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ABSTRACT—The philosopher David Hume’s conclusion that

causal induction is solely based on observed associations

still presents a puzzle to psychology. If we only acquired

knowledge about statistical covariations between observed

events without accessing deeper information about cau-

sality, we would be unable to understand the differences

between causal and spurious relations, between prediction

and diagnosis, and between observational and inter-

ventional inferences. All these distinctions require a deep

understanding of causality that goes beyond the infor-

mation given. We report a number of recent studies that

demonstrate that people and rats do not stick to the super-

ficial level of event covariations but reason and learn on

the basis of deeper causal representations. Causal-model

theory provides a unified account of this remarkable

competence.
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People’s ability to predict future events, explain past events, and

choose appropriate actions to achieve goals belongs to the most

central cognitive competencies necessary for being a successful

agent in the world.

How are the regularities in the world learned, stored, and

accessed? An intuitively plausible story that has been told in

philosophy for many centuries assumes that the world contains

causes that have the power to generate effects and that people

learn about these causal systems. The philosopher David Hume

questioned this view in his seminal writings. He analyzed situ-

ations in which people learn about causal relations and did not

detect any empirical input that might correspond to evidence for

causal powers of events. What he found instead was temporally

ordered successions of event pairs, but nothing beyond that. He

concluded from this that causality is a cognitive illusion trig-

gered by associations. It is a view that found famous followers,

such as the philosopher Bertrand Russell, who considered

causality a concept that has no place in modern science.

The psychology of learning has adopted Hume’s heritage (see

Allan, 2005). According to many learning theories, causal pre-

dictions are driven by associative relations that have been

learned on the basis of observed covariations between events.

Similar to Pavlov’s dog who has learned to predict food when it

hears a tone (i.e., classical conditioning), or to a rat’s learning

that a lever press produces food (i.e., instrumental conditioning),

we learn about causal relations. There is no need for the concept

of causality in this view.

CAUSAL-MODEL THEORY: BEYOND COVARIATIONS

Hume’s analysis and subsequent associative theories present a

puzzle. They seem to have correctly observed that causal

learning’s inputs largely consist of covariation information. It

can be shown, however, that mental representations that merely

mirror such inputs cannot explain the competencies people have

in dealing with causal situations (see also Buehner & Cheng,

2005). If people had no causal knowledge, they could not rep-

resent the difference between causal and spurious statistical

relations, such as the relation between barometers and the

weather. Covariational knowledge also fails to differentiate be-

tween causes and effects, which is a central distinction for

planning actions. Finally, causal models entail statistical rela-

tions between events that are helpful in learning. For example,

multiple effects of a common cause are correlated in a predict-

able way; the same is not true of multiple causes of a common

effect.

Figure 1 shows a simplified causal model of people’s knowl-

edge of the flu. Such diagrams are commonly used to represent

causal models, which in psychology were first proposed by

Waldmann and Holyoak (1992). The arrows represent asym-

metric causal relations directed from causes to effects. People

can reason correctly about causality if they have causal-model

representations (as in Fig. 1), but how do people generate causal

models out of covariational information? The answer is that

people have a natural tendency to assume the existence of causal

relations, which leads them to align covariational input with
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causal-model representations (see also Buehner & Cheng,

2005). Similar to using sparse language input to induce a

grammar that goes beyond the learning input, people have a ten-

dency to represent some events as causes with the power to

generate or prevent effects, and they build causal networks that

can be used for inferences and planning. This core capacity to

interpret the world in terms of causal relations can be applied

to various domains (e.g., physical, biological, psychological) and

merely requires the distinction between causes and effects.

However, once acquired, knowledge may affect how further

causal knowledge is learned.

Learning involves acquiring knowledge about the structure of

the causal model and its parameters—such as the power of the

causes to generate their effects (i.e., causal strengths) and the

frequencies of the causes (i.e., base rates). It is obvious that

parameters are estimated on the basis of the statistical properties

of observations; but how do people learn about the structure of

causal models? Although some researchers assume that causal

structures are often learned through covariation information

alone (Gopnik et al., 2004), our research indicates that cues—

such as that causes typically temporally precede their effects—

are used that suggest causal structures (see Lagnado, Waldmann,

Hagmayer, & Sloman, in press). The main goal of our research

has been to investigate how people enrich the covariational input

to arrive at causal-model representations and how they use these

representations for inferences and planning.

SENSITIVITY TO CAUSAL DIRECTIONALITY

The distinction between causes and effects is a central feature

of causal representations. Thus, one line of research focused

on whether there is evidence that people assign these distinct

causal roles to the learning input (see Waldmann, 1996, for a

summary of early work).

Fenker, Waldmann, and Holyoak (2005) have investigated

this question in a semantic-memory task. The question of

interest was whether causal relations are represented and ac-

cessed differently from associative relations in memory. In the

experiments, participants were presented with pairs of words,

one after another, either describing events that referred to a

cause (e.g., ‘‘spark’’) or an effect (e.g., ‘‘fire’’). Both the temporal

order of word presentation and the question to which partici-

pants had to respond were manipulated. Questions referring to

the existence of a causal relation were answered faster when the

first word referred to a cause and the second word to its effect

than vice versa. No such asymmetry was observed, however, with

questions referring to the associative relation—that is, whether

the words were related in some meaningful way. People appear to

distinguish the roles of cause and effect when queried specif-

ically about a causal relation but not when the same information

is evaluated for the presence of an associative relation (see also

Satpute et al., 2005, for brain-imaging research supporting these

conclusions).

Whereas semantic-memory tasks target the results of learn-

ing, there is also evidence that people go beyond the information

given in trial-by-trial learning tasks (see also Waldmann, 2000).

The general idea was to present participants in different con-

ditions with identical covarying events. If Hume was right, and

learning simply consists of picking up these observed covari-

ations, the outcome of learning should be the same in the dif-

ferent conditions. In one study, Waldmann (2001) presented

learners first with cues that represented substances in hypo-

thetical patients’ blood and then gave feedback about fictitious

blood diseases. According to associative-learning theories,

learners should have learned to predict the disease from infor-

mation about the presence of the substances. However, two

conditions manipulated—through initial instructions—whether

learners interpreted the substances (i.e., cues) as effects of the

diseases (common-cause model) or as causes (common-effect

model). The results showed that causal models guided how the

learning input was processed. Learners treated the substances as

potentially competing explanations of the disease in the com-

mon-effect condition, whereas the substances were treated as

collateral effects of a common cause in the contrasting condition.

Thus, despite the fact that all learners observed the same se-

quence of events, they assigned different causal roles to these

events, and consequently they made different inferences. These

inferences were based on statistical implications entailed by the

different causal models; they didn’t solely reflect the observed

statistical patterns.

Causal structures and their parameters are not independent

entities but are deeply intertwined. The causal strength between

a cause and an effect, for example, needs to be estimated dif-

ferently depending on whether or not there is a confounding

alternative cause. For example, if one learns the causal strength

between rhino virus and infection, one needs to control for the

possible confound, influenza virus, but not for effects of infection

(e.g., fever; see Fig. 1). Waldmann and Hagmayer (2001) have

shown that learners are indeed sensitive to the causal roles of

events when estimating causal strength.

SEEING VERSUS DOING: TWO TYPES OF

PREDICTIONS FROM OBSERVATIONAL DATA

Predicting and diagnosing on the basis of observed events are

both examples of observational inferences (‘‘seeing’’). Causal

Influenza 
Virus

Rhino
Virus

Infection
Headache

Fever Chills

Cough

Fig. 1. Example of a causal model for the flu. The arrows represent causal
relations directed from causes to effects.

308 Volume 15—Number 6

Causal Models



knowledge also underlies interventional inferences (‘‘doing’’).

Sometimes these two types of predictions coincide, but very

often they do not. Manipulating barometers does not change the

weather. Thus, the observed covariations alone do not allow for

making correct inferences; the learner needs to go beyond the

information given and assign causal roles to the observed events.

An associationist might respond that human and nonhuman

animals could distinguish between seeing and doing on the basis

of observational (i.e., classical) and instrumental conditioning.

One may, for example, have learned that the barometer predicts

the weather in an observational-learning setting and in parallel

may have tried to fiddle with the barometer, which showed no

effect on the weather. This solution only works, however, if

learners are provided with both kinds of learning experiences,

not if they only passively observe covarying events and then are

requested to make both observational and interventional pre-

dictions.

We (Waldmann & Hagmayer, 2005) tested people’s compe-

tence to derive predictions for hypothetical observations and

hypothetical interventions from causal models that had been

learned purely through observation. In a fictitious medical

scenario, participants were told that scientists hypothesized that

three hormones, ‘‘pixin,’’ ‘‘sonin,’’ and ‘‘xanthan,’’ are related

through either a common-cause or a causal-chain model (see

Fig. 2, left). All participants in the two conditions received

identical observational data indicating that the three hormones

were connected by probabilistic causal relations. In the subse-

quent test phase, learners were asked to imagine a new group of

test animals and to make predictions about hypothetical obser-

vations of sonin and about hypothetical interventions that

increased sonin in the blood by means of inoculations. The ob-

servational inference could be modeled on the basis of the two

presented causal models. Since the three hormones were sta-

tistically related in both causal models, the observation of the

presence of sonin allowed participants to reason that pixin and

consequently xanthan were also very likely to be present.

Interventional predictions often require modifications of

causal models. In the common-cause model, an intervention that

adds sonin to the blood leads to the consequence that the levels

of sonin are now determined by this intervention and no longer

by its usual cause (pixin), whose causal influence is preempted

by the novel intervention. One way to model this intervention is

to remove the arrow from pixin, sonin’s normal cause that is being

explained away by the new intervention. The removal expresses

that pixin is no longer a cause of sonin (see Fig. 2, right). Due to

the removal of the arrow in the common-cause model, sonin

becomes independent of xanthan, so that regardless of whether

sonin is increased or decreased by an intervention, the level of

xanthan should remain at the same level.

The chain condition served as a control that showed that

seeing and doing don’t always lead to different predictions (see

Fig. 2). Since there are no causes of sonin that are being pre-

empted, an intervention does not necessitate a modification of

the causal model. As a consequence, participants should make

identical predictions for the observational and interventional

questions. In our experiments, participants’ responses corre-
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Fig. 2. Observational (‘‘seeing’’) and interventional (‘‘doing’’) predictions in a common-cause and causal-
chain model, in which three fictional hormones are causally connected. The left side shows the models pre-
sented in the learning phase, which could be used for observational predictions. The right side depicts the
models underlying the predictions of the outcomes of interventions. A hypothetical intervention in which
humans or animals are inoculated with sonin requires the deletion of a causal arrow in the common-cause
model but not in the causal-chain model.
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sponded to these predictions remarkably well. They were ca-

pable of predicting patterns they had never observed, which

indicates that they used causal-model representations to trans-

form identical covariational information into different types of

predictions. In several further experiments we manipulated the

parameters of the model (base rates of the events, causal

strength) and showed that participants’ predictions were not only

driven by the structure of the causal models but also by the

learned parameters.

Causal Reasoning in Rats

We claim that humans have the natural capacity to form causal

representations. How about nonhuman animals? A number of

researchers have asserted that causal reasoning and learning are

faculties that form a dividing line between humans and non-

human animals. Recent research by us (Blaisdell, Sawa, Leising,

& Waldmann, 2006) casts doubt on this conclusion.

In one experiment, rats went through a purely observational

learning phase in which a light was sometimes followed by a tone

and at other times followed by food. Importantly, no instrumental

learning took place. When in the subsequent observational test

phase the rats again heard the tone (‘‘seeing’’), they showed that

they expected food in the niche in which it was typically deliv-

ered. Apparently they reasoned through the causal model link-

by-link, from the tone through the light to the probable presence

of food. By contrast, in a second test a lever that the rats had

never seen before was introduced into the cage (‘‘doing’’).

Whenever the rats curiously pressed the lever, the same tone was

presented. Now, although tone and food had been associated by

the rats in the learning phase as indicated in the observational

test phase, they were less inclined to search for food after the

lever presses. Apparently they reasoned that they—and not the

light—were the cause of the tone, which led to their reluctance

to expect food.

In a second study, a causal chain was presented in which the

tone preceded the light, which in turn preceded food. Consistent

with causal-model theory, the rats expected food regardless of

whether they observed the tone or generated it with the lever.

This shows that they were not generally reluctant to expect food

after a novel intervention. The results revealed a deep under-

standing of causal relations and demonstrate that rats correctly

differentiated between seeing and doing and among different

causal models.

Limitations of Causal Reasoning

Although people exhibited a sophisticated ability to reason with

causal models, there is also evidence for limitations. For ex-

ample, Waldmann and Walker (2005) have shown that people

have difficulties with transforming covariation information into

causal-model representations when the task is complex or when

the learner operates at her information-processing limit. Reips

and Waldmann (in press) have similarly found that base rates

may be neglected in learning tasks in which those rates are not

crucial for error-free performance. Finally, Waldmann (in press)

has discovered that domain assumptions affect how multiple

causes are combined in the prediction of an effect. However, the

combination rule is also influenced by the way the task is pre-

sented, which again shows that the capacity to form causal-

model representations is also affected by task characteristics.

CONCLUSION

Hume has presented us with the puzzle: How do we acquire

causal knowledge when we only observe covariation informa-

tion? We have reported a number of studies showing that both

human and nonhuman animals have a natural tendency to trans-

late covariations into causal-model representations.

One important question for future research is to explore the

generality and differences of causal-reasoning capacities across

species. Another interesting question will be to analyze the re-

lation between causal reasoning and rational models, such as

causal Bayes nets (Gopnik et al., 2004). Our findings on limi-

tations of causal reasoning suggest that such models, if inter-

preted as psychological theories, may often exaggerate what

human and nonhuman animals can do. Answers to these ques-

tions hold profound implications concerning the structure, ori-

gin, and evolution of causal reasoning, an invaluable cognitive

tool for exploiting one’s world.
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