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Abstract

The standard approach guiding research on the relationship between categories and causality
views categories as reXecting causal relations in the world. We provide evidence that the opposite
direction also holds: categories that have been acquired in previous learning contexts may inXuence
subsequent causal learning. In three experiments we show that identical causal learning input yields
diVerent attributions of causal capacity depending on the pre-existing categories to which the learn-
ing exemplars are assigned. There is a strong tendency to continue to use old conceptual schemes
rather than switch to new ones even when the old categories are not optimal for predicting the new
eVect, and when they were motivated by goals that diVered from the present context of causal discov-
ery. However, we also found that the use of prior categories is dependent on the match between cate-
gories and causal eVect. Whenever the category labels suggest natural kinds which can be plausibly
related to the causal eVects, transfer was observed. When the categories were arbitrary, or could not
be plausibly related to the causal eVect learners abandoned the categories, and used diVerent catego-
ries to predict the causal eVect.
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1. Introduction

Traditionally research about the representation of causal relations and research about
the representation of categories were separated. This research strategy rests on the assump-
tion that categories summarize objects or events on the basis of their similarity structure,
whereas causality refers to relations between causal objects or events. Our goal in the pres-
ent research is to show that the relationship between causality and categorization is more
dynamic than previously thought.

1.1. The standard view: Causality rests on Wxed categories

The standard view guiding research on causality presupposes the existence of objective
networks of causes and eVects, which cognitive systems try to mirror. Regardless of
whether causal learning is viewed as the attempt to induce causality on the basis of statisti-
cal information or on the basis of mechanism information, it is generally assumed that the
goal of causal learning is to form adequate representations of the texture of the causal
world.

Studies on causal learning typically investigate trial-by-trial learning tasks which
involve learning the contingencies between causes and eVects. For example, Waldmann
(2000) gave participants the task to learn about the strength of causal relations between
diVerent substances (e.g., substance 1) in Wctitious patients’ blood and a new blood dis-
ease, Midosis, which is caused by these substances. This task is a representative example
of a large number of studies which focus on causal contingency learning (see De Houwer
& Beckers, 2002; Shanks, Holyoak, & Medin, 1996, for overviews). A characteristic fea-
ture of these tasks is that they present categorized events representing causes (e.g., “sub-
stance 1”) and eVects (e.g., “Midosis”) which are statistically related. Cause and eVect
categories are viewed as Wxed entities that are already present prior to the learning task.
The goal of learning is to estimate causal strength of individual causal links or to induce
causal models on the basis of observed covariations. The role of cause and eVect catego-
ries in the learning process is not the focus of interest in these approaches; they are sim-
ply viewed as given.

A similar approach underlies research on the relationship between categories and
causality. According to the view that categorization is theory-based, traditional similar-
ity-based accounts of categorization are deWcient because they ignore the fact that many
categories are grounded in knowledge about causal structures (Murphy & Medin, 1985;
see also Murphy, 2002). In natural concepts features often represent causes or eVects
with the category label referring to a complex causal model. For example, disease cate-
gories frequently refer to common-cause models of diseases with the category features
representing causes (e.g., virus) and eVects (e.g., symptoms) within this causal model. A
number of studies using these and similar materials have shown that the type of causal
model connecting otherwise identical cause and eVect features inXuences learning, typi-
cality judgments, or generalization (Rehder, 2003a, 2003b; Rehder & Hastie, 2001, 2004;
Waldmann, Holyoak, & Fratianne, 1995; Waldmann, 1996, 2000, 2001). The main goal
of these studies was to investigate the eVect of diVerent causal relations connecting the
causal features. As in contingency learning studies, the cause and eVect features within
the causal models were treated as Wxed, categorized entities, which already existed prior
to the learning context.
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1.2. The neglected direction: Categories shape causality

It is certainly true that many interesting insights can be gained from investigating how
people learn about causal models on the basis of pre-existing cause and eVect categories.
However, there is also a link between categories and causality in the opposite direction:
The categories that have been acquired in previous learning contexts may have a crucial
inXuence on subsequent causal learning. This direction has typically been neglected in
research on the relationship between categories and causality.

The basis of the potential inXuence of categories on causal induction lies in the fact that
the acquisition and use of causal knowledge is based on categorized events. Regardless of
whether causal relations are viewed as statistical relations (probabilistic causality view) or as
mechanisms (mechanism view), both accounts postulate causal regularities that refer to types
of events. Causal laws, such as the fact that smoking causes heart disease, can only be noticed
on the basis of events that are categorized (e.g., events of smoking and cases of heart disease).
Without such categories causal laws neither could be detected nor could causal knowledge be
applied to new cases. Thus, causal knowledge not only aVects the creation of categories, it
also presupposes already existing categories for the description of causes and eVects.

Given that the induction of new causal knowledge is based on already existing catego-
ries, the question arises whether the outcome of causal learning may be inXuenced by the
categories that are being used. The potential inXuence of categories is due to the fact that
one of the most important cues to causality is statistical covariation between causes and
eVects. Many (otherwise conXicting) views agree that causal induction is based on the
observation of causes altering the probability of eVects (e.g., contingency view; association-
ist theories)(see Shanks et al., 1996).

However, statistical regularities are not invariant across diVerent categorical segmenta-
tions of domains. This can easily be shown with a simple example. Let us assume, for exam-
ple, a world with four diVerent (uncategorized) event tokens, A, B, C, and D, that represent
potential causes. It has been observed that A and C are followed by a speciWc eVect, but B
and D are not. Now the statistical regularities that are observed in this mini-world are cru-
cially dependent on how these four events are categorized. If A and B are exemplars of Cat-
egory 1, and C and D exemplars of Category 2, no causal regularity would be observed.
Within this conceptual framework the eVect has a base rate of 0.5, which is invariant across
the two categories. By contrast, categorizing A and C (Category 3), and B and D (Category
4) together would lead to the induction of a deterministic causal law. Events that belong to
Category 3 always produce the eVect, whereas Category 4 is never associated with the eVect.
Thus, the causal regularities observed in a domain are dependent on the way the domain is
categorized. In fact, as pointed out by Clark and Thornton (1997) in an example with (non-
causal) continuous features, there is an inWnite number of descriptions of the world with a
potentially inWnite number of statistical regularities entailed by these descriptions.

A number of philosophers have raised similar arguments against the traditional view of
“metaphysical realism” which assumes that there is a ready-made world of objects and
processes that exist independent of the concepts we are using to represent them. Many phi-
losophers have argued that there are alternative conceptual schemes that can be used to
describe reality and that truth is a joint function of reality and the conceptual scheme being
used to describe states of aVairs in the world (see Dupré, 1993; Goodman, 1978; Hacking,
2000; Nozick, 2001; Putnam, 1987). This view implies that the causal relations we see in the
world will depend on the categorical schemes we use to describe causes and eVects.
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Philosophers and historians of science provided evidence that alternative categoriza-
tions are not only a theoretical possibility, but also a practical reality. Kuhn’s (1962)
concept of scientiWc paradigms can be reconstructed as denoting categorical schemes
(see Hacking, 1993; Thagard, 1999). The concept of paradigm and the analyses of theory
change in science have also been used to explain knowledge development in childhood
(see Carey, 1985; Gopnik & MeltzoV, 1997).

1.3. Alternative ways of categorizing the world: Evidence from psychology

At this point it could be argued that the dependence of causal knowledge on pre-exist-
ing categories is a philosophical rather than a psychological problem as long as it has
not been shown that there is evidence for multiple categorizations of the same domains
outside of the scientiWc realm. Following the work of Eleanor Rosch, many psycholo-
gists have assumed that natural categories are relatively stable since they are reXecting
the correlational structure of features in the world (see Rosch, 1978). Thus, even if multi-
ple categorizations might be theoretically possible, and could be artiWcially generated,
the existence of alternative categorizations of the same domains might not seem very
plausible to these researchers. However, in the past years psychologists have started to
question the assumption that categories merely reXect objective correlations. Theoretical
analyses and empirical research began to draw attention to pragmatic factors that aVect
the particular choice of a categorical framework. We only have space to give some point-
ers to this research.

A number of diVerent research areas have focused on the fact that exemplars may be
cross-classiWed into diVerent systems of categories depending on the goals of the catego-
rizer. In social psychology, research on stereotypes has investigated alternative ways of
classifying people. The same person may be categorized as male, a professor, a tennis
player or a vegetarian. Depending on the chosen category, diVerent associations are con-
sciously and unconsciously evoked (see Kunda, 1999, for an overview). Ross and Murphy
(1999) have studied cross-classiWcations in the context of food items. Food items can be
classiWed according to taxonomic categories (e.g., drinks) or event-related categories (e.g.,
breakfast items). Ross and Murphy showed that we use both types of category systems in
parallel, and activate them depending on the goals we currently pursue. Studies who con-
trasted expertise or diVerent cultures have also provided evidence for alternative categori-
zations of domains (see Atran, 1998; Medin & Atran, 2004; Medin, Lynch, Coley, & Atran,
1997).

This research demonstrates that alternative categorizations of identical domains is not
just a possibility but can be found in science as well as everyday cognition. However, very
little is known about the eVect of alternative category systems on how further causal
knowledge is induced based on contingency information.

1.4. How categories shape causality: Alternative theoretical hypotheses

Section 1.2 presented arguments for the hypothesis that our causal knowledge may be
dependent on the categories we use to describe a domain. Although a number of studies
have provided empirical evidence for the reality of alternative categorizations of domains,
the possible inXuence on later contingency-based causal induction has not been studied.
Given that domains may be categorized diVerently depending on goals, expertise,
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theoretical framework, or cultural background, the impact of categorization on causal
induction warrants investigation.

To study the relation between categories and causal induction we have developed a new
paradigm that consists of three phases. In all experiments we use Wctitious viruses as learn-
ing exemplars. Prior to Phase 1, the category learning phase, we instructed participants, for
example, that the virus exemplars had been, at some stage in our Wctitious history of their
discovery, classiWed by scientists on the basis of morphological features into diVerent dis-
tinct and exhaustive categories (e.g., allovedic vs. hemovedic viruses). Then participants
learned to classify the virus exemplars into the two categories in a trial-by-trial learning
procedure. Prior to the second learning phase, the causal learning phase, we told partici-
pants that later other scientists had studied whether virus exemplars from these categories
cause speciWc disease-related symptoms, for example a swelling of the spleen (splenomeg-
aly). In this learning phase, participants passively observed whether individual virus exem-
plars were paired with the eVect or not. In the third test phase we presented learners with
another set of virus exemplars and asked them how likely it is in their opinion that the par-
ticular virus generates the eVect. In both the causal learning and the test phase the catego-
ries from Phase 1 were not mentioned. Participants only received information on the
exemplar level.

The main goal of the present research is to answer the question under what condition
learners will tend to activate the categorical information from the earlier category learn-
ing phase when learning about causal contingencies in the later phase. To measure the
inXuence of the prior categories, we manipulated the rules underlying the categories
taught in Phase 1. For example, in one condition the viruses might be classiWed on the
basis of their brightness (regardless of size) whereas in the contrasting orthogonal condi-
tion (varied between subjects) they might be classiWed on the basis of size (regardless of
their brightness). On the assumption that learners tend to classify the test exemplars into
the categories learned in Phase 1, diVerent probability estimates are expected in our
learning domains. This eVect is entailed by the fact that the alternative categories form
diVerent reference classes. If, for example, light items tended to generate the eVect but
large items do not, then a light and large test item would be viewed as causally eVective if
it was classiWed by the learners as a member of the light class (as predicted in the bright-
ness condition) but not if it was classiWed as a member of the large class (as predicted in
the size condition).

Fig. 1 gives an outline of the learning options participants have. The left lower angle
represents the set of learning exemplars (e.g., images of individual viruses), the upper angle
the possible categories (e.g., allovedic vs. hemovedic viruses), and the right angle the causal
eVect from the second learning phase (e.g., splenomegaly). In Phase 1 of our learning para-
digm, participants learn to classify the exemplars into the virus categories (upper left
arrow). In Phase 2, participants are presented with exemplars again, which are paired with

Fig. 1. Possible routes of learning in our paradigm (see text for explanations).

Exemplars Effect

Categories
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the presence or absence of an eVect (splenomegaly)(lower arrow). In the subsequent test
phase participants are shown other test exemplars and asked to rate the likelihood of the
eVect (splenomegaly). The crucial question is whether participants in Phases 2 and 3 would
go through the upper route when answering this question and assign the test exemplars to
the categories from Phase 1 or whether they would stick to the lower route and induce new
categories within Phase 2. Because we manipulated the categories on the upper route
across conditions, the responses to the test questions should reveal whether these catego-
ries were used.

What categories would underlie the responses in the transfer phase if learners opted for
the lower route? One possible strategy may be to induce new categories that are maximally
predictive of the eVects. For example, all viruses that cause the target eVect may be lumped
together in one category, and the remaining exemplars may be grouped in the contrastive
category. This strategy would obviously generate maximally predictive categories. Most
likely these categories would not be labeled by participants, but they may still drive the pre-
dictive inferences in the test phase.

Lien and Cheng (2000) reported research consistent with this hypothesis. In their exper-
iments, Lien and Cheng presented exemplars to learners, which could be classiWed by
diVerent features at diVerent hierarchical levels of abstraction. Participants saw pictures of
substances that varied in color and shape along with information about which of these
substances make Xowers bloom and which not. The results showed that learners catego-
rized the substances according to the feature and to the hierarchical level that were maxi-
mally predictive for the eVect. Thus, the induced substance category was determined by its
suitability for predicting the eVect. Lien and Cheng (2000) interpreted this as evidence for
their maximal-contrast hypothesis: People tend to induce categories that maximize their
causal predictability.

In sum, our research addresses the question which route learners will go. Will they rou-
tinely go through the upper road and activate category knowledge when learning about
novel eVects, or will they go the lower road and learn a new set of categories in Phase 2 that
is maximally predictive within this learning phase?

1.4.1. The perceptual learning hypothesis
Before we outline our theoretical predictions which are derived from the view that cate-

gories are based on intuitive theories, it might be useful to look at what bottom-up, similar-
ity-based theories might predict for our paradigm. We will use these predictions as a
potential alternative account for our experimental results.

It is easy to see that standard similarity-based theories would not predict a transfer between
the learning phases. Fig. 2 shows a simple connectionist one-layer network that may be used to
understand the task we are going to explore in our experiments (see Gluck & Bower, 1988, for
an example of these kinds of category learning models). The input layer represents a number of
features and the output layer the outcomes that have to be predicted. One of the outcome
nodes may represent the categories that have been learned in Phase 1 of a learning study. In
Phase 2 learners are confronted with the same features but a second outcome, for example a
causal eVect of the exemplars. It can readily be seen that no transfer between the two tasks is
predicted by this model. The associative weights between the features and the two outcome
nodes are learned independently of each other. Similarly, most prototype or exemplar-based
models (see Murphy, 2002) would not predict transfer. Thus, this type of models predicts that
the two phases operate completely independent of each other.
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However, there are alternative theories that would predict transfer. Goldstone, Stey-
vers, Spencer-Smith, and Kersten (2000) report a number of experiments that show that
initial extensive training of novel categories might have numerous eVects on the percep-
tion of stimuli (see also Goldstone & Steyvers, 2001; Schyns, Goldstone, & Thibaut,
1998). The general structure of the experimental paradigm in this area is very similar to
the one we are using. For example, Goldstone (1994) trained participants to classify
squares either according to a rule that was based on their size or their brightness. After
extensive training, transfer tasks revealed that the category training aVected how par-
ticipants perceived the items. Sensitization to the relevant dimensions and desensitiza-
tion to irrelevant dimensions were observed. Kruschke’s (1992) ALCOVE model also
predicts sensitizations and desensitizations to relevant dimensions as a result of
learning.

Thus far, the impact of category learning on subsequent causal contingency learning has
not been investigated within this paradigm. A plausible hypothesis might be that prior cat-
egory learning aVects the encoding of the stimuli whose similarity structure might change.
This eVect would be a function of factors aVecting bottom-up learning, such as the featural
structure of the learning items, the similarity structure of the categories, and properties of
the learning procedure (e.g., type of feedback, extensiveness of training, etc.).

1.4.2. The dynamic theory modiWcation hypothesis
We have argued that probability estimates necessarily require an assignment of the

test exemplars to a reference category. According to the dynamic theory modiWcation
hypothesis, the choice of a reference class is a more Xexible process than envisaged by the
perceptual learning hypothesis, and is guided by both bottom-up and top-down factors.
Learners in our paradigm generally have diVerent options: They can continue to use cat-
egories from a previous stage (Phase 1), they can abandon these categories and use other
(for example similarity-based) categories that they already bring into the learning ses-
sion, or they can create new categories on the basis of causal information (e.g., maxi-
mally predictive categories; Lien & Cheng, 2000). Assuming that the learning exemplars
are novel and that the set of exemplars does not already contain salient perceptual cate-
gory boundaries (as in our tasks), participants primarily have a choice between inducing

Fig. 2. Example of a one-layer connectionist network in which three cues (features) are linked to two outcomes.
Learning to predict either outcome is independent of learning to predict the other outcome in these models.

Cues Outcomes
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new categories within the causal learning phase (Phase 2) or sticking to the categories
learned in Phase 1 (see Fig. 1).

We hypothesize that the decision between old and new categories is driven by intuitive
theories about the domain (top-down) and by a tendency to be parsimonious (bottom-up).
As for the bottom-up component, we believe that in general people are reluctant to induce
several competing category systems in parallel even though parsimony may come at the
cost of sub-optimal predictability. If maximizing predictability was the main goal of cate-
gory learning (see Anderson, 1991; Lien & Cheng, 2000) people should tend to induce a
new category system for each target feature or target causal eVect they are trying to predict
(these category systems may overlap, of course). Old categories are in most cases not as
predictive as new ones that could be induced from scratch. However, we believe that people
try to minimize the number of alternative categorical schemes whenever possible. As long
as the old categories allow us to make suYciently satisfying predictions, people should
have a tendency to continue to use them. Thus, we expect to see a general tendency to use
old categorical schemes whenever they have at least some predictive value.

The main focus of the present research is the top-down component, which is the key fea-
ture of our dynamic theory modiWcation hypothesis. Our general hypothesis is that learn-
ers view the task of learning new causal eVects of categorized exemplars as a task of
dynamic theory modiWcation. Category labels are not just features among other features
such as size or brightness, they often provide pointers to underlying causal structures (see
Yamauchi & Markman, 2000, for evidence for the special status of category labels; see also
Gelman, 2003). Thus, we expect people to view the categories learned in a previous context
as skeletal causal theories (e.g., of novel viruses). These theories are viewed as incomplete
so that new knowledge acquired later may be added or may be used to modify the previous
theories.

Whether or not learners attempt to modify the theories implied by the categories will
depend on whether they view the causal models underlying the categories as plausible gen-
erators of the novel causal eVects. If the new causal hypothesis targets a potential eVect
that appears like a possible, yet unexplored eVect of the old categories, then there should be
a tendency to continue to use these categories. For example, viruses seem to be perfect can-
didate causes for diseases even when the original classiWcation was based only on their
morphology. Thus, there should be a tendency to use virus categories when learning about
a novel disease-related eVect, such as splenomegaly. In contrast, when the categories and
the target eVect seem hard to interrelate, then people may decide to abandon the old cate-
gories and induce new ones that are better suited for the current context of discovery.

This hypothesis is consistent with recent research on diVerent kinds of categories (see
Medin, Lynch, & Solomon, 2000). Viruses and diseases, for example, belong to the class of
natural kind concepts. Medin and Ortony (1989) have argued that for this kind of catego-
ries we have a tendency to assume a hidden essence underlying the visible, variable features
(psychological essentialism). More recently, it has been proposed that essences play the
role of an invisible common cause placeholder which is responsible for the visible features
(see Ahn et al., 2001; Gelman, 2003; Hirschfeld, 1996; Medin & Atran, 2004; Rehder &
Hastie, 2004; but see Strevens, 2000). The existence of a hidden cause does not only explain
the correlation among the visible features, it also makes it plausible to expect further, yet
unknown eVects (e.g., splenomegaly in the case of viruses).

Indirect empirical support for this hypothesis comes from a number of studies using
paradigms diVerent from ours. In a seminal study, Gelman and Markman (1986) have
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shown that young children would project a novel feature (“feeds its baby mashed up
food”) on the basis of a common category label rather than similarity. Interestingly, Gel-
man and Coley (1990) found that the children did not make the inductive inference for any
property but preferred properties that were plausibly and stably connected to the catego-
ries (see Gelman, 2003, for a summary of related research). Heit and Rubinstein (1994)
showed that category-based inductive inferences depend on the kind of shared feature. For
example, a biological property (e.g., a liver with two chambers) was viewed as more likely
to be shared by whales and bears than by whales and Wsh. The opposite was observed with
behavioral features (e.g., travel in a zig-zag path). Apparently people have general, abstract
assumptions about the kinds of features diVerent categories might generate. A possible
explanation for these patterns is that diVerent kinds of categories share diVerent common
causes whose probable causal eVects are dissimilar. Lassaline (1996) has supported this
hypothesis by showing that undergraduates were more likely to project a new property
when the categories share a common cause of the property (see also Rehder & Hastie,
2004; Sloman, 1994).

Although in some domains people have expertise about the causal relations underlying
causal categories and their eVects (see ProYtt, Coley, & Medin, 2000), more often people
have only skeletal, incomplete knowledge (see Rozenblit & Keil, 2002). Thus, people may
often only have a very general framework theory (Wellman & Gelman, 1992) about what
goes with what. In our experiments we explicitly say in the introduction to the category
learning phase that the categories are solely based on perceptual commonalities. Although
this instruction may discourage the assumption of natural kinds, the category labels (e.g.,
allovedic viruses) might trigger a tendency to assume natural kind categories anyway and
to accept further causal eVects that are globally consistent with domain assumptions about
the categories (e.g., viruses cause symptoms). However, learners should tend to not use
prior categories when there is a mismatch between the semantics of the category label and
the eVect (e.g., viruses causing aesthetic judgments).

Whether category labels associated with natural kinds trigger generalized expectations
about further potential eVects can also be tested by running control conditions in which
the category labels are introduced as arbitrary. For example, a set of virus exemplars might
be sorted into two arbitrary piles A and B. Although in this condition the exemplars indi-
vidually refer to natural kinds, the superordinate categories (piles A and B) do not suggest
a common hidden causal structure that might be systematically related to novel, yet unex-
plored eVects. Thus, in this condition it is expected that people would tend to induce new
categories rather than recruiting the arbitrary categories from Phase 1.

In summary, the dynamic theory modiWcation hypothesis states that people will view
our task as involving theory modiWcation. Categories are not represented as simple
unstructured holistic entities; they rather have an internal, in part unknown causal struc-
ture that may aVect further causal learning processes. If people assume hidden, unknown
common causes of natural kinds, they should be willing to use the category information
from Phase 1, when Phase 2 involves a causal eVect that seems, at least remotely, relatable
to the category. In this case causal learning is a process that modiWes and augments knowl-
edge about categories that already have an internal causal structure. This process of theory
modiWcation is analogous to working within a given paradigm or framework theory in sci-
ence (see also Carey, 1985; Wellman & Gelman, 1992). In contrast, whenever the category
seems arbitrary, when the causal link between the category and the causal eVect is implau-
sible, or when the assumed underlying causal structure of the category is inconsistent with
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the discovery of the novel causal eVect, we expect people to prefer to abandon the catego-
ries learned in Phase 1, and resort to inducing alternative categories in Phase 2.

Although both bottom-up and top-down factors aVect the learning process according to
our theory, the following experiments will mainly focus on the top-down aspect of our
hypotheses. The hypotheses that address the bottom-up inXuences will be explored in
future research (see also Section 5).

2. Experiment 1

The goal of the Wrst experiment is to empirically demonstrate the potential impact of
diVerent ways of categorizing domains on subsequent causal induction. It will show that,
despite identical causal learning input, causal inferences can dramatically diVer depending
on the way people categorize a domain. Thus, the main goal is to demonstrate the interde-
pendence between the way causes are categorized and further causal learning involving
these categories. This paradigm will in later experiments be modiWed to test between the
alternative theories outlined in Section 1.

To demonstrate the inXuence of categories on causal induction, we used a three-phase
paradigm: In Phase 1, the category-learning phase, participants learned to categorize a
novel domain. They were told that scientists had discovered new types of viruses, which
they had classiWed on the basis of their appearance into two categories, allovedic and
hemovedic viruses. In the learning task, participants saw pictures of viruses and learned to
classify them into the two categories. Fig. 3 depicts the exemplars shown in this and the
other two phases.

While Phase 1 diVers between conditions, the subsequent Phases 2 and 3 were identical
across conditions. In Phase 2, the causal-learning phase, participants were told that later
physicians became interested in exploring the relationship between the newly discovered
viruses and diseases in animals. In particular, they wanted to Wnd out whether the viruses

Fig. 3. Learning items and category boundaries in Experiments 1 and 2 (see text for details).
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cause splenomegaly, which is a swelling of the spleen. Therefore, the scientists studied ani-
mals that were infected with the new viruses. We pointed out that any outcome of this
study was possible, including the possibility that there was no causal relationship between
the viruses and splenomegaly. After the instructions, participants were shown a new set of
virus exemplars one after another. First, they were presented the picture of a virus, and
then information was given about whether this particular virus causes splenomegaly. The
categories “allovedic” or “hemovedic” were not mentioned within this phase. In this phase,
participants observed the potential cause and the eVect but unlike in Phase 1 they were not
requested to make predictions. In the real world we also simply observe cause-eVect rela-
tions, and accept strong or weak contingencies as facts. Asking for predictions and provid-
ing corrective feedback would have suggested to participants that the task was to Wnd a
perfect rule as in Phase 1.

Phase 2 was followed by Phase 3, the test phase. In this phase, exemplars were shown
again along with the request to estimate the likelihood that the particular exemplar causes
the eVect. Again the categories from Phase 1 were not mentioned. Since only Phase 1 varies,
this design allows us to test whether the ratings in the test phase are inXuenced only by the
causal learning phase, which provided identical information about the statistical relation
between cause and eVect, or whether participants recruit category knowledge from Phase 1
that should diVerentially aVect their ratings.

In the contrasting categorization conditions (varied between subjects) we used linearly
separable, family resemblance categories that were based on four binary features (see Figs.
3 and 4). None of these features was individually suYcient for achieving correct classiWca-
tions. However, correct classiWcations could be learned by an additive integration of the
four features. Since all features were equally relevant, transfer eVects cannot be accounted
for by theories that postulate a carry-over of selective attention or sensitizations to individ-
ual features.

We manipulated the size and variance of the contrasting categories. Fig. 3 shows the
categorical boundaries for the two conditions A and B. In one condition (Condition A),
one type of viruses (e.g., hemovedic) was characterized by having a light color, small size,

Fig. 4. Structure of learning exemplars, categories (category learning phase), eVects (causal learning phase), and
test exemplars in Experiments 1 and 2.
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few corners, and few surface molecules. All viruses that had at least two out of these four
features belonged to the category, with all the remaining exemplars belonging to the con-
trast category (e.g., allovedic). In the other condition (Condition B), the hemovedic viruses
had at least three out of the four features; again the remaining exemplars belonged to the
contrast category. Thus, we compared two categorization schemes that shared the same
prototypes (1 1 1 1 or 00 0 0) but whose variances diVered.

Fig. 4 shows how the causal eVect (i.e., splenomegaly) was distributed. Half of the exem-
plars generated the eVect; the others did not. In the test phase (Phase 3), we presented 10 of
the 16 items again (see Fig. 4), and had participants rate the likelihood of the eVect. The
most important predictions involve the six items (6–11) lying between the category bound-
aries of the two conditions. In Condition A, these items should be viewed as being mem-
bers of the hemovedic virus type. Because within this group seven out of nine viruses
caused splenomegaly, high ratings are to be expected. By contrast, the very same items
should yield low ratings in Condition B. In this condition the six items belong to the allov-
edic viruses, which cause the eVect in only two out of nine cases.

Alternatively, participants could opt for neglecting the categories from Phase 1, and
induce new categories. In this case, the most plausible categories are the two groups of
exemplars closely similar to the two prototypes which either cause or do not cause the
eVect, and a category in between whose items are equally similar to both prototypes in
terms of feature overlap (i.e., Items 6–11). These exemplars in the middle zone have a 50%
chance of causing the eVect. Therefore, the ratings for these items should be on average
identical across the two conditions and hover around the 50% value. The resulting catego-
ries would be maximally predictive (Lien & Cheng, 2000).

2.1. Method

2.1.1. Participants and design
Thirty-two students from the University of Tübingen were randomly assigned to one of

the two learning conditions (category boundary A vs. B). In all four experiments, only par-
ticipants were included in the statistical analyses who met the learning criterion. Partici-
pants who did not learn the categories (fewer than 5%) were replaced to preserve the
counterbalancing schemes. This was decided because it does not make sense to investigate
the potential use of initial categories if these categories are not being learned in Phase 1.
We adopted this policy in all three experiments.

2.1.2. Procedure and material
The exemplars (Wctitious viruses) varied in four binary dimensions: brightness (20 vs.

60%), size (diameter of 30 vs. 42 mm), number of corners (5 vs. 7), and number of molecules
on the surface (2 vs. 4). Fig. 3 shows the items and Fig. 4 displays the structures of the
learning items with the feature value 1 representing low values and the value 0 high values.

The experiment consisted of three phases: In Phase 1, the category-learning phase, par-
ticipants were told that scientists had discovered new types of viruses that vary in the
dimensions brightness, size, shape, and number of molecules on the surface. Cytophysio-
logical investigations had revealed two types of viruses, which can be distinguished on the
basis of their appearance, allovedic and hemovedic viruses. After the instructions we
requested a summary of the participants, which should include the four dimensions of the
materials that were mentioned. Then participants were shown index cards with pictures of
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viruses one after another, and they had to judge whether the respective exemplar repre-
sented a hemovedic or an allovedic virus. After each judgment corrective feedback was
given.

Two categorization conditions were compared that manipulated the location of the cat-
egory boundaries (see Fig. 3). In Condition A, hemovedic viruses had at least two low val-
ues on the four dimensions (Items 1–11), whereas allovedic viruses (Items 12–16) had only
one or no low value. By contrast, in Condition B hemovedic viruses (Items 1–5) had three
or more low values, whereas allovedic viruses (Items 6–16) had at least two high values. We
used a learning criterion in Phase 1. Learning proceeded until participants managed to cor-
rectly classify one block of 16 items. A maximum of 8 blocks was administered. The items
were presented in random order within blocks. The category labels were counterbalanced.

Whereas Phase 1 diVered across the two conditions, the subsequent causal-learning
phase and the test phase were identical for all participants. In Phase 2, the causal-learning
phase, participants were told that physicians were interested in exploring the relationship
between the newly discovered viruses and diseases in animals. In particular, they wanted to
Wnd out whether the viruses cause splenomegaly. Therefore, they studied animals that were
infected with the new viruses. It was pointed out that any outcome of this study was possi-
ble including the possibility that there was no causal relationship between the viruses and
splenomegaly. Participants received index cards that depicted exemplars of the viruses with
information on the backside on whether the respective virus causes splenomegaly (E) or
not (»E). Each side was presented for roughly three seconds without further corrective
feedback. To avoid an unequal association of individual features with the eVect, Items 8
and 9 were not presented in this phase. Eliminating these two items ensured that no indi-
vidual feature was correlated with the eVect. In the particular counterbalancing condition
shown in Fig. 4, Items 1–7 caused the eVect, whereas Items 10 through 16 did not cause it.
In a second counterbalancing condition eVects and non-eVects were exchanged. The
causal-learning phase consisted of three blocks of the 14 cases, which were presented in a
random order.

In Phase 3, the test phase, participants received 10 exemplars (1, 3, 6–11, 14, 16). Learn-
ers’ task was to express their assessment of the likelihood that the respective virus causes
splenomegaly by using a rating scale that ranged from 0 (”never”) to 100 (”always”). After
these ratings, participants also gave a general assessment of the likelihood that the two
virus types, allovedic and hemovedic viruses, caused the eVect. These ratings allowed us to
check whether participants had encoded the causal relation on the category level.

2.2. Results and discussion

Table 1 shows the results. The most important analysis involves the test items between
the two category boundaries (Items 6–11). The mean ratings for these six items clearly
diVered across the two category boundary conditions A and B, F(1, 30)D 14.7, p < .01,

Table 1
Mean ratings of the likelihood of the causal eVect for critical and uncritical items (Experiment 1)

Categories Uncritical high items 1, 3 Critical items 6–11 Uncritical low items 14, 16

A 90.3 65.9 25.0
B 86.2 45.6 21.1
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MSED224.3. By contrast, the items that should be rated high (e.g., 1, 3) or low (e.g., 14, 16)
regardless of learning condition did not diVer signiWcantly in the contrasting conditions, all
Fs < 1.

The Wnal ratings showed that participants generally encoded the relationship between
categories and the eVect. They rated the causal eYcacy of the two categories clearly diVer-
ently regardless of the location of the category boundary, F(1, 31)D 80.5, p < .01,
MSED509.5 (MD74.8 vs. MD24.2). All but Wve participants gave ratings consistent with
this trend.

Given that we used family resemblance structures we also looked for potential inXu-
ences of typicality. Rehder and Hastie (2004) have shown that less typical exemplars yield
weaker inductive generalizations than exemplars that are more typical for the category. We
compared the causal ratings (test phase) for the two prototypes (Items 1 and 16) with the
ratings for test items that deviated in only one feature from the prototypes (Items 3 and
14). We focused on these items because in Phase 2 they had the same probability of causing
splenomegaly (100% or 0%). The ratings for Items 14 and 16 were recoded to match the
ratings for Items 1 and 3 by subtracting the ratings from 100. An analysis of variance with
the factor typicality (prototype vs. less typical item) as a within-subjects factor and cate-
gory boundary condition (A vs. B) as a between-subjects factor yielded a signiWcant eVect
of typicality, F(1, 30)D 13.6, p < .01, MSED131.1, all other Fs < 1. This result shows that
participants were indeed sensitive to the diVerences in typicality. Less typical exemplars
received less extreme ratings than the prototypes. However, it is important to note that typ-
icality diVerences cannot account for our Wndings as the critical test items from the middle
zone shared the same number of features (2) with either of the two prototypes. Thus, the
typicality of the critical items was the same with respect to both categories. To account for
diVerences in the ratings of the critical items, it is necessary to assume that learners
encoded the category boundaries that implied diVerent category variances.

In sum, Experiment 1 demonstrates that causal induction is inXuenced by the way the
cause exemplars are categorized. Despite the fact that all participants received identical
cause-eVect information in the causal-learning phase, the ratings of the causal eYcacy of
the exemplars were moderated by the categories to which they belonged.

Although the experiment was not designed to test between the perceptual learning and
the dynamic theory modiWcation hypotheses, it rules out simple bottom-up learning mod-
els that might postulate transfer of selective attention or sensitizations as the basis of our
transfer eVects. The family resemblance categories contain features that are all equally rele-
vant. The results show that learners were apparently sensitive to both the similarity struc-
ture of the categories and their variability. This Wnding is consistent with previous research
(e.g., Flannagan, Fried, & Holyoak, 1986; Fried & Holyoak, 1984) for categorization tasks,
but it additionally demonstrates how this kind of category knowledge aVects novel learn-
ing about causal relations involving the categories.

3. Experiment 2

Experiment 2 goes one step further and provides a Wrst test between the competing
theories. In Section 1, we hypothesized that learners may categorize the viruses on the
basis of superWcial features such as brightness, size, number of corners, and molecules,
but that the driving force behind transfer is learners’ assumption that they are actually
learning something about real viruses (i.e., natural kinds), which have speciWc causal
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powers, including the power to cause disease-related symptoms. In contrast, similarity-
based theories (including the perceptual learning hypothesis) view categories as
economic ways to represent collections of features with category labels as arbitrary
additional features (Anderson, 1991). Even when category labels are given a special sta-
tus which sets them apart from mere features (Yamauchi & Markman, 2000), the general
role as category labels and not their semantic contents are viewed as crucial for the dis-
tinction between category label and feature. Thus, according to the perceptual learning
hypothesis it should make no diVerence how novel categories are labeled. Whether an
exemplar is labeled as referring to allovedic viruses or to an arbitrary category A, should
not aVect transfer as long as the learning procedure and the learning items are otherwise
identical.

In contrast, according to the dynamic theory modiWcation hypothesis the
semantic content of the label is crucial. Labeling the superordinate category “virus”
should lead to a category representation that implies that the visible features are
caused by a hidden causal structure that is common to the members of the categories,
and that this hidden causal structure has the potential of causing further semantically
related eVects. In contrast, arbitrary categories which are described with labels that
are not associated with speciWc domain assumptions (e.g., A, B) should not lead to
such natural kind representations. There is no reason to assume that an arbitrary collec-
tion of viruses shares a common hidden causal structure. Consequently, it should be
less likely that learners expect a novel eVect to be associated with the arbitrary
category.

To test these predictions, Experiment 2 adds a control condition to the design of Exper-
iment 1. Again we are using the family-resemblance categories from the previous experi-
ment. In the regular natural kind category-learning condition one group of participants
learned about the two types of viruses. As in the Wrst two experiments, these two types were
labeled hemovedic and allovedic. The previous experiment has shown that people tend to
continue to use these categories when learning about a disease-related symptom in the sec-
ond causal-learning phase.

In the present experiment we added an arbitrary category-learning condition, which
was run on a diVerent sample of participants. In this second condition, participants were
also told that they were going to see viruses. The four dimensions were mentioned as
well. But then participants were told that the Wrst phase serves the purpose of familiariz-
ing them with the diVerent viruses. To accomplish this, they would learn to categorize
them into two classes. It was pointed out that the categories were based on an arbitrary
rule. Since there are many possible rules, we mentioned six rules, and asked participants
to roll a die to select the rule that would be used. This part was meant to emphasize that
the categories were indeed arbitrary. In fact, all participants learned on the basis of the
same family-resemblance rules displayed in Figs. 3 and 4. Otherwise, learning was identi-
cal in the two conditions. Participants in both conditions received learning exemplars in
a trial-by-trial learning procedure with corrective feedback in the category-learning
phase and proceeded until they reached a learning criterion of one correct block of 16
exemplars. The following causal-learning and test phases were again identical to the ones
of Experiment 1.

Since in the arbitrary category-learning condition, participants acquired the same cate-
gories as in the regular category-learning condition, all theories that use a bottom-up
learning mechanism (i.e., all similarity-based theories including the perceptual learning
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hypothesis) would predict identical transfer. In fact, except for the initial instructions and
the category labels, which in both conditions were novel and unfamiliar (A, B or allovedic,
hemovedic) the two contrasting conditions were identical.

3.1. Method

3.1.1. Participants and design
Forty-eight students from the University of Göttingen were randomly assigned to one

of the four conditions spanned by the factor type of category (natural kind vs. arbitrary
category), and the factor category boundary (A vs. B) (see Fig. 4).

3.1.2. Material and procedure
We used the same materials and the same category structures as in Experiment 1.

Again we manipulated the location of the category boundary across conditions (see
Fig. 4). Moreover, the natural kind category-learning condition was an identical repli-
cation of Experiment 1 with largely the same instructions, learning input, feedback, and
tests as in this experiment. The only diVerence was that in the category-learning phase
(Phase 1) participants were Wrst shown all 16 exemplars and the two categories to which
they belonged. Participants were asked to study the two groups of exemplars before
learning began. We added this part to simplify the learning of the categories. After-
wards participants went through a trial-by-trial learning phase like in the previous
experiment. They were asked to assign each virus either to a pile labeled ‘hemovedic
viruses’ or to a pile labeled ‘allovedic viruses’. As before, they received corrective feed-
back on each trial.

The most important extension in the present experiment is the addition of an arbi-
trary category-learning condition. As in the natural kind category-learning condition,
participants were told that they were going to learn about viruses. Again the four critical
features were pointed out. In contrast to the category-learning condition, however, par-
ticipants were then told that in the Wrst phase of the experiment they were going to learn
to sort the viruses into two piles in order to familiarize them with the learning material.
It was pointed out that many rules are possible, and that one out of six would be ran-
domly selected. To emphasize the arbitrary character of the two resulting categories,
participants had to roll a die to determine the rule for the allocation of the viruses.
Regardless of the outcome of the die, the two category structures displayed in Fig. 4
were used. As in the natural kind category-learning condition participants were Wrst
shown to which categories the individual exemplars belonged, and then went through a
trial-by-trial learning phase with corrective feedback in which they classiWed individual
exemplars one after another. The only diVerence to the natural kind category learning
condition was that participants classiWed the individual exemplars as belonging to pile A
or B instead of belonging to the piles labeled hemovedic or allovedic. The learning crite-
rion in the arbitrary category learning condition was the same as in the contrast condi-
tion (see also Experiment 1).

Phases 2 and 3 were identical in both the arbitrary and the natural kind category-learn-
ing conditions. We used the same procedure as in Experiment 1. Thus, again, participants’
task was to learn which viruses caused splenomegaly, and then to rate the likelihood that
the test exemplars produced this symptom. Finally, they rated the likelihood that the con-
trasting categories cause the eVect (as in Experiment 1).
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3.2. Results and discussion

Table 2 shows the results for critical and uncritical items in all conditions. The most
interesting result concerns the critical items from the middle area of Figs. 3 and 4. As Table
2 shows, the categories learned in Phase 1 aVected the causal ratings for these exemplars
only in the category-learning condition, but not in the arbitrary category-learning condi-
tion. A 2 (natural kind vs. arbitrary category)£ 2 (category boundary A vs. B) analysis of
variance with the mean ratings of the 10 test exemplars as dependent variable yielded the
predicted signiWcant interaction, F(1, 44)D4.61, p < .05, MSED211.9. To pinpoint the pat-
tern underlying the interaction, we analyzed the natural kind category-learning and arbi-
trary category-learning conditions separately. As can be seen in Table 2, the critical items
were rated diVerently depending on the learned category boundaries in the natural kind
category-learning condition, F(1, 22)D 7.73, p < .05, MSED161.9, but not in the arbitrary
category-learning condition (F < 1). Moreover, the items that should be either rated high or
low in both conditions did not diVer signiWcantly across the two conditions (all Fs < 1.02).

Again we checked for the potential inXuence of the typicality of the exemplars on the
causal ratings by comparing the ratings of the two prototypes with the exemplars that devi-
ated in only one feature from the prototype while having the same probability of causing
splenomegaly. As in the Wrst experiment we recoded the ratings to make the analyzed items
comparable. An analysis of variance with the factor typicality (prototype vs. less typical
exemplar) as a within-subjects factor, and the factors category boundary (A vs. B) and cat-
egory type (natural kind vs. arbitrary category) as between-subjects factors was conducted.
The results yielded a signiWcant eVect of typicality, F(1, 44)D 4.46, p < .05, MSED 262.4.4.
All other factors failed to reach signiWcance. Thus, the Wnding of Experiment 1 was repli-
cated. There was an inXuence of typicality upon participants’ estimates. Nevertheless, the
crucial diVerence between the critical items cannot be traced back to typicality because the
typicality of the critical items with respect to either of the two prototypes was the same in
all conditions.

We also analyzed the ratings of the relationship between the categories (i.e., viruses or
piles) and the causal eVect. The Wnal ratings showed that participants generally encoded the
relationship between categories and eVect. The ratings of causal eYcacy of the two catego-
ries or piles clearly diVered regardless of the location of the category boundary, F (1,
47)D 37.7, p < .01, MSED 1196.5 (MD74.3 vs. MD31.0). Eight participants gave ratings
contrary to this trend, six of them in the natural kind category-learning condition. Interest-
ingly, there were no diVerences between the natural kind category-learning and the arbi-
trary category-learning conditions, the mean diVerences were even slightly higher in the
arbitrary category-learning condition. Thus, all participants, including the ones from the
arbitrary category-learning condition, knew about the relationship between categories and

Table 2
Mean ratings of the likelihood of the causal eVect for critical and uncritical items (Experiment 2)

Categories Natural kind category-learning condition Arbitrary category-learning condition

Uncritical 
high items 1, 3

Critical 
items 6–11

Uncritical 
low items 14, 16

Uncritical 
high items 1, 3

Critical 
items 6–11

Uncritical 
low items 14, 16

A 81.7 55.3 15.4 88.3 42.1 12.9
B 75.8 40.8 23.3 81.3 45.7 25.8
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causal eVect but participants in the arbitrary category-learning condition actively ignored
this information in the test phase. This Wnding further weakens the possible alternative the-
ory of a perceptual learning account that learners might have focused less on the arbitrary
category labels than the natural kind labels. Learners in all conditions clearly learned the
categories (all participants passed the learning criterion) and encoded the statistical rela-
tion between categories and eVect. Thus, their decision to ignore the arbitrary categories
must have been driven by their knowledge about causal relevance, a factor that transcends
bottom-up perceptual learning accounts.

Finally, we looked at the individual items in the arbitrary category-learning condition in
which the categories were ignored. The results indicate that participants divided the viruses
into three groups; one which always causes the disease, one which never causes it, and one
which falls in between, and sometimes causes the disease (see Table 1). The items that were
equally similar to the two prototypes formed this third group. This hypothesis is supported
by the fact that all items in this group received ratings distinctively diVerent from the esti-
mates for all other exemplars. Thus, there seemed to be a tendency to induce fuzzy catego-
ries on the basis of their association with the eVect with items near the boundaries assigned
a more probabilistic intermediate status. This strategy is in line with the hypothesis that
learners who neglected the initial categories induced a new, although fuzzy category
boundary in the middle region to distinguish between items that cause the eVect from the
ones that do not. These categories do not have labels but nevertheless distinctly aVected the
likelihood ratings in the test phase.

In sum, Experiment 2 clearly supports the dynamic theory modiWcation hypothesis.
Whenever participants believed that the virus categories were real, they used category-level
knowledge for their predictions in the test phase, whenever they thought the categories
were arbitrary they suppressed this knowledge. This Wnding weakens the perceptual learn-
ing hypothesis because apart from the use of diVerent instructions and labels (which were
novel and unfamiliar in both conditions) the learning procedure was identical.

Three other aspects of our Wndings deserve to be emphasized. In both Experiments 1
and 2 people activated category-level knowledge although the instructions clearly stated
that the virus categories were based on superWcial, morphological similarities. Neverthe-
less, the label “virus” along with the instruction that the virus categories were real and had
been discovered by scientists seemed to promote a strong bias that the members of the
exemplar share a common causal structure. University students certainly do not believe
that size or brightness are potential causes of splenomegaly, it seems more likely that they
viewed the perceptual features as indicators of an invisible causal power, which is consis-
tent with a causal reinterpretation of psychological essentialism (e.g., Gelman, 2003). This
essentialist bias seems to be strong even when instructions are given that should discourage
this bias.

This interpretation is supported by the fact that learners in the arbitrary category-learn-
ing condition neglected the initially learned categories although the exemplar labels
(viruses) were clearly semantically related to the causal eVect in Phase 2. They apparently
only assumed a common underlying causal structure when the categories were created on
the basis of a scientiWc decision and not when the categories were arbitrary.

A third interesting Wnding is that in the arbitrary category-learning condition learners
encoded the relation between the category and the causal eVect. Thus, category-level infor-
mation (the upper route in Fig. 1) seems to be routinely encoded although in the test phase
learners apparently may opt to neglect it. This indicates an active role of top-down factors
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that may override category knowledge that was acquired in the learning phase. This Wnd-
ing along with the fact that all participants learned the categories also weakens the possible
route of the perceptual learning approach to postulate greater attentional weights for nat-
ural kind category labels.

4. Experiment 3

Thus far we have shown that participants tend to continue to use prior categories when
the category labels suggest that they refer to natural kind categories. Such categories typi-
cally are represented as having deeper causal communalities, which might lead to the dis-
covery of novel, yet unknown further causal eVects. People make this inference on the basis
of the category label even when they were explicitly told that the categories were motivated
by superWcial commonalities. Supporting this hypothesis, the last experiment has shown
that arbitrary categories (e.g., two piles supposedly generated by a random rule) are
neglected as categories even when the exemplar labels (viruses) are semantically related to
the eVect.

Experiment 3 goes one step further in testing our theory. According to our hypothesis,
participants should ignore previously acquired categories even when they refer to natural
kind categories when the causal eVect is not semantically related to the category. Catego-
ries should only be used to predict a novel eVect if a causal link between the eVect and the
hidden causal structure of the category appears at least remotely plausible within the
framework theory of the learning domain. Consequently, our goal in this experiment was
to test whether participants suppress previously acquired natural kind categories when
these categories are unrelated to the target eVect.

The present experiment adopts the paradigm and learning procedure from the previous
experiments. In one condition participants learned again about hemovedic and allovedic
viruses in Phase 1, and later learned about the relation between the virus exemplars and
splenomegaly. In the test phase, participants judged the likelihood of splenomegaly for the
test set of viruses. In the new condition of Experiment 3, a diVerent sample of participants
also Wrst learned to categorize the viruses as hemovedic and allovedic. The crucial diVer-
ence concerned the target eVect in the causal-learning phase (Phase 2). We now told partic-
ipants that designers had thought that pictures of the viruses can be used to generate
attractive patterns. To test their hunch, the designers had conducted an empirical study
investigating whether the viruses resulted in liking judgments or not. The causal-learning
phase was similar to the one in the standard condition except that participants now
observed which of the viruses observers from this study liked and which they did not like.
Phase 3 was adapted to this condition: Now participants had to rate the probability with
which new viruses resulted in liking judgments. Our prediction was that hidden causal
structures underlying virus categories are normally not considered to be causally related to
appearances of these viruses that are diVerentially liked by observers. Thus, we expected
learners to be reluctant to use the categories from Phase 1 when estimating the probability
of liking judgments in Phase 3.

In this experiment, we switched to a diVerent category structure with orthogonal cate-
gory boundaries. This structure was inspired by the categories Goldstone (1994) had used.
Fig. 5 shows the structure of the categories and their relationship to the causal eVects. Half
of the exemplars were shown in the category-learning phase (indicated by A). Two condi-
tions were compared: In the size condition participants learned, for example, that the
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bigger viruses were allovedic, and the smaller ones hemovedic, in the orthogonal brightness
condition they learned, for example, that the darker exemplars were allovedic and the
lighter ones hemovedic. Fig. 5 displays the structure of the items with respect to the two rel-
evant dimensions size and brightness. In the brightness condition the left half of the Wgure
(Levels 1 and 2 of the brightness dimension) may represent allovedic viruses and the right
half hemovedic viruses (Levels 3 and 4). By contrast, in the size condition the upper half
represented one category (Levels 1 and 2 of the size dimension), and the lower half the
other category (Levels 3 and 4).

While Phase 1 diVered between conditions, the categories implied by the eVects in the
subsequent causal learning phase were identical across conditions. In this phase, partici-
pants were shown a new set of exemplars along with information about the presence or
absence of splenomegaly or liking, depending on the condition. Items presented in this
phase are indicated by B in Fig. 5. In the Wgure it can also be seen which exemplars caused
splenomegaly or liking (eVect), and which did not (»eVect).

In Phase 3, the test phase, we switched back to exemplars corresponding to the A-items
from the category-learning phase, but with diVerent values of the irrelevant features. Thus,
these items had never been presented before. Participants’ task was to express their assess-
ment of the likelihood that the respective virus causes splenomegaly or liking.

In sum, the dynamic theory modiWcation hypothesis predicts that initial natural kind
categories should only be activated when the novel eVect in Phase 2 is plausibly generated
by the hidden causal structure underlying the natural kind. In contrast, according to the
perceptual learning hypothesis the label of the eVect (splenomegaly vs. liking) should make
no diVerence as long as the learning procedure is the same.

Fig. 5. Structure of learning exemplars, categories (category learning phase), eVects (causal learning phase), and
test exemplars in Experiment 3 (see text for explanations).
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4.1. Method

4.1.1. Participants and design
Forty-eight students from the University of Göttingen were randomly assigned to one

of four conditions generated by crossing the factor category boundary (brightness vs. size)
and type of eVect (disease vs. liking).

4.1.2. Materials and procedure
The exemplars varied continuously in four dimensions: brightness, size, shape (number

of corners), and number of molecules on the surface. The two relevant features in this
experiment were size and brightness. The diameter of the viruses varied between 30 and
48 mm (size levels 1–4 in Fig. 5), and brightness was manipulated by using four equally
spaced levels of grayness (20–80%, brightness levels 1–4 in Fig. 5). The two irrelevant fea-
tures also came in four levels. The number of corners varied between 5 (pentagon) and 8
(octagon), and the number of molecules between 2 and 5. The four levels of all features
were factorially combined, which yielded 256 diVerent items. Our goal behind this large
number of items was to discourage exemplar learning. Fig. 5 shows examples of the 16 cru-
cial types of viruses that can be created by combining the four values of size and bright-
ness.

We compared two conditions with orthogonal categories, which were either based on
brightness or on size (see Fig. 5). Phase 1 was similar to the previous experiments. Partici-
pants learned to categorize diVerent viruses into the two categories hemovedic and allove-
dic viruses, and were given corrective feedback after each judgment. From the class with
128 exemplars (marked by A in Fig. 5) a maximum of 120 were presented in random order
in this phase. For the test phase, a subset of eight exemplars from this class was selected, in
which all four feature values occurred with equal probability. Each exemplar was shown
only once. Learning proceeded until participants met a learning criterion, 10 correct classi-
Wcations in a row. Two conditions were compared: In the size condition, participants
learned, for example, that the bigger viruses were allovedic, and the smaller ones hemove-
dic, in the orthogonal brightness condition they learned, for example, that the darker
exemplars were allovedic and the lighter ones hemovedic. It was ensured that no other fea-
ture than the relevant one was correlated with the category and that the features were not
intercorrelated. At the end of Phase 1 we asked participants to name the feature dimension
they had used for the classiWcations.

The new factor was manipulated in Phase 2. One condition was taken from previous
experiments. Participants had to learn whether the viruses caused splenomegaly or not. In
the contrasting new liking condition diVerent participants were told that designers had
come across pictures of the viruses. The designers had thought that they represented novel
patterns people might like. Therefore, they had conducted a study in which they had tested
whether the viruses were liked or not. As in the disease condition it was pointed out that
any outcome was possible including the possibility that the viruses never resulted in liking.
Participants’ task was to assess whether the pattern of the virus resulted in liking. The sub-
sequent learning procedure was identical in both conditions except for the eVect: In the dis-
ease condition participants observed whether a certain virus led to splenomegaly, and in
the liking condition whether an exemplar was liked or not. In the causal learning phase
participants saw a new set of 32 viruses one after another representing single instances of
the viruses. On the backside of each card, information was given on whether the respective
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virus had caused the particular eVect. Each side (Wrst the front side with the virus) was
shown for roughly three seconds. In all conditions, the same items with identical associa-
tions with the eVect were presented to participants. In the exemplars none of the irrelevant
features was related to the presence of the eVect. In contrast, the two relevant features were
both equally related to the eVect (see below for more details).

In Phase 3, the test phase, we switched back to exemplars corresponding to the items
from the category-learning phase. These items had not been presented in the category-
learning and the causal-learning phases. Participants received eight exemplars. Their task
was to express their assessment of the likelihood that the respective virus would cause
splenomegaly or liking by using a rating scale that ranged from 0 (”never”) to 100
(”always”). After these ratings, participants also gave a general assessment of the likeli-
hood that the two virus types, allovedic and hemovedic viruses, caused the respective eVect.

Fig. 5 displays the statistical structure of the task. Letter A labels items presented in
Phases 1 and 3, and B marks items from the causal-learning phase. To give the A items in
Phases 1 and 3 a diVerent physical appearance we varied the two irrelevant features. The
Wgure gives an example of how these items were assigned to the two categories in Phase 1
and to the eVect in Phase 2. In Phase 1, items could be correctly classiWed on the basis of a
single feature with the feature levels 1 and 2 indicating one category, and 3 and 4 the con-
trasting category for either dimension (brightness or size). None of the other features or of
the feature combinations were related to category membership. In Phase 2, both dimen-
sions brightness and size were predictive for the eVect. Each of these two dimensions cor-
rectly predicted the presence or the absence of the eVect in 3 out of 4 cases (see Fig. 5).
Combinations of speciWc levels of these features allowed even better predictions. For exam-
ple, in Fig. 5 the large and light viruses caused splenomegaly and the small and dark ones
did not. Viruses with other combinations of these two features had a 50% chance of caus-
ing the disease.

In our statistical analyses we distinguish between critical items that should yield diVer-
ent predictions in the contrasting category conditions, and uncritical items that should
yield the same predictions in both conditions. In the example shown in Fig. 5, Items 1 and
6, and 11 and 16 are critical. Categorized according to size, Items 1 and 6 should be rated as
weakly causally eVective, as small viruses had only a probability of .25 (1 out of 4) to cause
the disease. However, they should be considered highly causally eVective when categorized
according to brightness, because light viruses had an overall probability of .75 (3 out of 4)
to cause splenomegaly. The opposite predictions hold for Items 11 and 16. They should
attract high ratings when categorized according to size, and low ratings when categorized
according to brightness.

Items 4 and 7, and 10 and 13 are uncritical ones. The Wrst two items should yield low rat-
ings of causal eYcacy regardless of the categorization in Phase 1. If they were categorized
according to size, they would belong to the small viruses, and if they were categorized
according to brightness they would belong to the dark viruses. Either category has a proba-
bility of .25 to cause a swelling of the spleen. Therefore, similar estimates should be expected.
Along the same lines, Items 10 and 13 should receive high ratings in both conditions.

We counterbalanced the assignment of labels to categories and the assignment of exem-
plars to the two learning phases (A, B). Moreover, we balanced which items were critical
and which uncritical. To accomplish this, we rotated the eVects in Fig. 5 clockwise by 90°
so that Items 2, 3, 5, and 9 now showed the eVect. Therefore, in this condition Items 4, 7, 10,
and 13 became critical items.
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4.2. Results and discussion

Table 3 shows the results. The most interesting Wnding concerns the critical items, which
should be rated high or low depending on the category and the content of the eVect. We
expected to Wnd that the categories from Phase 1 are used if the eVect of the viruses was
splenomegaly but not if the eVect was a liking judgment. A 2 (brightness vs. size)£ 2 (dis-
ease vs. liking)£2 (Items 1 and 6 vs. Items 11 and 16) analysis of variance with the last fac-
tor being compared within subjects yielded a signiWcant three-way interaction, F(1,
44)D 4.52, p < .05, MSED 623.0. All other eVects did not reach signiWcance. In contrast, the
same analysis with the within-subjects factor representing uncritical items (Items 7 and 4
vs. Items 10 and 13) that should in all category conditions be rated high or low showed no
interaction but the expected highly signiWcant main eVect, F(1, 44)D 157.6, p < .01,
MSED390.2. Moreover, a signiWcant diVerence between the disease and liking condition
was observed with the disease condition generally leading to higher ratings of causal
eYcacy than the liking condition, F(1, 44)D5.28, p < .05, MSED228.2. This result can be
interpreted as reXecting participants’ intuition that disease-related symptoms are more nat-
ural eVects of viruses than aesthetic impressions.

To further analyze the three-way interaction involving the critical items, we conducted
separate analyses of variance for the disease and the liking conditions. The analysis of var-
iance for the disease condition yielded a signiWcant interaction between the factor repre-
senting the critical items (as a within-subjects factor) and the category boundary condition
(as a between-subjects factor), F(1, 22)D5.57, p < .05, MSED 691.6. Both main eVects failed
to reach signiWcance. In contrast, a separate analysis for the liking condition yielded no sig-
niWcant eVects (all Fs < 1). These patterns reXect that the categories were only activated in
the disease condition but not in the liking condition, which supports our prediction that
category use is in part regulated by assumptions about the potential causal relevance of the
categories with respect to the predicted eVect.

The Wnal ratings of the relationship between categories and causal eVects show again
that learners in both conditions encoded the relationship between categories and causal
eVects. Participants gave clearly diVerent ratings for the two categories, F(1, 47)D 248.3,
p < .01, MSED218.1 (MD 73.3 vs. MD 25.8). The diVerences were slightly higher for the
virus condition (MD 75.8 vs. MD 22.1) than for the liking condition (MD70.8 vs.
MD29.6) but the interaction was not nearly signiWcant. Thus, replacing splenomegaly with
liking did not result in diVerences of the diYculty of learning the category-eVect relations.
These Wndings provide further support for the hypothesis that the use of initial categories
is an active decision in the test phase driven by assumptions about the plausibility of a
causal relation between categories and eVect.

Table 3
Mean ratings of the likelihood of the causal eVect for critical and uncritical items (Experiment 3)

Categories Disease condition Liking condition

Critical items Uncritical items Critical items Uncritical items

11/16 1/6 4/7 10/13 11/16 1/6 4/7 10/13

Size 51.3 44.2 29.6 80.4 48.3 55.4 24.6 63.8
Brightness 39.6 68.3 19.2 75.0 49.6 49.2 15.4 72.1
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Whereas Experiments 1 and 2 used family resemblance categories which implied equal
relevance of all features, Experiments 3 used one-dimensional categories that may lead to
sensitizations to the relevant dimension. Although this perceptual learning process might
explain transfer in the disease condition, it does not explain the absence of transfer in the
contrasting liking condition. To explain the obtained eVect, top-down factors need to be
invoked.

Unlike in the previous experiments in which both the category boundaries in Phase 1
and the boundary separating eVect-related items from non eVect-related ones were equally
complex, in the present structure the diYculty of the categories changed between Phases 1
and 2. Whereas in Phase 1 we used a one-dimensional category (based on size or bright-
ness), the induction of categories that maximize predictability in Phase 2 would require
learners to induce a more complex rule involving two dimensions. It is known that multidi-
mensional rules are harder to learn than one-dimensional rules and possibly impossible to
learn without corrective feedback (see Ashby, Queller, & Berretty, 1999; Ashby, Waldron,
Lee, & Berkman, 2001). However, this gradient of diYculty may explain why learners stuck
to the suboptimal categories in the condition in which categories and eVect were related
(disease) but makes the Wnding even more impressive that they neglected the categories in
the contrasting condition (liking). Unfortunately, the many counterbalancing conditions
do not allow us to deeply analyze what learners actually did when they neglected the initial
categories. An alternative strategy to inducing a maximally predictive multidimensional
boundary may be to pick a salient dimension or memorize individual items in Phase 2 and
base the test responses on similarities to memorized exemplars.

5. General discussion

The starting point of the present research was the observation that causal induction is
based on relationships between categories of causal events. The way objects or events are
categorized inXuences the outcome of causal induction with otherwise identical input. We
have developed a learning paradigm in which people Wrst learn to categorize novel exem-
plars and then, in a second learning phase, observe contingencies between these exemplars
and a novel causal eVect. This paradigm allowed us to investigate under what conditions
people continue to use the initial categories or to abandon these categories and induce new
categories based on the predictive relationships between exemplars and the eVect. The
results generally show that people do not uniformly activate initially trained categories,
although all participants learned the categories and encoded the statistical relation
between categories and causal eVect. Thus, our Wndings go beyond a pure bottom-up per-
ceptual learning account that would generally predict transfer from initial categories in
suitable training contexts. The results rather support the view that learners activate knowl-
edge about the possible causal relation between categories and causal eVect. Whenever the
category labels suggest natural kinds, learners tend to use this category information when
making inductive predictions about the test exemplars. Interestingly, this behavior could
be seen in all experiments although we have always emphasized in the instructions of the
natural kind conditions that the categories were solely based on superWcial features.
Apparently the label “virus” suggested deeper causal commonalities despite this instruc-
tion.

Our research also shows that people tend to ignore initial categories if these categories
seem to be arbitrary collections of exemplars. In this case, learners rather induce new
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categories in the causal learning phase. Moreover, Experiment 3 shows that learners do not
use category-level information when the causal eVect seems unrelated to the natural kind
category (e.g., kinds of viruses and liking judgments).

We also obtained some interesting results about the categories people use when they
decide to ignore the initial categories. Depending on the diYculty of the category structure,
these new categories may attempt to maximize predictability (Lien & Cheng, 2000) (Exper-
iment 2), but sub-optimal categories may be induced when the optimal categories are too
complex (as in Experiment 3).

Finally, we found evidence in all experiments that the choice between alternative cate-
gory systems occurred in the test phase, probably based on a knowledge-driven decision. In
all conditions, the relation between categories and eVect was encoded not only on the
exemplar but also on the category level (Phase 1 categories).

5.1. Relations to previous research

In Section 1, we have already pointed out relations to other research paradigms that
have addressed similar questions. Here, we would like to summarize our Wndings in the
context of this research.

5.1.1. Causal contingency learning
Research on causal learning has focused on the acquisition of knowledge about causal

links. The question how prior categories referring to causes and eVects may aVect contin-
gency learning has not been addressed. Lien and Cheng (2000) have investigated how
causal contingencies may underlie the induction of maximally predictive categories in
novel uncategorized domains, but they did not investigate how categories from a previous
learning context interact with current contingency learning. Our research goes one step
beyond what Lien and Cheng have found. We showed that people continue to use previous
categories whenever they are causally relatable. Learners transfer these categories even at
the cost of sub-maximal predictability. However, whenever learners decide to neglect the
prior categories they tend to induce new categories. In Experiment 2, we found evidence
that people tend to induce categories that maximize predictability. In more complex
domains other strategies including focusing on salient features may also be observed.

We believe that there is a tradeoV between the number of categories people are using for
a set of exemplars and maximizing predictability. Technically people could achieve maxi-
mal predictability by inducing a new set of categories for each predicted feature. However,
this is not parsimonious so that people often seem to settle for suboptimal predictability
when it buys them a smaller number of category schemes.

5.1.2. Category learning as theory modiWcation
Our research is also linked to categorization research. We have shown that the impact of

categories on causal learning cannot be reduced to perceptual bottom-up sensitizations or
unitizations (see Goldstone et al., 2000). Consistent with the view that categories are the-
ory-based (Murphy & Medin, 1985), we have found that cause and eVect categories are not
simply represented as referring to a collection of similar exemplars but rather have an
internal theoretical structure that interacts with the causal learning process. Thus, it seems
more appropriate to view the relation between categories and causal learning as a process
in which an initial causal theory underlying the category representation is modiWed and
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extended by further causal learning processes. Causal knowledge, in everyday life as well as
in science, is typically not acquired at one point in time after which it remains stable but is
rather the result of a long process in which it undergoes dynamic changes, such as continu-
ous modiWcations or even paradigm shifts (see Carey, 1991; Horwich, 1993). The develop-
ment of neuroscience is a recent example. Many neuroscientiWc studies use categories
coming from psychological or medical paradigms (e.g., studies on memory or on psychiat-
ric disorders), and use these categories in novel hypotheses (e.g., about the neural basis of
schizophrenia). Thus, new hypotheses interact with theories that underlie the old catego-
ries. These old categories may turn out to be useful but it is also possible that scientists
switch to new categories that give them a better grasp of the present causal domain.

5.1.3. Natural kinds
Our research also builds on previous research on natural kinds (see Ahn et al., 2001;

Gelman, 2003; Hirschfeld, 1996; Medin & Atran, 2004; Rehder & Hastie, 2004; Sloman &
Malt, 2003; Wellman & Gelman, 1992). Our experiments are consistent with the view that
there is a strong essentialist bias for natural kind concepts (Medin & Ortony, 1989).
Despite the fact that our instructions only mentioned superWcial criteria for grouping
viruses, the two category labels (allovedic vs. hemovedic viruses) along with information
that scientists settled on these categories seemed to be a strong cue for assuming natural
kinds that may be responsible for further, yet unknown eVects. In contrast, when viruses
were grouped in blatantly arbitrary categories, no transfer was observed.

We also found that people had general expectations about the causal eVects that catego-
ries might generate. This is consistent with Heit and Rubinstein’s (1994) Wnding that people
expect that categories have speciWc types of eVects. Apparently people use abstract frame-
work theories that specify the types of causes and eVects that go together even when they
lack speciWc knowledge (Wellman & Gelman, 1992).

Strevens (2000) has proposed an alternative view, the minimalist view, to psychological
essentialism. According to this view causal laws that connect kinds of concepts with visible
features underlie natural kind representations. These laws do not require the assumption of
a stable uniform underlying essence (see Ahn et al., 2001, for a response). According to the
minimalist view features of natural kinds are caused, but what causes it may vary from fea-
ture to feature. Moreover, people may have no intuitions about the kind of causes.

The present experiments are consistent with the view that natural kinds are viewed as
causal models in which visible features are related to hidden causes. In this respect they are
consistent with minimalism as well as the variant of essentialism that ascribes a belief in
causal essence placeholders to people (e.g., Ahn et al., 2001; Gelman, 2003). It seems
unlikely that our learners have elaborate beliefs about the nature of the essence underlying
allovedic and hemovedic viruses (see also Rozenblit & Keil, 2002). Also our results do not
necessarily require the essence placeholders to refer to a single common cause (Ahn et al.,
2001). It may well be that people have a rather diVuse belief in a hidden causal structure,
which is consistent with Streven’s view that diVerent features may be viewed as being gen-
erated by diVerent parts of the hidden causal model.

However, other aspects of our data seem more consistent with essentialism than mini-
malism, which lacks constraints for the kind of causes underlying the categories. For exam-
ple, Experiment 2 has shown that an arbitrary collection of viruses is not seen as a causally
homogeneous kind. Although each virus exemplar has features that are certainly caused by
something, learners’ reluctance to use arbitrary categories seems to signify that they did
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not believe that there is a uniform common causal structure underlying all exemplars of the
categories. Therefore, they did not use these categories for predicting novel eVects. More-
over, Experiment 3 shows that learners had some speciWc beliefs about what kind of novel
features the categories can generate. Although, there was no prior knowledge about the
relation between our artiWcial viruses and splenomegaly, learners tended to have an
abstract belief that these viruses are potential causes of all kinds of disease-related symp-
toms including splenomegaly. This is also consistent with the view that our causal learning
is governed by a causal grammar that speciWes the kinds of eVects causes can potentially
have (Tenenbaum, GriYths, & Niyogi, in press). Our experiments clearly show that learn-
ers believe that novel natural kinds share a hidden, unknown causal structure which is a
possible generator of speciWc kinds of novel features and is inconsistent with others (e.g.,
liking).

5.1.4. Category-based induction
Category-based induction is a paradigm in which questions related to our research have

been addressed (see Coley, Medin, ProYtt, Lynch, & Atran, 1999; Gelman, 2003; Heit,
2000; Murphy, 2002, for overviews). Although our theoretical predictions were strongly
inXuenced by this research (see Introduction), it is important to point out the diVerences
between the paradigms. In a typical category-based induction task participants may be
informed that one or more speciWc categories of exemplars have a novel feature (e.g., “All
robins have a spleen”). Participants are then asked whether a diVerent category probably
has this feature as well (e.g., “All animals have a spleen” or “All ostriches have a spleen”).
There are a number of key diVerences to our paradigm (see also Fig. 1): (1) The categories
in these tasks are not learned but given. In contrast, we manipulated the categories by
training novel categories using a trial-by-trial learning procedure. (2) Moreover, in our
causal learning phase we teach the contingencies between exemplars and an eVect in a trial-
by-trial learning procedure so that the responses in the test phase are in part driven by the
learned contingencies. In contrast, in category-based induction research no contingency
learning takes place on the exemplar level; the relation between the category and the fea-
tures is simply asserted. (3) The most important diVerence is that in our paradigm learners
have a choice to either activate category-level information or exemplar-level information
(see Fig. 1) during learning and testing, whereas in category-based induction participants
are forced to use the given categories. Thus, our paradigm enabled us to investigate the
question under what conditions people activate prior categories and under what conditions
they rather choose to neglect these categories.

Nevertheless, our predictions and Wndings are consistent with a number of discoveries in
this research area. Consistent with the Wndings of Murphy and Ross (1994) we have found
that people like to use category knowledge when they are asked to predict relations
between features (see also Malt, Ross, & Murphy, 1995; Ross & Murphy, 1996). However,
we also demonstrated that prior knowledge inXuences whether people go through the
upper category-level route (Fig. 1) or neglect the previously learned categories.

Our Wndings are also consistent with the Wndings of Gelman and her collaborators (Gel-
man & Coley, 1990; Gelman & Markman, 1986; see also Gelman, 2003) that people prefer
to use natural kind categories over similarity-based orderings when making inductive
inferences, and that they only generalize features that are consistent with general assump-
tions about eVects of natural kinds (see also Heit & Rubinstein, 1994). Finally, some of our
data (Experiments 1 and 2) is consistent with Wndings that show that inductions are
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stronger when the test exemplars are more typical for the category (see Osherson, Smith,
Wilkie, López, & ShaWr, 1990; Rehder & Hastie, 2004).

5.2. Directions for future research

A number of diVerent questions were left open in the present research, which should be
addressed in future studies.

5.2.1. Natural kinds vs. artifacts
Our research has focused on natural kinds. It would be interesting to contrast natural

kinds with artifacts. This might provide further evidence on the diVerences between kinds
of concepts, and may also be relevant for the debate between essentialism and minimalism.
There is agreement in the literature that artifacts such as cars, refrigerators, or chairs do
not have a hidden, unknown causal essence in the sense of natural kinds (see Ahn et al.,
2001; Bloom, 2000; Gelman, 2003; Medin & Atran, 2004; Medin et al., 2000; Rehder &
Hastie, 2004; Sloman & Malt, 2003), although it is argued by some researchers that the
function intended by the designer may play a corresponding role. On all these accounts it is
less likely that artifacts exhibit novel, yet unknown causal features that may be discovered
in the course of research.

The crucial factor underlying this prediction is whether the causal structure underlying
the categories is known or unknown. Natural kinds are not constructed but discovered.
Therefore, they typically have a hidden, unknown causal structure that is open to future
discovery of novel properties (Putnam, 1975). In contrast, artifacts are constructed by
human designers so that it is less likely that their internal causal structure will surprisingly
show novel, unexpected eVects. Few studies have addressed this question. Gelman (1988),
and Gelman and O’Reilly (1988) report studies that show that natural kind categories sup-
port more inductive inferences than artifact categories. However, other researchers found
no diVerence (Rehder & Hastie, 2004). It may be interesting to use our task to test the
hypothesis that natural kinds aVord a wider range of novel inductive inferences than arti-
facts.

Although we expect diVerences in the willingness to accept novel causal eVects for natu-
ral kinds compared to artifacts, we can imagine a number of cases in which artifact catego-
ries might support causal learning of novel eVects. Of course, we would predict transfer if
the causal eVect belongs to the functions of the artifacts or is a plausible known side eVect.
For example, the noise of a refrigerator brand may be plausibly related to diVerent brands
(with more expensive ones being less noisy). Or with art objects we might have the intuition
that viewers Wnd classical art more pleasing than modern art. However, this would not be
an eVect that is newly discovered, it rather is an eVect that we would already expect based
on our prior knowledge. Transfer may also be observed when the causal eVect is related to
the materials of the artifact (e.g., chemical substances of the cooling system of a refrigera-
tor as a cause of disease). However, in this case the task is not primarily about an artifact
(refrigerator) but about a natural kind (cooling Xuid).

5.2.2. The role of the learning input
We contrasted our dynamic theory modiWcation hypothesis with the perceptual learning

hypothesis. Although the results support our theory, this does not mean that bottom-up
factors do not play a role. We only intend to argue that the eVects we investigated cannot
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be reduced to mere perceptual learning. In the present research we have focused on top-
down factors inXuencing whether people stick to old categories or induce new ones. It
would be interesting to extend this research and investigate possible bottom-up factors
that also may have an inXuence on people’s learning strategies.

In all experiments we chose to train the categories (Phase 1) with corrective feedback,
whereas causal learning was observational. In our view, this is a natural Wrst choice. We
were interested in possible transfer of category knowledge; therefore it was a prerequisite
to make sure that all participants had learned the categories. Moreover, categories are typ-
ically mutually exclusive with each exemplar belonging to only one of the categories. In
contrast, causal eVects are in most cases probabilistic; we even accept small probabilities as
valid reXections of causal relations (e.g., pollution and lung cancer). A corrective feedback-
based training regime would have created the wrong impression that the task was to learn
a deterministic relation. Of course, with suYcient training and corrective feedback almost
all participants may switch to alternative categories. But our goal was to investigate the
early stages of learning in which we could observe whether learners choose to stick to the
old categorical schemes or induce new ones. Nevertheless, it may be interesting to explore
other training regimes.

Another interesting research question might focus on the statistical structure of the
learning input. In the present experiments, the prior categories were fairly strongly related
to the eVect. The covariation was not perfect but also far from zero. Thus, the prior catego-
ries were pragmatically useful. However, there may be situations in which people become
aware of the fact that a continued use of categories, even when their labels suggest rele-
vance, does not allow them to make good predictions. This may be the case when the
covariation between categories and eVect turned out to be close to zero. Thus, although the
categories may sound promising, they may not generate useful causal knowledge that fur-
thers learners’ ability to predict and explain. We hypothesize that this might also be a situ-
ation in which people tend to abandon prior categories. Our general hypothesis is that
there is a trade-oV between sticking to familiar conceptual schemes and predictability. As
long as the familiar categories yield satisfactory predictions, people might rather opt
against learning alternative categories for the same domain. But when predictability is
below some threshold, then people might be inclined to start from scratch. This process
seems to be analogous to what we occasionally see in the dynamics of scientiWc research.

Moreover, one could further explore the relative diYculty of the categories. In Experi-
ments 1 and 2 we used linearly separable categories in Phase 1 and the category boundary
that separated eVects from non-eVects in Phase 2 was also linearly separable. In contrast, in
Experiment 3 the initial categories were based on a one-dimensional rule whereas the cate-
gories distinguishing exemplars that generate eVects from the rest required multidimen-
sional boundaries. Our design did not allow us to study the induction strategies of
individual participants in Phase 2; we were mainly interested in whether they used prior
categories or neglected them. It would be interesting to study the inductions in this phase
further. Moreover, we would like to know whether people are aware of such diYculty gra-
dients between Phases 1 and 2, and whether their tendency to switch to new categories is
aVected by the perceived relative diYculty of the categories.

A related research question might address the processes of inducing new categories in
Phase 2 when learners have decided to abandon the initial Phase 1 categories. In Experi-
ment 2 we found evidence for the induction of fuzzy categories that reXected the predict-
ability gradient of the set of exemplars. In other cases people may fall back to sub-optimal
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rules. Interestingly, participants in these conditions nevertheless encoded the relationship
between the initial categories and the eVect, even though this knowledge was not used in
the test phase. We would be interested in Wnding out how knowledge about the old catego-
ries (upper route in Fig. 1) and the new categories (lower route in Fig. 1) is acquired in par-
allel, and how the two routes interact.

5.3. Conclusion

The hypothesized impact of pre-existing categories on causal learning constitutes a new
type of transfer eVect. Unlike in research on analogical transfer (see Holyoak & Thagard,
1995), no speciWc relational knowledge is transferred. The transfer eVect is rather based on
people’s decisions to apply the categories, which themselves are based on knowledge about
the causal structure underlying the concepts and the observable contingencies. Thus, cate-
gories and causal inferences are related in a dynamic interplay of theory change and new
beginnings. The present results show that the outcome of this dynamic process of theory
development may be crucially dependent on how it started.
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