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Causal Reasoning in Rats
Aaron P. Blaisdell,1* Kosuke Sawa,2 Kenneth J. Leising,1 Michael R. Waldmann3

Empirical research with nonhuman primates appears to support the view that causal reasoning is a
key cognitive faculty that divides humans from animals. The claim is that animals approximate
causal learning using associative processes. The present results cast doubt on that conclusion.
Rats made causal inferences in a basic task that taps into core features of causal reasoning without
requiring complex physical knowledge. They derived predictions of the outcomes of interventions
after passive observational learning of different kinds of causal models. These competencies cannot
be explained by current associative theories but are consistent with causal Bayes net theories.

T
he ability to acquire and reason with

causal knowledge is among our most

central human cognitive competences

(1). Causal knowledge serves two important

functions: It allows us to predict outcomes on

the basis of observations, and it underlies our

ability to control events in the world. We in-

vestigated whether animals understand the rela-

tion between observations and interventions,

which some philosophers regard as a core

feature of causal reasoning (2–4).

Although a number of psychologists have

claimed that both humans and animals use basic

associative mechanisms to learn about causal

relations (5), human studies have demonstrated

a deeper understanding of causal relations that

cannot be reduced to associative learning (6–8).

In contrast, research on the cognitive compe-

tencies of nonhuman primates concludes that

they demonstrate a superficial understanding

of the association between tool use and its

effects but fail to comprehend the unobservable

physical mechanisms underlying these relations

E(9–11), but see (12, 13)^. It may well be, how-

ever, that nonhuman animals lack knowledge

about physical mechanisms but still are capable

of basic causal reasoning. The capacity to derive

predictions for interventions after purely obser-

vational learning is a core competency that is

not reducible to associative learning (14).

Humans and animals can learn associations

between passively observed events (Pavlovian

conditioning) as well as between interventions

and outcomes (instrumental conditioning).

Moreover, these two learning modes may in-

teract (15). An understanding of the interrela-

tions between observations (Bseeing[) and

interventions (Bdoing[), however, requires more

sophisticated representations. Simple transfer

from observational learning can lead to inade-

quate predictions for interventions. For exam-

ple, barometer readings statistically predict the

weather, but at the same time, setting the barom-

eter to an arbitrary reading does not influence

the weather. Both relations could be learned

with associative mechanisms in separate obser-

vational and instrumental learning trials, but

associative theories are incapable of deriving

correct predictions for interventions after ob-

servational learning when no prior instrumental

learning is available.

The causal model in Fig. 1A shows how

predictions for interventions can be derived from

observations. Imagine that an animal learns in an

observational Pavlovian learning phase that a

light cue (L) temporally precedes both a tone

stimulus (T) and food (F), thus learning a

common-cause model with two effects (top

panel). After learning this model, observing T

should, via L, lead to the predictive inference

that F should also be present. However, if the

animal learns in the test phase that a newly

introduced lever turns on T, it should be more

1Department of Psychology, University of California, Los
Angeles, CA 90095, USA. 2Japan Society for the Promotion
of Science, Nagoya University, Nagoya 464-8601, Japan.
3Department of Psychology, University of Göttingen,
37073 Göttingen, Germany.
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Fig. 1. (A) Causal mod-
el used in experiment 1.
L (light) is the common
cause of T (tone) and F
(food); N (noise) is the
direct cause of F. (Top
panel) Observed causal
relations. (Bottom pan-
el) Model modified un-
der the assumption of
an intervention in T and
N. (B) Experiment 1:
Mean nose pokes in
response to test stimu-
lus T (P G 0.05) in the

common-cause condition and to N (P 9 0.50) in the direct-cause condition after a lever press
(intervene) or no lever press (observe). Bars indicate SEM. Planned comparisons from a two-way mixed
analysis of variance (ANOVA) are shown. There was a main effect of causal model (common or direct),
F(1, 21) 0 6.01, P G 0.05, and an interaction between causal model and test condition (intervene or
observe), F(1, 21) 0 4.31, P 0 0.05.
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reluctant to predict F (bottom panel). Generating

T by means of an alternative cause—the lever—

does not predict F because the manipulation of

an effect does not influence its cause (L). A

dissociation between seeing and doing would be

remarkable, because in the observational learn-

ing phase T is positively correlated with L.

The only theoretical model that derives

correct predictions for interventions from ob-

servational learning data is causal Bayes nets

(2–4). Predictions for observations make use of

the full causal model acquired during observa-

tional learning (top panel). Predictions for

interventions, however, are based on a modified

graph (bottom panel); the insight that generat-

ing T in the common-cause model happens

independently of its usual cause L is modeled

by removing the causal arrow that leads into the

manipulated effect: a manipulation called graph

surgery (3). Because the manipulated T is un-

related to L, the likelihood of L_s other effect
F should not be altered by T_s presence.

A possible alternative associationist expla-

nation of the failure to expect F after an in-

tervention in T may be that the animal does not

expect F because it lacks prior instrumental

learning experiences relating lever presses to F.

This alternative theory, however, erroneously

also predicts a failure to expect F in the pres-

ence of noise (N), after these events had been

paired during observational learning (Fig. 1A).

Because of the direct causal link between N

and F, causal Bayes nets predict that animals

should equally expect F, regardless of whether

N is observed or generated by an intervention.

Recent research with similar tasks has shown

(14) that human participants are capable of

deriving correct predictions for interventions on

the basis of observational data (16).

In experiment 1, 32 rats were trained on the

causal model shown in Fig. 1A, using an

observational Pavlovian procedure (17). Train-

ing consisted of three types of trials inter-

spersed within each session. The first type of

trial was presentations of stimulus L (a 10-s

flashing light or click train) forward-paired with

stimulus T (a 10-s tone or noise); the second

was presentations of stimulus L forward-paired

with stimulus F (a 10-s delivery of sucrose

solution); the third was simultaneous presenta-

tions of stimulus N (a 10-s noise or tone) and

10 s of F. We trained each causal link in the

common-cause model separately to make it

more likely that subjects did not induce a direct

link between effects T and F.

Why did the rats not induce that the al-

ternative effect is always absent when the cause

and one effect are present (that is, conditioned

inhibition)? With few learning trials, rats tend

to integrate individual learning relations into a

coherent integrated model. Only after many

trials do rats encode the explicit absence of the

nonpresented cues (18). Supporting these find-

ings, the results of all our experiments show

that rats induced second-order excitatory rather

than inhibitory relations (19). Apparently, in the

initial phases of learning, rats tend to conserv-

atively treat the absent but expected events as

possibly present but missed. A similar ability to

combine individually learned causal links into

complex causal models has been demonstrated

in humans (20).

Do rats treat L as a common cause of both T

and F, and do they correctly differentiate be-

tween seeing and doing with respect to T and

N? Rats were allocated to one of four test

conditions and were placed in the conditioning

chamber with a lever present. This lever had

not been present in the observational learning

phase, so that no prior instrumental knowledge

was available. Rats in condition intervene-T

received a 10-s presentation of T each time they

pressed the lever. Rats in condition observe-T

merely observed presentations of T indepen-

dently of any emitted lever presses. Conditions

intervene-N and observe-N were conducted in

an identical fashion, except that N was either

the product of an intervention by lever pressing

or was observed. We recorded the number of

nose pokes into the magazine where F had been

delivered during the training phase, to assess

the rats_ expectation of F.

Causal Bayes nets predict that observing T

in condition observe-T should lead the rats to

reason that the temporally prior cause L was

probably present (but missed), and to conse-

quently expect that F should also be present;

therefore, they should emit many nose pokes. In

contrast, rats in condition intervene-T should

attribute T to their intervention and therefore

expect L and consequently its effect, F, to occur

with the probability corresponding to the base

rate of its cause L. Consequently, we should

observe a lower rate of nose poking in con-

dition intervene-T than in condition observe-T.

There should not be any difference in rates of

nose poking, however, between conditions

intervene-N and observe-N. The direct causal

relationship should lead the rats to expect F

regardless of whether N was observed or in-

tervened on at test. Unlike causal Bayes nets,

associationist theories predict equivalent nose

poking in the presence of T in both the observe

and intervene conditions.

Figure 1B shows the mean rate of nose

poking per 10-s presentation of stimuli T and N

as a function of test condition (with a maximum

rate of 100 nose pokes per presentation). As

predicted by causal Bayes nets, rats that

produced T through a lever-press intervention

(condition intervene-T) made fewer nose pokes

than rats that merely observed T (condition

observe-T). However, rats that intervened in N

(condition Intervene-N), which was trained as a

direct predictor of F, did not nose poke less

than rats that merely observed N (condition

observe-N). EAn analysis of the lever press data

ruled out selective interference between lever

pressing and nose poking (17).^
In experiment 1, we observed a dissociation

between seeing and doing within the common-

cause model, whereas both tasks led to identical

expectations with the direct causal link, which

is consistent with causal Bayes nets. A critic

might point out that we found a dissociation

within a complex causal model with two sep-

arately learned links (the common-cause mod-

el), whereas we found similar responses to the

less complex direct link. To rule out complexity

or second-order learning as the basis of our

dissociation, we compared a common-cause

condition with an equally complex causal chain

in which the individual causal links were also

presented separately (that is, second-order

conditioning) (Fig. 2). Whereas causal Bayes

nets predict a dissociation between seeing and

doing in the common-cause model, no such

dissociation is expected for the causal chain.

Regardless of whether the initial cause (T) of

the chain is observed or generated by means of

an intervention, the intermediate (L) and final

effect (F) should equally be expected.

In experiment 2a, rats received either

common-cause training, as in experiment 1, or

causal-chain training, which was identical

except that T preceded L during observation-

al learning (17). In the test phase, groups

Fig. 2. Common-cause
and causal chain mod-
els from experiment 2.
(Left) Observed causal
relations. (Right) Mod-
el modified under the
assumption of an inter-
vention in T.
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common-cause–intervene and chain-intervene

received presentations of T each time the lever

was pressed. Groups common-cause–observe

and chain-observe merely observed T. We re-

port the number of nose pokes during the 10-s

presentation of T and during the 10-s period

beginning 10 s after the termination of T (post-T

interval 2) for all subjects. In the chain con-

dition, F should rationally be expected between

10 and 20 s after delivery of T (19). In contrast,

the expected time of delivery of F for rats that

received common-cause training is during T

itself.

Figure 3 shows the mean rate of nose

poking on test trials with T. Group common-

cause–intervene nose poked less than group

common-cause–observe, which replicates the

pattern of experiment 1. In contrast, no differ-

ence was found between groups chain-intervene

and chain-observe, as predicted by causal Bayes

nets.

Rats in group chain-intervene did not nose

poke more than did rats in group common-

cause–intervene. This low level of responding

does not reflect a failure to learn a causal chain,

however. Experiment 2b replicated the chain

condition and added groups for which T and L

were unpaired during observational learning

(17). Figure 3 reveals no difference between

seeing and doing, as predicted by causal Bayes

nets. Moreover, responding in the causal-chain

groups was higher than in the unpaired groups,

which signifies that the rats had indeed learned

the second-order chain relations.

A number of researchers have recently con-

cluded that causal reasoning is a faculty that

divides humans from animals (7, 9–11). The

present results cast doubt on that conclusion.

With tasks that did not require complex phys-

ical knowledge, the experiments have shown

that rats grasp the relationship between seeing

and doing. Rats made correct inferences for

instrumental actions on the basis of purely

observational learning, and they correctly dif-

ferentiated between common-cause models,

causal chains, and direct causal links. These

results contradict the view that causal learn-

ing in rats is solely driven by associative learn-

ing mechanisms, but they are consistent with

causal Bayes net theories. The core compe-

tency of reasoning with causal models seems

to be already in place in animals, even when

elaborate physical knowledge may not yet be

available.
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Fig. 3. Experiment 2a
(left panels): Mean nose
pokes during test stimu-
lus T (top panel) or 10 s
after the termination of
T (bottom panel) after a
lever press (intervene;
P 0 0.01 in both panels)
or no lever press (ob-
serve; P 0 0.12 and 0.82
in top and bottom panels,
respectively). Common-
cause and chain indicate
the type of causal model
training. Bars indicate
SEM. Planned comparisons
from two-way ANOVAs
are shown. Experiment
2b (right panels): Mean
nose pokes during test
stimulus T (top panel) or
10 s after the termina-
tion of T (bottom panel)
after a lever press (inter-
vene) or no lever press
(observe). Chain and unpaired indicate the type of causal model training. Bars indicate SEM. P 0 0.09
and 0.01 in top and bottom panels, respectively, for the main effect of training.
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To carry out their trust responsibilities,

governments can and should exercise author-

ity to apply the principles of ecosystem-based

management (EBM). Before approving a new

generation of ocean industrial facilities, gov-

ernments should employ ocean zoning as a

scientifically based platform for resolving

conflicts among new uses as well as ongoing

activities like fishing and maritime commerce.

Governments have created certain limited

private rights or quasi-rights to marine resources.

Some people see the solution to problems of

ocean governance in wholesale privatization

(9), but we disagree. Privatization strategies

are significantly more problematic in the seas

than they are on land. 

We should continue to treat marine systems

as common property rather than as private

or public property. Understanding that the

authority of the government over common

property does not include the right to perma-

nently dispose of (sell, grant, or transfer) ocean

space to private owners is key to protecting the

rights of the common property owners (i.e.,

the people). As demands for ocean resources

(including exclusive access) multiply, we need

management systems that protect the public

interest and at the same time provide security

of investment for existing and new ocean

industries. The needs of private investors can

be met while protecting the public trust by con-

tracts (leases, easements, rights of way, and

concessions) that ensure periodic review of

performance and updating of contract terms to

take into account new knowledge (regarding

ecosystems and technology) (5). 
GAIL OSHERENKO,1* ORAN R. YOUNG,2 LARRY B.

CROWDER,3 JAMES A. WILSON,4 ELLIOTT A. NORSE5

1Marine Science Institute, University of California, Santa
Barbara, CA 93106–6150, USA. 2Donald Bren School of
Environmental Science and Management, University of
California, Santa Barbara, CA 93106–5131, USA. 3Center for
Marine Conservation, Nicholas School of the Environment
and Earth Sciences, Duke University Marine Laboratory,
Beaufort, NC 28516, USA. 4School of Marine Sciences,
University of Maine, Orono, ME 04469, USA. 5Marine
Conservation Biology Institute, Bellevue, WA 98004, USA.

*To whom correspondence should be addressed. E-mail:
osherenko@msi.ucsb.edu

References
1. The Great Barrier Reef Marine Park Authority’s zoning sys-

tem provides a useful model; see www.gbrmpa.gov.au/
corp_site/management/zoning 

2. O. R. Young, Nat. Res. J., in press.
3. United States v. California, 332 U.S. 19 (1947). 
4. P. H. Sand, Global Environ. Politics 4, 47 (2004). 
5. G. Osherenko, Ore. J. Environ. Law Litigation, in press 

(a preprint is available at http://law.bepress.com/
expresso/eps/1537).

6. R. G. Hildreth, J. Environ. Law Litig. 8, 221 (1993). 
7. J. H. Archer, M.C. Jarman, Ocean Coast. Manage. 17, 253

(1992).
8. M. C. Jarman, Alb. L. J. Sci. Technol. 4, 7 (1994). 
9. R. D. Eckert, The Enclosure of Ocean Resources:

Economics and the Law of the Sea (Hoover Institute
Press, Stanford, CA, 1979), p. 16.

CORRECTIONS AND CLARIFICATIONS

2006 Visualization Challenge (22 Sept., p. 1729). The
affiliation of one of the judges, Felice Frankel, was incor-
rect. It should be Senior Research Fellow, FAS, Harvard
University, Initiative in Innovative Computing, IIC, Cam-
bridge, Massachusetts. In the winning entry for the Inter-
active Media category, “Cerebral Vasculature of Cranio-
pagus Conjoined Twins,” the name of credited contributor
Kenneth Salyer was misspelled. In the text for the second-
place winner, “A Real-Time Audio and Video Sound
Visualization Tool,” videos were said to be available in
“most” cases. In fact, they are available in “many” cases. 

Reports: “Causal reasoning in rats” by A. P. Blaisdell et al.

(17 Feb., p. 1020). The wrong input data were used to gen-
erate Fig. 1B. The corrected figure is shown here. The error
does not change the conclusions of the paper. 

TECHNICAL COMMENT ABSTRACTS

COMMENT ON “Preindustrial to
Modern Interdecadal Variability 
in Coral Reef pH”

Richard J. Matear and Ben I. McNeil 

Based on the boron isotopic composition of coral from the
southwestern Pacific, Pelejero et al. (Reports, 30 September
2005, p. 2204) suggested that natural variations in pH can
modulate the impact of ocean acidification on coral reef
ecosystems. We show that this claim cannot be reconciled
with other marine carbon chemistry constraints and high-
light problems with the authors’ interpretation of the pale-
ontologic data. 

Full text at www.sciencemag.org/cgi/content/full/314/
5799/595b

RESPONSE TO COMMENT ON

“Preindustrial to Modern
Interdecadal Variability in Coral 
Reef pH”

Carles Pelejero, Eva Calvo, Malcolm T.

McCulloch, John F. Marshall, Michael K.

Gagan, Janice M. Lough, Bradley N. Opdyke

Coral reefs are exceptional environments where changes in
calcification, photosynthesis, and respiration induce large
temporal variations of pH. We argue that boron isotopic
variations in corals provide a robust proxy for paleo-pH
which, together with the likely concomitant changes in the
reconstructed partial pressure of CO

2
(PCO

2
) calculated by

Matear and McNeil, fall within ranges that are typical of
modern coral reef ecosystems. 

Full text at www.sciencemag.org/cgi/content/full/314/
5799/595c
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membrane topology (1) and because two

x-ray structures of EmrE were recently

retracted (2, 3).

EmrE is an unusually intriguing protein.

It is by far the most well-studied representa-

tive of the bacterial small multidrug-resist-

ance (SMR) proteins, a family of potential

drug targets, and it may be the first example

of a “dual topology” protein, i.e., a homo-

dimeric protein composed of two identical

monomers with opposite orientations in the

membrane (4).

The final proof for a dual topology for

EmrE is still lacking. So, what is the evi-

dence? First, the dual topology idea was orig-

inally proposed on the basis of an early elec-

tron crystallography structure (5, 6). This

structure, albeit of rather low resolution, is

still the gold standard, since the two-dimen-

sional crystals bind substrate with nM affinity.

Second, a steadily increasing number of

SMR proteins have been shown to be het-

erodimers composed of two homologous

monomers [e.g., (7)]. In at least one case

(the EmrE homologs YdgE/YdgF in E. coli),

the two monomers have been shown to adopt

opposite orientations in the membrane (8),

and topology predictions suggest that this is

the general rule for heteromeric SMR pro-

teins (9). By extension, a dual topology for

homodimeric EmrE seems likely.

Third, by mutating positively charged

residues in the loops connecting the trans-

membrane helices, we have constructed two

EmrE variants that insert with either N
in

-C
in

or

N
out

-C
out

orientations. These variants are non-

functional when expressed alone, but make

cells resistant to ethidium bromide when co-

expressed (10), as does wild-type EmrE. The

complementation between the two oppositely

oriented EmrE variants suggests that they

form an antiparallel heterodimer, like other

heteromeric SMR proteins. 

On the other hand, the Schuldiner lab has

reported that a chemically cross-linked EmrE

dimer is active after reconstitution in vitro

(11). With the cross-linked residues chosen

such that they should not be able to form a

cross-link in an antiparallel dimer (according

to the now retracted x-ray structure), this

result provides an argument against a dual

topology. But is this biochemical finding with

solubilized, cross-linked protein compelling

enough to override the structural, coexpres-

sion, and evolutionary arguments that sup-

port a dual topology for EmrE? We think not.

In any case, given its current “15 minutes of

fame” (12), EmrE will no doubt attract

enough attention for the debate over its topol-

ogy to be resolved in the normal scientific

way: by more and better experiments.
MIKAELA RAPP, SUSANNA SEPPÄLÄ, 

ERIK GRANSETH, GUNNAR VON HEIJNE

Center for Biomembrane Research, Department of Bio-
chemistry and Biophysics, Stockholm University, SE-106 91
Stockholm, Sweden.
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Response 
THE QUESTION OF THE MEMBRANE ORIENTA-
tion of the two subunits in the multidrug

efflux protein EmrE is befuddled by two

separate issues. First, there are the x-ray

crystallography studies of EmrE that were

recently retracted (1, 2). Clearly, invalid

structural models cannot be used as a lead in

any study. Second, there are biochemical

data that lead to different conclusions on the

subunit orientation of EmrE. Von Heijne and

colleagues have provided evidence for an

antiparallel orientation of the subunits (3),

whereas Schuldiner and colleagues support

a parallel orientation (4). 

Conflicting models are proposed all the

time in the process of scientific progress, and to

choose which model is most probable, we have

to scrutinize the available data and interpreta-

tions. Which studies are at hand? First, there is

the only piece of structural information left: the

3D model of EmrE-based electron crystallo-

graphy experiments (5), which provides a reli-

able structural model of EmrE. Unfortunately,

the resolution is too low to reach definitive con-

clusions on the orientation of the subunits.

Second, there are the biochemical studies

of the Schuldiner group (6–8). Soskine et al.

(8) argue in favor of a parallel orientation of

the subunits because their cross-linking data

are inconsistent with the antiparallel orien-

tation of the subunits observed in the now-

obsolete x-ray crystallographic structural

model. Both the design of their experiments

(the positions of the engineered cysteines

and the calculated intermolecular distances

between the residues) and the interpretation

of their data were based on the structural

model that has since been shown to be incor-

rect (1). Moreover, the combination of high

concentrations of detergent in the experi-

ments, possibly leading to increased confor-

mational flexibility of the protein, and the

relatively large span of the applied cross-

linker severely limit the validity of the

approach. Consequently, we feel that the

cross-linking data are not necessarily in

conflict with an antiparallel orientation of

the subunits (9).
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CORRECTIONS AND CLARIFICATIONS 

Reports: “Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure” by H.-Y. Chung et al. (20
April, p. 436). After publication, the original authors concluded that Robert W. Cumberland (Department of Chemistry and
Biochemistry and the Department of Materials Science and Engineering, University of California, Los Angeles, CA 90024,
USA; current address: HRL Laboratories, Malibu, CA 90265, USA), who was acknowledged, contributed sufficiently to the
work to be listed as an author. This change was approved by the Vice Chancellor for Research at UCLA. The authors should
now be:

Hsiu-Ying Chung,* Michelle B. Weinberger,* Jonathan B. Levine, Robert W. Cumberland, Abby Kavner, Jenn-Ming Yang,
Sarah H. Tolbert, Richard B. Kaner 

(*These authors contributed equally to this work).

Reports: “Causal reasoning in rats” by A. P. Blaisdell et al. (17 February 2006, p. 1020). There are three minor typos in the
Supporting Online Materials. First, test sessions for Experiments 1, 2a, and 2b were 60 minutes. Second, the number of
background nose pokes in Experiment 1 were 2793 ± 571 (Conditions Intervene-T), 3051 ± 991 (Condition Observe-T),
2885 ± 823 (Condition Intervene-N), and 2849 ± 514 (Condition Observe-N). Third, in Experiment 1, the F value for the
planned comparison between condition Intervene-T versus Observe-T was 9.07, p < 0.05. A reanalysis of the data from
Experiment 2b revealed that the test-trial data for one subject from group Unpaired-Observe was inadvertently counted
twice in the statistical analyses. A reanalysis on the corrected data results in a change of three F values by a tenth of a point
or less, and thus has no effect on the outcome of the analyses. The authors failed to revise the caption in the corrected Fig.
1 [Science 314, 595 (2006)]. The F values were slightly different from those reported. Corrected values show the main
effect of inference type = F(1, 21) = 4.57, P < 0.05, and the interaction = F(1, 21) = 5.69, P < 0.05.

10 AUGUST 2007 VOL 317 SCIENCE www.sciencemag.org

Published by AAAS

 o
n 

A
ug

us
t 1

0,
 2

00
7 

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

http://www.sciencemag.org



