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Abstract

In everyday life, people typically observe fragments of causal networks. From this knowledge,
people infer how novel combinations of causes they may never have observed together might behave.
I report on 4 experiments that address the question of how people intuitively integrate multiple causes
to predict a continuously varying effect. Most theories of causal induction in psychology and statistics
assume a bias toward linearity and additivity. In contrast, these experiments show that people are
sensitive to cues biasing various integration rules. Causes that refer to intensive quantities (e.g., taste)
or to preferences (e.g., liking) bias people toward averaging the causal influences, whereas extensive
quantities (e.g., strength of a drug) lead to a tendency to add. However, the knowledge underlying
these processes is fallible and unstable. Therefore, people are easily influenced by additional task-
related context factors. These additional factors include the way data are presented, the difficulty of
the inference task, and transfer from previous tasks. The results of the experiments provide evidence
for causal model and related theories, which postulate that domain-general representations of causal
knowledge are influenced by abstract domain knowledge, data-driven task factors, and processing
difficulty.

Keywords: Causal reasoning; Domain specific and domain general; Learning; Bayes nets; Top down
learning

1. Introduction

People rarely acquire knowledge about complex causal models at once. Often, people
only learn about fragments of causal knowledge, which they later combine to more complex
networks. For example, people may learn that they tend to get a stomach ache when they
drink milk or when they take an aspirin. One may never have taken aspirin with milk but still
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will have a hunch what the effect on the stomach might be. This example shows that people
are using intuitive integration rules when combining multiple causes. Sometimes, people also
want to analyze the influence of individual causes. A person may have eaten peanuts along
with broccoli in a Thai dish that made her sick. Later, that person finds out that peanuts alone
cause the stomach ache. Most people will now have an intuition about the probable causal
impact of broccoli on their health status. This is also an example of the use of an integration
rule, which in this case is used to analyze the probable causal role of broccoli. Because any
integration rule is possible, there is no normatively correct answer to these questions. However,
as the examples demonstrate, people nevertheless have strong intuitions. The main goal of my
research was to explore the sources of these intuitions.

1.1. Domain theories and causal learning

In philosophy and psychology, there has been a long-standing debate about the relation
between domain knowledge and causal learning. In philosophy, statistical approaches to
causal induction, which can be traced back to Hume (Salmon, 1980; Suppes, 1970), have
competed with the view that causal hypotheses refer to domain-specific physical processes
that link causes and effects (Dowe, 2000; Salmon, 1984). In psychology, a related debate has
centered on the question of whether causal learning is based on domain-specific or domain-
general learning strategies (Ahn, Kalish, Medin, & Gelman, 1995; Carey, 1985; Gopnik &
Meltzoff, 1997).

One way to look at this debate is by representing it as a dispute about the proper level
of abstraction. Cartwright (1999, 2004), in her critique of causal Bayes nets, has argued that
representing events simply in terms of causes and effects is too abstract to account for the
many possible meanings of causation. For example, when people talk about devices, they
hardly ever use the term cause and effect but rather use far richer ("thicker") terminology such
as feeding, opening, sucking, allowing, or speeding. Similarly, scientists in physics, chemistry,
or biology rarely think about their task as designing abstract cause-effect graphs but attempt
to develop specific physical theories that are entrenched with content and based on existing
domain theories. Thus, according to this analysis, domain theories and causal learning are not
separated but are two sides of the same coin.

Causal Bayes nets are a recent development of the other extreme, the view that causal
learning should be reconstructed as using abstract representations and induction strategies.
Bayes nets were initially developed as domain-general approaches to causal induction that
represent domain knowledge abstractly in terms of networks of causes and effects (see Gopnik
et al., 2004). They provide statistical algorithms that recover causal structure from data
irrespective of the domain that is being modeled.

Both sides have strengths and weaknesses. Against the domain-specific view, Cheng (1993)
countered that these theories do not explain how this knowledge is acquired in the first
place. Moreover, recent studies have shown that, although people often believe that they have
detailed knowledge about mechanisms, in reality, this knowledge typically has holes and is
skeletal at best (Rozenblit & Keil, 2002). People can manipulate their television set or know
about the effects of smoking without having acquired deep knowledge about the underlying
mechanisms. Often, people’s knowledge is based on statistical input and additional fairly
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abstract cues (e.g., temporal order) that provide them with some rough, pragmatically useful
knowledge about cause-effect relations without giving them details about mechanisms (e.g.,
smoking disease; see Lagnado, Waldmann, Hagmayer, & Sloman, in press; Waldmann, 1996;
Waldmann, Hagmayer, & Blaisdell, 2006).

However, it is an overstatement to say that people do not have any knowledge at all.
Representing events as causes and effects already provides people with important information
that is not captured by purely statistical or associative theories that only represent temporally
ordered events (Waldmann, 1996; Waldmann et al., 2006). One is rarely in a situation in which
there are not at least some cues that help to go beyond purely event-based representations.
Moreover, there are also computational reasons why a purely abstract induction mechanism
seems implausible. Such mechanisms require lots of data and very precise estimates for correct
inductions. Tenenbaum and Griffiths (2003) pointed out that human learning is extremely
efficient; often people acquire knowledge with very few observations, which casts doubt on
the adequacy of learning models that require a large amount of data to constrain learning.

1.1.1. Causal-model theory and theory-based Bayesian models
Causal-model theory was one of the first theories that tried to overcome the deficits of purely

domain-specific and domain-general theories (see Waldmann, 1996; Waldmann & Holyoak,
1992; see also Lagnado et al., in press). The main idea is that prior knowledge constrains the
structure of the causal models that are used as initial hypotheses in learning. This knowledge
may be specific but is more often fairly abstract. Waldmann and Martignon (1998) suggested
Bayes nets whose structure is based on prior knowledge as a possible formalization of causal-
model theory (see also Waldmann & Hagmayer, 2001).

In previous research on causal-model theory, we have focused on the distinction between
causes and effects, which entails structural knowledge about the direction of the causal arrow.
In virtually every psychological experiment on causal learning, participants know which
events represent potential causes and which represent effects. This is an example of very
abstract causal knowledge that nevertheless has an effect on learning. In my research, I
and my collaborators (Waldmann, 2000, 2001; Waldmann & Holyoak, 1992) have shown
that assumptions about causal directionality affect cue competition, the learning of linearly
separable and nonlinearly separable categories (Waldmann, Holyoak, & Fratianne, 1995), and
the estimation of causal strength (Waldmann & Hagmayer, 2001). Moreover, Hagmayer and
Waldmann (2002) showed that assumptions about temporal delays between causes and effects
also influence learning. Waldmann (1996) claimed that prior domain knowledge also may
affect the choice of the rules that underlie the integration of multiple causes.

Tenenbaum and Griffiths (2003) and Tenenbaum, Griffiths, and Niyogi (in press) have
also argued for theory-based mechanisms in causal learning. Tenenbaum and Griffiths and
Tenenbaum et al. have developed formalized Bayesian models that capture the intuition
that causal learning is guided by domain knowledge. According to this approach, there is a
hierarchy of domain theories that constrain each other. This domain knowledge may be fairly
abstract, as for example in the case of causal grammars that specify the possible causal roles
of event classes (e.g., symptoms as effects of diseases). In domains with which people have
more experience, this domain knowledge may also be very specific, capturing the fundamental
theoretical concepts and laws of the domain. Causal Bayes nets are, according to this view,
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specific theories that are generated on the spot to guide induction and reasoning and are heavily
constrained by top-down knowledge.

Tenenbaum and his colleagues (Tenenbaum et al., in press) also have addressed the role of
functional forms (i.e., integration rules in this terminology). They have argued that domain
knowledge not only constrains causal structure but also functional forms that specify the
relation between multiple causes and effects. The important role of functional form in ex-
plaining efficient induction was empirically demonstrated by Sobel, Tenenbaum, and Gopnik
(2004) in a simple learning task in which children were requested to learn to decide whether
a block is a so-called blicket or not by observing it being placed on a blicket detector that can
make a sound signal. Sobel et al. argued that children’s performance can be best modeled if
it is assumed that they enter the task with the prior assumption that individual blickets can
activate the detector and that multiple blickets do not interact (i.e., "noisy-or" rule). Conse-
quently, Tenenbaum and Griffiths (2003) developed a Bayesian model that explains learning
by combining data-driven processes with top-down assumptions about causal structure and
functional forms. Similar to the children, this model can master the task in a few learning
trials.

1.2. Integration rules

There has been little empirical work on integration rules in causal learning, but most
formal theories assume a tendency toward an additive integration rule.1 For example, in most
associative theories of causal learning, networks are used that add up the associative weights
when making predictions for compounds of stimuli (e.g., Rescorla & Wagner, 1972). This
assumption can be tested, for example, in tasks in which animals learn that a light as well
as a tone are individually followed by shock with specific probabilities. According to most
associative theories, animals should be more afraid when they experience the compound of
both cues than when they experience each cue individually. This is an example of how cues
are combined. The analysis of cues has also often been investigated. In the blocking paradigm,
for example, an animal might experience that two cues together, tone and light, cause a shock
but that the light by itself causes the same probability of shock. Most theories predict that the
second cue is discounted in such a situation (i.e., blocking), which would also be evidence for
an additive integration rule (see Waldmann, 2000). Additivity is also the typical default rule
in probabilistic theories. A typical assumption is that multiple causes independently generate
the common effect, which can be modeled by a noisy-or gate (see Cheng, 1997; Glymour,
2001; Tenenbaum & Griffiths, 2003).

Additive integration is not the only possibility of how multiple causes can be combined. A
simple alternative linear rule is averaging (see Anderson, 1981; Busemeyer, 1991; Schlottmann
& Anderson, 1993):

E = (w1 . U1 + w2 . U2)

(w1 + w2)
+ X. (1)

Equation 1 gives the formula for weighted averaging of two causes. In a learning situation
in which multiple (continuously varying) causes are always shown together, this rule cannot
be distinguished from other linear additive rules. A simple linear regression model without
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interaction terms would be capable of learning the weights for the two causes. However,
weighted averaging can be distinguished from additive integration by comparing situations
in which the number of cues is varied. A built-in constraint of Equation 1 is that the weights
always sum up to one in every situation. In simple combination tasks in which learners ob-
serve each cause individually and then predict the effect of the never-observed compound
of both causes, a weighted averaging model entails that the effect of the compound should
lie in between the values of the effect for the two individual causes. How close the effect
will be to the effect of either of the individual causes will depend on the weights. In con-
trast, additive integration rules imply that the effect will be stronger when both causes are
present than when either one is present by itself (assuming that both causes have a positive
weight).

Both tasks, combining causes and analyzing causal contributions, have been empirically
studied. However, very few studies have specifically investigated causal learning. Animal
learning studies have typically confirmed the use of additive rules, which are built into
associative theories (Couvillon & Bitterman, 1982; Kehoe, 1986; Kehoe & Graham, 1988;
Weiss, 1972). However, studies with human participants have presented a mixed picture.
Birnbaum (1976), for example, used numbers as predictors of other numbers. In this task,
Birnbaum (1976) found a strong tendency to average (see also Birnbaum & Mellers, 1983).
Similarly, Downing, Sternberg, and Ross (1985) found a strong tendency to average with
abstract material in which causes and effects were represented by letters. This tendency
was weaker with more concrete material but still was used by many participants. In these
tasks, participants combined the influence of multiple causes. Blocking studies, an example
of analysis of causal contributions, have also been conducted. In most studies, the findings
were consistent with the hypothesis that people used an additive rule (see e.g., Chapman &
Robbins, 1990; Shanks & Dickinson, 1987; Sobel et al., 2004; Waldmann, 2000; Waldmann
& Holyoak, 1992), although there are also exceptions (Williams, Sagness, & McPhee, 1994).

In summary, most learning theories solve the computational problems of learning with
sparse data by assuming a fixed additive integration rule as the default. Although other rules,
especially averaging, have been explored empirically, very little is known about the factors
that determine the choice of integration rules in causal tasks.

1.2.1. Biasing integration rules: The effect of abstract prior knowledge
Additive integration of the probabilistic causal strength of generative binary causal events

is a plausible default rule. A less constrained scenario, which I investigated in my studies, are
causal situations with continuously varying causes and effects. Depending on the type of causal
mechanism, various integration rules, including adding and averaging, may be appropriate.
If, for example, the compound of two causes generates an effect of size +7 (on a scale) and
one element causes the same effect, then the other cause should produce an effect of 0 if
integration is additive. However, 7 is the correct prediction in domains in which the causes
are averaged.

In my research, I focused on the question of how people select an integration rule. According
to causal-model and related theories (Lagnado et al., in press; Tenenbaum & Griffiths, 2003;
Tenenbaum et al., in press; Waldmann, 1996; Waldmann et al., 2006), more or less abstract
domain knowledge may place constraints on the selection of the integration rule. One plausible
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hypothesis is that people use their possibly rudimentary domain knowledge to decide between
alternative integration rules. Often, simple cues that remind learners of classes of physical
phenomena may influence which integration rule is chosen for the causal model. In some
of the following experiments I discuss, I focus on two types of physical quantities as cues.
Extensive quantities, such as the amount of a fluid, vary with volume. If two fluids are mixed
together, the volume increases. The two volumes need to be added to predict the volume of the
mix. By contrast, an intensive quantity, such as the color or the taste of a fluid, is not sensitive
to the amount. A mix of two equally colored fluids will still have the same color. Intensive
quantities are dependent on proportions, for example, the relation of color particles to the
volume of a fluid. This property is the reason why the result of mixing intensive quantities is a
weighted average of the components. Mixing two fluids that are light and dark blue will result
in a blue that lies in between these two shades. The distinction between heat and temperature
is another example. Whereas heat is an extensive quantity, temperature is an intensive quantity
(see Wiser & Carey, 1983).

A number of studies have investigated what people, especially children, know about inten-
sive and extensive quantities. Often young children misrepresent intensive quantities such as
sweetness or temperature as an extensive quantity (see Moore, Dixon, & Haines, 1991; Strauss
& Stavy, 1982). Reed and Evans (1987) investigated students. Reed and Evans’ experiments
show that these students knew how to predict temperatures but had difficulties with acids
unless they were presented with the analogous domain of temperatures first. In general, these
studies have shown that adults have knowledge about the difference between intensive and
extensive quantities at least in some more familiar domains.

Whereas research on intuitive physics investigates already acquired domain knowledge, in
my studies, I focused on learning about novel domains for which no prior knowledge about
physical mechanisms is available. For example, participants learned that a novel blue fluid
causes an increase of the heart rate of +3 (on a scale that ranges between 0 and +12), whereas
a yellow fluid increases the heart rate to the level +7. The crucial test question was what
heart rate people expect when both fluids are mixed together. Will they go over the value
of +7, which would indicate an additive strategy, or will they rate the heart rate between
the two values, which would indicate averaging? My main manipulation was to present
additional cues that should have influenced the integration strategy. I expected cues that
indicate an extensive quantity (e.g., fluids as drugs) should have cued learners into assuming
additive integration, whereas intensive quantities (e.g., taste of fluids) should bias them toward
averaging.

Unlike in the research on intuitive physics, there is no prior knowledge about the influ-
ence of the colored fluids on heart rate, and it is far from obvious that real fluids would
have these characteristics. Different drugs often interact in unpredictable ways, and it is
not easy to predict the taste of a compound on the basis of two differently tasting compo-
nents (see De Graaf & Frijters, 1988). Still, it seems plausible that people associate some
abstract physical features with differently characterized fluids, which should bias them to-
ward different parameterizations of the underlying causal model. The integration rules ac-
tivated by abstract prior knowledge represent rough guesses based on hunches, not sta-
ble knowledge. Therefore, it seems likely that learners are also influenced by additional
cues.
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1.2.2. Biasing integration rules: The effect of learning data
Integration rules are not only affected by prior knowledge but also by the learning data.

With feedback, people can easily learn different integration rules (Koh & Meyer, 1991). In
my studies, I investigated the more interesting case that learning data does not fully constrain
the learning rule. If people predict the effect of a combination of causes they have never
observed before, different integration rules are consistent with the data. Nevertheless, the
kind and sequence of data may bias the rule. I investigated this possibility by comparing two
different tasks within the same domain that both require a choice of an integration rule. In the
combination tasks, participants learned the causal impact of two causes of a common effect
separately and subsequently, I asked them to predict the outcome of combining the two causes.
Thus, in this task, people had information about individual causes as data, and I requested
them to reflect about a combination they had never seen. I contrasted this task with an analysis
task in which the sequence is reversed. For example, participants may have learned that the
blue fluid causes a heart rate of +3 and the blue and yellow fluid combined cause a heart rate
of +5. Then I asked participants to infer the causal strength of the yellow fluid, which they
had never observed individually.

If only domain related cues drive the choice of the integration rule, identical rules should
be invoked in both tasks. Thus, if people assume an additive rule in combination tasks, they
should choose a rating below +5 in the analysis task. If an averaging rule is assumed in the
combination task, then their ratings should be above +5 in the analysis task. The way causes
interact in the real world is not affected by the kind of inference one draws.

Indeed, studies on the representation of temperature mixtures have shown that at least adults
can make the correct inferences independent of the task context (Stavy, Strauss, Orpaz, &
Carmi, 1982). This is a familiar domain to most adults. However, in other areas, the invariance
not always holds. There are studies that have demonstrated that people have difficulties
when the combination rule implies multiplication. For example, Anderson and Butzin (1974)
found that people multiply ability and motivation when predicting performance but subtract
ability from performance when predicting motivation. Similar findings have been obtained for
predicting the behavior of balance scales (Surber & Gzesh, 1984).

These results indicate that the choice of the integration rule is not solely driven by prior
knowledge but also by the data and the required task. Apparently, prior knowledge dominates
in domains in which people have rich and stable domain knowledge such as in the domain
of temperatures. In these domains, the tasks are based on a multitude of experiences so
that responses inconsistent with the familiar rule can be recognized as false and in need
of a correction. In my study, I was concerned with learning tasks in which no stable prior
knowledge is available. Although abstract domain knowledge, such as assumptions about the
kind of physical quantity, may bias a person’s choice, the selected rule is not entrenched in
rich domain knowledge and supported by prior experiences so that other factors may also play
a role.

Previous research (Anderson & Butzin, 1974; Surber & Gzesh, 1984; see also Anderson &
Wilkening, 1991) has suggested that people indeed often tend to invoke different integration
rules in the combination and the analysis task. How can this be explained? In the combination
tasks in the following experiments, the inferences were based on knowledge about the strength
of two separate causes, with one cause being stronger than the other. Without any prior
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assumptions, there are no clear biases this task exerts on the inference for the combined cause.
If the strength of both causes is graphically indicated on a continuous rating scale (lower
values on the left side) the combined effect could either be placed in the middle zone between
the causes (i.e., averaging) or to the right of the stronger cause (i.e., adding). The data does not
clearly bias any of these two solutions, which suggests that prior knowledge will have a strong
biasing influence in this task. As the experiments I discuss in the following sections showed,
the source of these biases can either be abstract domain knowledge or prior experiences with
similar tasks (i.e., transfer).

In the analysis task, I provided information about one cause A along with information about
the combination of this and a novel cause X (i.e., A + X). Again, this task can be visualized
by imagining a scale on which A and A + X are placed on the same scale. The fact that the
combination contains the component cause A along with an additional unfamiliar cause X

highlights the additive structure underlying the compound of A and X (A vs. A + X). If A

generates a specific size of the effect, then the salient additive relation between the component
and the compound highlights the possibility that the difference between the effect of A and
the effect of A + X should be attributed to X. Thus, in this case, the additive structure of the
relation between A and A + X may bias the way the relation between the two outcomes is
processed.

In fact, the strength of this data-driven bias can also be seen in the history of causality
research. For many years, both philosophers and psychologists have argued that the difference
between the probability of the effect in the presence and the absence of the cause (i.e.,
contingency or delta-p rule) is the best measure of causal strength (Cheng & Novick, 1992;
Salmon, 1980). The intuitive reasoning behind this proposal is that the presence of the cause
adds this factor to the constantly present background. The comparison between the cause plus
background to background alone highlights the possibility that the observed difference of the
effect probability should be attributed to the cause. For many years, this rule was proposed as
normative until Cheng (1997) showed that the rule is based on faulty reasoning. It neglects the
fact that there is an upper and lower ceiling for probabilities that should be taken into account.
Thus, even philosophers and scientists are not immune to the biasing effect of data.

2. Experiment 1

In this experiment, I focused on the combination of different causes. Participants learned
about the effects of different colored fluids on animals’ heart rates. This was a learning task
because no prior knowledge about this relation was available. I presented both causes and
effects as continuous variables. More specifically, participants learned that blue fluids cause a
heart rate of +3 and yellow fluids a heart rate of +7. In the test question, I asked learners to
predict the heart rate if both fluids are filled into a large container and mixed. Because there
was no feedback in the test phase, any answer was possibly correct. However, my hypothesis
was that participants would use cues that reminded them of physical knowledge to choose an
integration rule.

The crucial manipulation was whether the cues reminded participants of extensive or
intensive quantities. In the extensive quantity condition, I told participants that the fluids
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represented drugs that can have different strengths. In this condition, I expected people to
favor an additive integration rule in which the strength of the drugs that were mixed together
would amount to a weighted sum (i.e., ratings > +7). In the intensive quantity condition, I
also introduced the fluids as drugs, but I told participants that it is assumed that the heart rate
is sensitive to the taste of the drugs. Thus, I expected a preference for choosing a weighted
average rule (ratings < +7) when predicting how the taste of the mixture would affect the
heart rate.

Especially in the latter case, it was clear that this can only be a hypothesis. In people’s
everyday experience, mixtures of differently tasting fluids may result in all kinds of tastes,
most of them probably horribly tasting. Nevertheless, taste is an intensive quantity, and this
type of quantity is typically associated with proportional reasoning. Furthermore, I assumed
that this kind of hypothetical knowledge is less stable than physical knowledge one has about
familiar domains (e.g., temperatures). This should lead to sensitivity to other kinds of cues.
In this experiment, I added a second condition in which an additional cue was given in both
conditions. In this condition, participants were told that the strength ("extensive quantity
condition") or the taste ("intensive quantity condition") were based on the quantity of a
specific substance called "corium," which was dissolved in the fluids. Because corium was
introduced as an extensive quantity, this may have led at least some participants to represent
the mechanism as based on an extensive quantity. Thus, I expected an increase of the use of
the adding rule in both the strength and the taste conditions.

2.1. Method

2.1.1. Participants and design
A total of 96 students from the University of Frankfurt/Main, Germany, participated in the

experiment. We randomly assigned participants to one of the four conditions generated by the
factors type of cue (intensive vs. extensive quantity) and substance (corium vs. no corium).
The research assistant tested all participants individually.

2.1.2. Materials and procedure
Participants first received written instructions that mentioned new drugs. In the intensive

quantity condition, the instructions stated that the researchers intended to improve the taste
of the drugs to increase sales. To test the drugs, they were given to animals. The researchers
knew that animals’ heart rate would rise the better the drug tasted. Neutrally tasting drugs
would leave the heart rate unaffected. We then introduced participants to the rating scale that
ranged from 0 (normal heart rate) to 12 (very strong heart rate). The tick marks were all
numbered. In the extensive quantity condition, the instruction stated that the researchers had
the goal to develop a drug that increases performance and would excite the physiology of the
body. Neutral drugs would leave the heart rate unaffected, but the more the drugs excited the
body, the higher the heart rate would be. Otherwise, the instructions and rating scales were
identical in both conditions.

The conditions in which the substance corium was mentioned were almost identical ex-
cept that in both conditions, participants were told that corium underlies the taste (intensive
quantity condition) or the strength (extensive quantity condition) of the drugs. Moreover, the
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instructions stated that the more corium (in milligrams) was dissolved the better the drug
would taste or the stronger it would be.

As learning materials, we presented participants with cards on which colored half circles
(diameter: 3.5 cm) could be seen. We mentioned that these pictures represented containers
filled with colored fluids (the drugs). We used the colors green, yellow, blue, and purple. We
counterbalanced the choice of the colors and the sequence. We then told participants that an
animal drank the whole container of the colored fluid, which caused a heart rate of +3. To
remind participants of the instruction, we mentioned again that the heart rate is sensitive to
the taste or the strength of the drug. Then we presented a second item, which caused a heart
rate of +7. We reminded all participants that the heart rate can go up to +12.

In the test phase, we repeated these two trials, and participants had to predict without
feedback the heart rate the two fluids would produce. We then told participants that now the
two fluids were filled into a bigger container without leaving any of the rest in the smaller
containers. Furthermore the instructions stated that new test animals drank the whole container
of the mixed fluid. We emphasized that animals drank everything to make sure that they did
not assume that only a portion of the drug was drunk, which should affect the extensive
quantity condition. For half of the groups, we reversed the test questions for the elements and
the compound so that they were asked about the compound first.

2.2. Results and discussion

Table 1 shows the mean ratings in the four conditions. In general, the ratings in the extensive
quantity conditions (strength) were higher than in the intensive quantity conditions (taste).
Also, there were higher ratings when corium was mentioned. A 2 (type of cue) × 2 (substance)
analysis of variance revealed a significant effect for cue, F (1, 92) = 25.3, p < .001, mean
square error (MSE) = 3.64, as well as substance, F (1, 92) = 6.59, p < .05, MSE = 3.64. The
interaction was not significant (F < 1). This pattern was consistent with the hypothesis that
there would be more averaging when cues were given that suggest intensive quantities and
less averaging when an extensive quantity was offered (i.e., corium) as an explanation of both
types of causes (strength vs. taste).

The analysis of the differences of mean ratings provides information about the size of
the rating differences between the conditions but not about which strategies were chosen.
Therefore, I additionally classified participants according to their strategy. If the rating for
the effect of the compound was between +3 and +7, I diagnosed an averaging strategy. If
the rating was higher than +7, I classified the behavior as indicating adding. Ratings of +3
indicated a minimum (min) strategy, and ratings of +7 a maximum (max) strategy. These

Table 1
Mean ratings of causal strength of the compound

Without Corium With Corium

Taste 5.46 6.63
Strength 7.58 8.42
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Fig. 1. Selected integration strategy in the intensive (taste) and extensive (strength) quantity conditions in Exper-
iment 1. Max = maximum; Min = minimum.

participants seemed to believe that the combined effect was solely determined by either the
weaker or the stronger cause.

Figure 1 shows the results. It can be seen that averaging dominated in the intensive quantity
condition, and adding dominated in the extensive quantity condition. However, mentioning
corium had a clear effect in both conditions. The number of people who added increased. The
min strategy was observed rarely, but there were some participants who used the max strategy,
which may be seen as a special case of either averaging or adding. The choice of strategies
significantly varied in both the conditions without corium, χ2(2, N = 48) = 19.6, p < .001,
in which nobody used the min strategy, and the conditions in which corium was mentioned,
χ2(3, N = 48) = 14.8, p < .01. In this condition, all four strategies were observed (two
participants chose the min strategy).

The results clearly confirm my hypotheses. It is interesting to see how sensitive participants
were to the extensive cue corium, which led many to assume additive integration, although
the effect of the drug was, according to the instructions, still based on the taste of the fluid.
This reveals that people only have unstable assumptions about the underlying mechanisms.
Because participants did not have firm prior knowledge about the relation between the colored
drugs and the heart rate, they could not rely on intuitive domain knowledge. Nevertheless, it
is clear that there was no general preference for adding. People chose integration rules on the
basis of cues that reminded them of abstract characteristics of familiar domains.

3. Experiment 2

In this experiment, I focused on the conditions in which no corium was mentioned. Instead
of a combination task, I used an analysis task. Here, I asked participants to infer the causal
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impact of one element when they had learned about the compound and the other elemental
cause. The question was which integration rule participants would choose in this analysis task.
If participants were solely driven by the cues that suggested different causal mechanisms, they
should have chosen the same integration rule as in the combination task. However, the corium
condition in Experiment 1 already provided evidence for the instability of the underlying
knowledge. Thus, I expected that other factors, such as the highlighting of the difference
between compound and element in the presentation of the data for the analysis task, may
affect the choice of an integration rule.

3.1. Method

3.1.1. Participants and design
A total of 48 students from the University of Frankfurt participated, with half of this group

randomly assigned to the intensive and half to the extensive quantity condition.

3.1.2. Materials and procedure
The instructions and materials were taken from Experiment 1. The only difference was that

we changed the sequence of the learning and test trials. First, participants learned that the
strength (extensive quantity condition) or the taste (intensive quantity condition) of one of the
fluids caused a heart rate of +3. Then the experimenter showed the second card with the other
fluid and said that participants should imagine that both fluids are filled into a large container
and mixed. It was stated that the animals drank the whole container, which caused a heart rate
of +5. After two learning trials, the two fluids were shown individually, and participants were
asked about the effects of either fluid. The answer for one fluid was already known from the
learning phase, but the answer for the second fluid had to be inferred (without feedback). We
counterbalanced the sequence of these test trials.

After the analysis task, we presented participants with a third colored fluid that caused a
heart rate of +9. Then we asked participants to rate the strength of the effect when this fluid
is mixed with the first fluid (+3). This was a standard combination task, which served as an
additional test.

3.2. Results and discussion

Table 2 shows the mean ratings for both the analysis and combination tasks. First, I
analyzed the analysis task (first row). The mean values showed significantly higher values for

Table 2
Mean ratings of causal strength of the com-
pound (combination) or the second element
(analysis)

Taste Strength

Analysis 3.71 2.21
Combination 8.21 11.33
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the intensive than the extensive quantity condition, F (1, 46) = 8.57, p < .01, MSE = 3.15.
This indicates sensitivity to the physical cue. Higher values suggest that more people used
an averaging rule. However, both means were clearly below +5, which is consistent with a
tendency to add in both tasks.

By contrast, the very same participants showed a different pattern in the final combination
task (second row in Table 2). Again, there was a significant difference that suggested more
adding in the extensive than the intensive quantity condition, F (1, 46) = 24.1, p < .001, MSE
= 4.85. However, now the mean value for the intensive quantity condition fell below +9,
which suggested averaging, and the mean for the extensive quantity condition was above +9,
which suggested adding. Thus, I found a within-subjects dissociation. Whereas participants
were sensitive to the physical cues in the final combination task, they seemed to gravitate
toward additive integration in the initially presented analysis context.

Figure 2 breaks down the strategies of participants. I observed two strategies in the analysis
and three in the combination context. I used the same method as in Experiment 1 to classify
participants (except that +9 was then the reference point for the combination task). The figure
shows that the majority of participants chose an additive integration rule in the analysis task,
although also a small effect of the type of cue (taste vs. strength) can be seen, χ2(1, N = 48) =
5.4, p < .05.

The subsequent combination task showed a similar pattern as Experiment 1, with a preva-
lence of adding in the extensive quantity condition and of averaging in the intensive quantity
condition, χ2(2, N = 48) = 17.5, p < .001. There were more people who used an additive
strategy in this experiment, which might be due to transfer effects between the two tasks.
Nevertheless, it is interesting to see that a significant number of people switched strategies
between the two tasks.

Fig. 2. Selected integration strategy in the intensive (taste) and extensive (strength) quantity conditions in the
analysis versus the combination task in Experiment 2. Max = maximum.
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The dissociation demonstrates again that participants could not rely on stable knowledge
but were affected by cues. Apart from the influence of domain-related cues, this experiment
demonstrated that the kind of learning data, the task, and transfer from previous tasks also
affect the selected integration rule.

4. Experiment 3

In Experiment 2, I used a within-subjects design to compare analysis and combination,
with the latter task always following the first task. In Experiment 3, I used a between-subjects
design to compare these two tasks. Half of the group of participants started with a combination
task and half with an analysis task. Additionally, I presented a different second combination
task in both conditions to be better able to test whether there is transfer between the two
consecutive tasks.

A second goal of this experiment was to test my hypotheses in a different causal domain.
In this experiment, I chose liking as a mechanism underlying the causal relations. Participants
saw the same stimuli as in the previous experiments but were told that the heart rate of
the test animals was sensitive to how much they liked the colored figures. I chose liking
because Anderson (1981) found a preference for averaging and proportional reasoning in such
judgments (with more natural stimuli). A prevalence of averaging in the combination task is
a precondition of a possible dissociation between combining and analyzing.

However, whereas previous studies have focused on judgments of familiar domains, I used
this mechanism in a novel learning context. There are arguably even less constraints on the
generation of liking judgments than in the domain of tastes. There is no rational reason to
assume that people who like blue and yellow half circles differently would average when
presented with a full circle that is half yellow and half blue. All kinds of outcomes seem
possible. Also, if the heart rate is dependent on viewing colored circles, it may very well
seem plausible that a full circle would generate a faster heart beat than each of its components
(i.e., adding). Nevertheless, based on previous research, I expected that liking would cue
participants into a preference for averaging causal influences but that this knowledge might
also be unstable and might therefore be affected by additional cues.

4.1. Method

4.1.1. Participants and design
A total of 48 students from the University of Frankfurt participated; we randomly assigned

half of this group to the analysis and half to the combination condition.

4.1.2. Materials and procedure
The materials and the task were largely identical to the ones we used in the previous

experiment. Moreover, we used similar instructions except that we told participants that the
colored figures represented geometric figures (instead of liquids), and that animals’ heart
rates were sensitive to how much they liked the figures. Otherwise we used the same colored
half-circles and numbered rating scales as in the previous experiments.
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In the combination condition, we told participants that one of the half circles causes a heart
rate of +3 and the other a heart rate of +7 (with the colors being counterbalanced). These
learning trials were repeated once. In the subsequent test phase, we presented full circles that
had the same radius as the half circles. The full circles combined the two differently colored
half circles. Otherwise, the test phase was similar to Experiment 1; we asked half of the group
about the full circle first prior to the two half circles. At the end, we presented a second
combination task in which, according to the learning feedback, a 3rd half circle caused a heart
rate of +9.

The analysis condition was analogous to Experiment 2. Participants learned that one half
circle causes a heart rate of +3 and the full circle a heart rate of +5. We counterbalanced the
order of these two trials. We repeated this sequence before the test phase started. In the test
phase, we asked participants about the causal effect of each component of the full circle (i.e.,
the half circles). We again counterbalanced the sequence. Subsequently, we presented a 3rd
half circle that caused a heart rate of +9. In the test phase, participants had to predict the effect
for the full circle that contained this new half circle and the one that caused a heart rate of +3.

4.2. Results and discussion

In this experiment, my goal was to compare the integration strategies that are used in
combination and analysis tasks. Therefore, my analysis focused on the classification of the
strategies the individual participants chose. Figure 3 shows a breakdown of the strategies used
in the two different tasks. The left side depicts the results of the first combination task in which
the majority of participants chose an averaging integration rule. Some participants preferred
the max rule. In contrast, the analysis task (also shown on the left side of Fig. 3) showed a

Fig. 3. Selected integration strategy in different task contexts in Experiment 3 (left). The right side shows the
results of the final combination task. Max = maximum.
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different pattern. About 90% of the participants preferred an additive integration rule. The
difference in the choice of strategies between the two conditions was highly significant, χ2(2,
N = 48) = 33.56, p < .001. Thus, the asymmetry between combination and analysis turned
out to be even stronger than in the previous experiment. This may be due to the fact that domain
knowledge underlying liking judgments may be even less stable than knowledge about factors
affecting taste, which could strengthen the role of additional factors.

The right side of Fig. 3 demonstrates the role of transfer between the initial task (com-
bination or analysis) and the subsequent different combination task. The strategy choices
differed depending on the type of initial task, χ2(2, N = 48) = 22.3, p < .001. Whereas
participants preferred an additive integration in the second combination task when the initial
task required an analysis, averaging dominated when the initial task cued into averaging. Only
17% switched from adding in the first analysis task to averaging in the subsequent combi-
nation task. Thus, there were stronger transfer effects than in the previous studies, which
may reflect the greater uncertainty of participants about the proper integration rule in liking
judgments.

5. Experiment 4

Experiment 4 consists of two separate studies, Experiments 4a and 4b. In Experiment 4a,
I used taste, and in Experiment 4b, I used liking as causes of animals’ heart rate. Otherwise,
both studies were identical. The main goal of Experiment 4 was to replicate previous results
using a different dependent measure. In the previous experiments, I had used numbered rating
scales. This raises the question whether the obtained asymmetry may be a consequence of
differences in the difficulty of symbolic arithmetic operations. The inversion of averaging in
the analysis task may be mathematically more difficult than the inversion of adding, which
may have led to a switch to a simpler rule in the analysis task. In my view, this hypothesis was
not very plausible as the sole explanation of the dissociations because I had used university
students as my participants who certainly have a grasp of averaging (and its inversion). This
was shown in the study by Stavy et al. (1982). In the highly familiar domain Stavy et al.
studied, participants had no problem with inversions of averaging.

Nevertheless, Brunswik (1956) proposed the hypothesis that analytic reasoning, which
is based on number representations, may generally differ from intuitive reasoning, which
is invoked in domains that one does not represent with analytic tools. Therefore, it seems
interesting to study the effect of a more intuitive measure in one’s tasks. Research on the
difference between analytic and intuitive reasoning in intuitive physics has presented a mixed
picture, with none of the two modes being clearly superior in all domains (see Ahl, Moore,
& Dixon, 1992; Anderson, 1987; Budescu, Weinberg, & Wallsten, 1988; Hammond, Hamm,
Grassia, & Pearson, 1987).

To test whether the effects were solely due to analytic reasoning with numbers or whether
they can also be found with more intuitive causal reasoning, I switched to a nonnumeric,
graphic rating scale. These scales had neither numbers nor tick marks so that counting or other
processes of symbolic measurements were not invited. Intensity was signaled by an arrow
that pointed to a specific point on a line, which was introduced as graphically representing the
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intensity of the effect (i.e., heart rate) starting with normal values on the left side of the line. This
manipulation is motivated by findings that have shown that symbolic manipulations with real
numbers are ontogenetically and phylogenetically preceded by the capacity to approximate
precise numerical reasoning using mental manipulations of numerosities on an analog "number
line" (Dehaene, 1997). Recent research has shown that these analog mental manipulations are
based on brain circuitry different from the ones activated in symbolic arithmetic reasoning
(Dehaene, Molko, Cohen, & Wilson, 2004).

My main goal was to test whether the asymmetry between combination and analysis tasks
in identical domains can be replicated with nonnumeric scales that discourage algebraic
operations but rather encourage analog reasoning on a number line. This way, I intended
to investigate causal reasoning independent of possible differences in difficulty of symbolic
numeric operations.

5.1. Method

5.1.1. Participants and design
In each of the two experiments (Experiment 4a and 4b), we investigated 96 students from

the University of Frankfurt. We assigned half of these groups to the combination and half to
the analysis condition.

5.1.2. Materials and procedure
For Experiment 4a, we used the instructions and materials from Experiments 1 (combination

task) and 2 (analysis task). We only used the instruction that the causal effect (heart rate)
depended on the taste of the drug. In Experiment 4b, we used the cover stories and materials
from Experiment 3. Thus, participants learned that the heart rate was sensitive to how much
the animals liked the geometric figures. The key difference to the previous experiments was
that instead of numeric rating scales, we used graphic scales in which the left end mark of the
scale was labeled "normal" and the right end mark "very strong." There were neither numbers
nor tick marks, just a continuous line. We told participants that the points between the end
points represented different degrees of strength.

The learning task was similar to the ones used in the previous experiments. The main
difference was that the intensity of the heart rate was expressed by arrows pointing to specific
points on the scale. These points corresponded to the positions of the numbers (+3, +5,
+7) in an equidistant scale. In the combination task, we counterbalanced the sequence of the
stronger and weaker causes. In the analysis task, we counterbalanced whether the compound
or the element was presented first. Each learning task consisted of two trial types, which were
repeated three times. Participants had to point to positions on the scale and received immediate
feedback (scales with arrows) about the correct position.

In the test phase, we handed out rating sheets with three scales that did not show any
arrows. Participants’ task was to mark the positions with a pen that corresponded to the effect
the two elemental causes and the combined cause would generate. The critical response was
the rating of the compound in the combination task and the rating of the second element in
the analysis task. We counterbalanced the sequence of these two responses in the analysis
task.
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5.2. Results and discussion

Again, I was interested in the differences in the choice of strategies. I coded the rating
sheets analogous to the previous studies. The crucial question was how the three arrows in
the test sheets were located relative to each other. If the arrow for the compound cause was
pointing at a segment in between the two other arrows, averaging was diagnosed; when it was
pointing to an intensity that was higher than the two others, then this was seen as evidence for
adding. Similarly, the analysis task required a decision as to whether the second element was
rated more intense (averaging) or less intense (adding) than the compound. If the arrows for
the element and compound cue were the same, the max or min rule was diagnosed.

Figure 4 breaks down the selected strategies in Experiment 4a (left) and 4b (right) in the two
tasks. The most important result is that the difference between combination and analysis was
replicated in both experiments. The strategies varied depending on the task in both Experiment
4a (taste), χ2(3, N = 96) = 12.87, p < .01, and Experiment 4b (liking), χ2(3, N = 96) =
9.41, p < .05. As in the previous experiments, I observed more averaging in the combination
task than in the analysis task. This shows that this effect cannot be attributed to asymmetries
in the difficulty of arithmetic operations. In these experiments, we used a graphic rating scale
that neither contained numbers nor tick marks.

The effect was somewhat smaller in these two experiments than in the previous ones. In
Experiment 4a, one can see for the first time that averaging dominated in both conditions,
although there was still a clear, highly significant difference. In Experiment 4b, I found
the usual disordinal interaction as in Experiment 3. The weakening of the effect, especially
in Experiment 4a, may indicate that at least some participants in the previous experiments
may have used numeric representations and arithmetic procedures and that difficulty of the
arithmetic procedure may also have affected the choice of integration rules. However, the

Fig. 4. Selected integration strategy in different task contexts in Experiment 4a (taste; left) and 4b (liking; right).
Max = maximum; Min = minimum.
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replication of the dissociation between combining and analyzing with nonnumeric scales
suggested that the difficulty of arithmetic operations was at best responsible for portions of the
effect. The assumption that the obtained dissociation was not entirely caused by asymmetries
in the difficulty of arithmetic procedures was also suggested by the different patterns of the
obtained interactions in Experiments 4a and 4b. If the dissociation was solely caused by some
learners trying to estimate numeric measures from the continuous scale and using arithmetic
procedures, the same deviations from the patterns from the ones obtained in the previous
studies should have been observed in both experiments. Whereas I got a switch to an ordinal
interaction in Experiment 4a, the previous disordinal interaction was largely replicated in
Experiment 4b. Moreover, no participant spontaneously reported to have tried to measure the
distances on the scale using number estimates. It seems more likely that most participants
reasoned using an analog representation of the size of the effects (along the lines of Dehaene’s,
1997, number line).

The difference between Experiment 4a and 4b was consistent with the observation that the
domain of liking was less constrained by prior domain assumptions than the domain of taste
so that domain assumptions dominated in the taste condition, whereas the liking condition
was more strongly affected by other task factors (see also the discussion of Experiment 3).

6. General discussion

The causal texture of the world contains complex networks in which effects are influenced
by several causes. Learning all these relations and possible interactions would require samples
of observation that present all empirically possible patterns of causes and effects. In everyday
life, people typically only observe events relating to fragments of causal networks. From this
knowledge, people have to infer how novel patterns of causes probably would behave. The
research I report on in this article addresses the question of how people intuitively integrate
multiple causes with respect to a joint effect.

There is little work on this topic in the literature, but most theories of causal induction
assume a bias toward additivity and linearity of causal influences (see Introduction section).
Our experiments have shown that people draw on analogies from prior knowledge when
selecting an integration rule. For example, it was shown that people tended to average causal
influences when the causes were described in terms of intensive physical quantities (taste) or
when a psychological preference (liking) was the basis of the effect. In contrast, extensive
quantities as causes generated a preference for adding.

Unlike research on intuitive theories, which focuses on existing knowledge, my inter-
est was in learning of novel relations (fictitious colored drugs that cause heart rates).
Thus, participants could not draw on stable knowledge. In these situations, prior knowl-
edge only provides hunches, which might very well turn out to be wrong. For exam-
ple, it is far from necessary that the taste of a mixed fluid corresponds to the average
taste of its components or that animals’ liking of a full circle with two colors corre-
sponds to the average of its components. Nevertheless, lacking more substantial knowl-
edge, people seem to guess the most appropriate integration rule. These guesses are easily
overturned though if additional cues are present that are associated with different rules.
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Experiment 1 provided first evidence for the instability of these guesses. Mentioning an
extensive quantity (i.e., corium) generated an increase of additive responses in all con-
ditions, although the general difference between extensive and intensive quantities stayed
intact.

The instability of the knowledge underlying the choices may also be the reason for the
surprisingly large context effects I observed. I compared a combination task in which par-
ticipants learned about individual causes first and then predicted the effect of the compound
with an analysis task in which participants inferred the probable effect of an element after
having learned about the compound and the other element. In general, I found a preference for
adding in the analysis task even when there was a preference for averaging in the correspond-
ing combination task. I found this dissociation within and across groups of participants and
across different measurement methods (numbered vs. graphic rating scales). Inconsistencies
have often been found when knowledge is unstable (see Reed & Evans, 1987; Surber, 1987),
whereas in more familiar domains, people are better at being consistent across different tasks
(Stavy et al., 1982).

This asymmetry shows that participants’ selections of integration rules, apart from being
influenced by domain-related cues, were also influenced by other factors such as the way
the data are presented or previous tasks. This is consistent with the assumption that domain
knowledge is only one of many fallible cues learners use to select an integration rule. For the
analysis task, my hypothesis was that the way the data are presented in this task highlights
the difference between the effect of the compound and of one of its components, which
suggests that the second component is probably responsible for this difference. The most
convincing evidence for this hypothesis comes from the experiments in which I requested
nonnumeric ratings. Especially in the liking task, I observed a strong disordinal interaction
between combining and analyzing tasks with a task that did not encourage numeric, symbolic
reasoning.

The contrast between the experiments requesting numeric and nonnumeric ratings suggested
arithmetic difficulty as an additional factor being responsible for the asymmetry between
combination and analysis tasks. Although previous experiments have shown that in some
domains people are capable of correctly inverting averaging (e.g., Stavy et al., 1982), it may
well be that in domains with less stable domain intuitions, even small differences in the
difficulty of arithmetic operations affect the choice of integration rules. One reason for the
differences in performance between domains might be that in familiar domains, people might
immediately recognize that their intuitive response is wrong. If people learn that the fluid in
one glass has a temperature of 20◦C and the mixture a temperature of 26◦C, people might
be immediately aware of the fact that it cannot be possibly true that the second component
has only a temperature of 6◦C. Such control processes are less likely in the less familiar
domains I chose. The fact that difficulty of procedures might also affect people’s causal
reasoning strategies was also confirmed in the studies by Waldmann and Hagmayer (2001).
In Experiment 2 of this set of studies, we showed that the difficulty of the task influenced
whether people controlled for a cofactor when assessing causal strength.

Other cues affecting the integration rule can come from previous tasks (i.e., analogical
transfer). Both Experiments 2 and 3 provided evidence for the influence of the previous task.
In both experiments, the choice of the integration rule in a final combination task was affected
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by the initial task. When this task required analyzing, a greater tendency to add was observed
regardless of the domain.

The research on domain knowledge (e.g., intuitive physics) suggests that domain assump-
tions should be the normative basis for responses. For example, if temperatures should be
averaged, this rule should be used regardless of the task and the context. According to this
view, the obtained differences between combining and analyzing appear irrational. However,
in the tasks I chose, there was no clear correct response in any of the tasks. For example,
combining two differently tasting liquids may have all kinds of effects on the taste of the
compound (imagine mixing fish and ice cream). Similarly, it seems unlikely that the global
assessment of the aesthetic value of a painting can be explained by averaging how much
people like sections of the painting. Although it seems reasonable to use domain cues for
rough estimates, learners are probably aware of the fallibility of these cues. This explains why
other cues, apart from domain-related ones, also affect the choice of integration rules and may
even override a person’s domain assumptions.

In this article, I started by discussing the current debate between domain-specific and
domain-general theories of causal induction (Cartwright, 2004; Gopnik et al., 2004). The
results of our experiments suggest a middle position that is captured by causal-model the-
ory (Lagnado et al., in press; Waldmann, 1996; Waldmann et al., 2006) and theory-based
Bayesian theories (Tenenbaum & Griffiths, 2003; Tenenbaum et al., in press). The results of
the experiments demonstrate that it is necessary to differentiate between different levels of
prior knowledge. For some domains, people may have stable, thick (Cartwright, 2004) prior
knowledge that can directly be the medium of causal reasoning without having to translate
the tasks into more abstract causal representations. In such domains, knowledge dominates
and reasoning is little affected by other task-related factors (e.g., Stavy et al., 1982). This
kind of knowledge has probably little to do with everyday learning but may underlie reason-
ing processes of scientists in domains for which precise, very specific theories are already
available. In contrast, learning tasks, especially in everyday contexts, often present domains
for which no stable domain theories are available. People rarely have thick knowledge about
the causal structures surrounding them (Rozenblit & Keil, 2002). I explored examples of
such domains with sparse, fragmentary prior knowledge in our studies. In such tasks, people
typically needed to focus on statistical data, which suggested the presence or absence of
causal relations. Nevertheless, purely bottom-up learning would require amounts of data and
information-processing capacity that are not available (Tenenbaum & Griffiths, 2003). There-
fore, in such tasks, learners tend to use multiple fallible cues to simplify the induction process.
Such cues include abstract knowledge of domain characteristics, learning data, difficulty of
operations, and transfer from previous experiences, which all collaborate or compete to aid
the induction process.

Note

1. In this article, I focus on generative causes (as opposed to preventive ones) and use the
term additivity whenever people attribute more strength to a compound of causes than
to each cause individually. This characterization acknowledges that the contributions of
the individual causes may be weighted.
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