabilities shown in the causal graph in Figure 1. The
trials presented information on a computer screen about the
states of the variables. The temporal order corresponded to
causal order in Experiment 1. Thus, first information about
variable 4 was presented, then, simultaneously, variables B
and C were shown, and finally information about event D
was given.

Test Phase. The learning phase was followed by a test
phase in which participants had to answer eight questions.
The questions first stated the current status of variable C
(present vs. absent) and then asked about 4 (i.c., the cause
of C) or D (i.e., the effect of C). Thus, one question was
diagnostic, the other predictive. For the observational
predictions, participants were instructed to imagine
observing substance C in 40 previously unseen wine casks
and to estimate the number of casks in which substance 4
would also be found, (i.e., they estimated p(alc) in a
frequency format). Participants were also asked to estimate
the conditional frequency of 4 for 40 casks in which C was
observed to be absent (p(aj—c)). Two further questions
referred to interventions. These questions asked learners to
imagine that substance C was added to 40 casks
(p(alDo(c))), or that C was inhibited in 40 casks
(p(alDo(—c))). The same set of questions was asked about
D, the effect of C. Thus, participants estimated the number
of casks in which D would be found (i.e., p(d|c), p(d|—c),
p(dDo(c)), p(d|Do(—c)). Interventional and observational
questions were blocked; the order of blocks was
counterbalanced.

Causal Bayes Net Predictions. For the diagnostic
inferences, the crucial test for assessing whether participants
differentiated between observations and interventions
concerns the comparison of the two observational
probabilities p(a|c) versus p(a|—c) to the two corresponding
interventional probabilities p(a|Do(c)) versus p(a|Do(—c)).
Whereas observing C=c or C=—c is diagnostic evidence for
the state of 4, generating C=c or C=—c by an intervention is
not diagnostic for A. Therefore, the observational
probabilities should differ, whereas the interventional
probabilities should stay at a constant level. According to
causal Bayes nets, 4 should be expected to occur with the
probability that corresponds to its base rate.

The predictive inferences are more complicated because
the second causal pathway generating D has to be taken into
account. Participants should consider both C’s direct causal
relation to D but also the alternative path 4>B->D. The
observation of C opens the backdoor to the second pathway
(i.e., the presence of C indicates that A4 is likely to be
present). Therefore, participants should infer that D is more
likely to be present if C is observed than when it is absent.

In contrast, if C is manipulated by an intervention the
backdoor is closed because the link between 4 and C needs
to be removed. However, D is still more likely when C is
generated than when it is inhibited because of C’s direct
causal influence. The difference, however, should be
smaller for the interventional than for the observational
probabilities.

A further test of sensitivity to the difference between
seeing and doing is provided by comparing the estimated
probabilities of D given observations of C or interventions
in C. In the section about causal Bayes nets it was
mentioned that the probability of D is higher if C is
observed than when it is generated by an intervention. The
parameters of the presented causal model imply that the
interventional probability of observing C (p(d|c)) is only
slightly higher than the probability of generating C
(p(d|Do(c)). But the probability of D is considerably higher
when C is prevented p(d|Do(—c)) than when it is observed
to be absent (p(d|—c)).

Results and Discussion
Diagnostic inferences. The results for the diagnostic test
questions are shown in Table 1 along with the predictions

Table 1: Responses to diagnostic inference questions in
Experiment 1 (N=24) (Numbers indicate means of
conditional frequency estimates for 40 cases.)

Observation Intervention
plalc) pa—c)  p(aDo(c)) p(alDo(—c))
Causal ?a.yes 38 4 20 20
net predictions
Mean 30.50 17.08 25.54 27.25
SD 7.56 10.37 10.57 8.59

derived from causal Bayes nets. The pattern of estimated
conditional frequencies qualitatively conformed to the
pattern of the predicted values. As anticipated by causal
Bayes nets, participants gave different estimates for the two
observational probabilities but judged the interventional
probabilities to be at the same level. An analysis of variance
with the factors ‘intervention vs. observation’ and ‘presence
vs. absence of C’ as within-subjects factors yielded a
significant interaction, F(1,23)=23.78, p<0.001,
MSE=57.75. As predicted by the causal Bayes nets
framework, there was no difference between the
interventional questions, F<1, but a significant difference
between the observational questions, F(1,23)=35.51,
p<0.001, MSE=59.17. Although participants’ estimates did
not perfectly match the normative causal Bayes net
predictions, the results provide evidence for participants’
sensitivity to the difference between seeing and doing in
diagnostic judgments.

Predictive inferences. The results for the predictive
questions concerning the probability of D are shown in
Table 2. This type of inference is more complicated than the
diagnostic inference in the chosen causal model. Whereas
the latter only requires considering the direct causal relation
between 4 and C (with the rest of the causal model being
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irrelevant for this task), the inference concerning variable D
requires taking into account the complete model. In
particular, the alternative confounding pathway 4—>B—=>D
needs to be considered.

As can be seen in Table 2, participants were surprisingly
sensitive to the second confounding causal pathway: As
predicted by causal Bayes nets, the difference between
responses to the observational questions proved larger than
the difference between the responses to the interventional
questions. An analysis of variance with ‘intervention vs.
observation’ and ‘presence vs. absence of C’ as within-
subjects factors yielded a significant interaction,
F(1,23)=8.73, p<0.01, MSE=54.65. In accordance with the
parameterization of the causal model, there was only a
slight, non-significant difference between p(d|c) and
p(d|Do(c)), F(1,23)=1.0, p=0.33. This is important as there
might have been a general tendency to answer interventional
questions differently from observational questions. The
crucial test of the predictions of causal Bayes nets is
provided by the comparison between p(d|—c) and
p(d|Do(—c)). Participants judged the probability of the
occurrence of D to be significantly higher when C was
prevented by an intervention than when it was merely
observed to be absent, F(1,23)=9.57, p<0.01, MSE=57.83.

The results demonstrate a remarkable grasp of the
difference between intervening and observing after trial-by-

Table 2: Responses to predictive inference questions in
Experiment 1 (N=24) (Numbers indicate means of

after diagnostic learning (effects presented prior to their
causes) but this competency was only tested with
observational test questions and displayed itself only with
causal models that were less complex than the causal model
used in the present experiments (see Waldmann & Walker,
2005). Experiment 2 used the same experimental design,
cover story, and instructions as Experiment 1. Thus,
participants received instructions about the causal model
displayed in Figure 1. Again 24 participants from the
University of Gottingen participated. In contrast to
Experiment 1, the temporal order of learning events did not
match their causal order (i.e., diagnostic learning). In each
trial, participants were first informed about the status of
effect D, then simultaneously about the mediating variables
B and C, and finally about the initial cause 4. Participants
had to mentally reverse the observed statistical relations to
correctly estimate the parameters of the causal model. As in
Experiment 1, participants were requested to estimate the
conditional frequencies of 4 and D given observations of or
interventions in C.

Results and Discussion. Tables 3 and 4 show the means of
the conditional frequency estimates along with the
predictions derived from causal Bayes nets.

Table 3: Responses to diagnostic inference questions in
Experiment 2 (N=24) (Numbers indicate means of
conditional frequency estimates for 40 cases.)

conditional frequency estimates for 40 cases.) Observation Intervention
Observation Intervention plale)  p(al=¢)  p(alDo(c))  p(a|Do(~c))
- - Causal Bayes net
pd\c) p@~c)  p(d\Do(c)) p(dDo(~c)) predictions 38 4 20 20

Causal Bayes 5 5 33 14 Mean 3346 1538 25.50 22.42

net predictions
SD 8.59 11.20 11.16 10.31

Mean 29.67 14.79 27.54 21.58
SD 10.04 11.56 11.64 12.55 Diagnostic inferences. The mean estimates for the

trial learning of a causal model. Both diagnostic and
predictive inference proved sensitive to the distinction
between seeing and doing. The experiment also provides
evidence for learners’ sensitivity to the implications of
alternative confounding pathways (i.e., backdoors) for
observations and interventions. Although the statistical
patterns correspond to the predictions of causal Bayes nets,
the estimates were not perfect, of course. Specifically,
learners had difficulties with correctly assessing cases in
which events were observed to be absent (see also
Waldmann & Hagmayer, 2005). The complexity of the
model and the limited number of learning trials might have
contributed to the imperfections. Nevertheless, the
competency of the participants was remarkable and provides
clear evidence against traditional learning theories that fail
to account for complex causal model learning.

Experiment 2

The main goal of Experiment 2 was to test whether people
learn and access causal models adequately when the
learning order does not match causal order. Previous
research has shown that people can make correct predictions

conditional frequency of 4 given C closely resemble the
ones in Experiment 1. Again the general pattern corresponds
to the predictions of causal Bayes nets. An analysis of
variance with the factors ‘intervention vs. observation’ and
‘presence vs. absence of C* as within-subjects factors again
yielded a significant interaction, F(1,23)=28.15, p<0.001,
MSE=47.96. The difference between the two estimated
observational probabilities proved considerably larger than
the one between the two interventional probabilities. Again
participants judged the probability of 4 to be at a similar
level regardless of whether C was generated or prevented.
Specifically, the observational questions differ significantly,
F(1,23)=63.88, p<0.001, MSE=61.43 while there is no
difference  between the interventional  questions,
F(1,23)=1.52, p=0.23. The diagnostic inferences show a
remarkable grasp of the difference between seeing and
doing despite the added complexity of the diagnostic
learning procedure. In this task, participants proved capable
of ignoring the misleading temporal cue of the learning
procedure.

Predictive inferences. As in Experiment 1, participants were
asked to estimate the probability of D when C was observed
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or manipulated by an external intervention. However, in
contrast to Experiment 1, the estimates considerably
deviated from the causal Bayes net predictions (see Table
4). An analysis of variance yielded no significant
interaction. In addition, the observational probability
estimate of p(d|—c) did not differ significantly from the
corresponding interventional probability estimate of
p(d|Do(—c)), F<l. Thus, there was no evidence that
participants correctly differentiated between seeing and
doing in the predictive task. Probably the increased
complexity caused by the misleading temporal cue and the
complicated inference, which required taking into account a
secondary confounding pathway (i.e., backdoor), exceeded
the information processing capacity of learners

Table 4: Responses to predictive inference questions in
Experiment 2 (N=24) (Numbers indicate means of
conditional frequency estimates for 40 cases.)

Observation Intervention
po)  p@~c  p(dDo(c) p(dDo(~c)
Causal Bayes
net predictions 36 J 33 14
Mean 30.54 18.33 29.71 20.33
SD 10.10 13.26 10.90 11.74

General Discussion

Taken together, the results of the two experiments provide
convincing evidence that learners are capable of
distinguishing between observations and interventions even
in a more naturalistic learning environment. These findings
contradict traditional associative learning theories, which
fail to model causal-model learning and which are incapable
of deriving correct predictions for actions after purely
observational learning. The present experiments also
demonstrate a surprising grasp of the implications of
confounding pathways. Thus, the experiments strongly
support causal-model theory and causal Bayes nets as
theoretical accounts of causal induction.

However, Experiment 2 also shows that the competence
of learners only displays itself when the complexity of the
task does not exceed learners’ information processing
capacity (see also Waldmann & Walker, 2005). A popular
strategy to deal with such impairments is to postulate two
systems, a reasoning component that handles summarized
data, and an associative learning component that is
specialized for trial-by-trial learning (Price & Yates, 1995;
Shanks, 1991). Although Experiment 1, which used a trial-
by-trial learning procedure, already weakens this account, it
might still be speculated that learners fell back on an
associative mode in Experiment 2 in which the learning task
was more complex. However, the data of Experiment 2 are
inconsistent with this theory. Learners were not generally
impaired, only the predictive inferences were affected. The
less complex diagnostic inferences showed a remarkable
grasp of the differences between seeing and doing despite
the misleading temporal cue. Only the more complex
predictive inferences were negatively affected.

We believe that the reason for this difference is located in
the parameter estimation processes. Participants in
Experiment 2 observed the probability of B and C given D
but had to infer the probability of D given B and C as a
parameter of the causal model. Such an inversion is
complicated and demanding. Therefore, the learning process
may have led to inadequate estimates of the model’s
parameters. The diagnostic questions could be correctly
answered by recognizing that interventions render the
manipulated variables independent of their actual causes,
which implies that solely the base rate p(4) needs to be
accessed for giving a correct response. In contrast, the
predictive questions can only be answered correctly if the
parameters of the full causal model are correctly estimated,
and if the model is correctly altered for the intervention
questions. Thus, if the parameters are not acquired correctly
during learning the inferences are likely to be wrong. This
account explains the deficits shown in Experiment 2 using a
causal Bayes net analysis of the task. Future research will
have to develop psychological models of learning that
integrate competence and performance.
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