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Introduction

People’s ability to predict future events, to explain past events, and to choose appropri-
ate actions to achieve goals belongs to the most central cognitive competencies.
How is knowledge about regularities in the world learned, stored, and accessed?
An intuitively plausible theory that has been developed in philosophy for many
centuries assumes that causality is the ‘cement of the universe’ (Mackie, 1974), which
underlies the orderly relations between observable events. According to this view some
event types, causes, have the capacity or power to generate their effects. To be a
successful agent we need to have causal representations that mirror the causal texture
of the world.

The philosopher David Hume questioned this view in his seminal writings (Hume,
1748/1977). He analyzed situations in which we learn about causal relations, and did not
detect any empirical input that might correspond to evidence for causal powers. What he
found instead was repeated sequence of a pair of spatio-temporally contiguous events,
but nothing beyond. Therefore he concluded that causality is a cognitive illusion trig-
gered by associations. Hume did not question that we believe in causal powers, he merely
argued that there is nothing in our experiential input that directly corresponds to causal
powers.
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The vmxn:c_omw of learning has adopted Hume's view by focusing on his analys;
Em experiential input. According to many learning theories, causal «m&mﬂw it
aw:\m: by associative relations that have been learned on the basis of cMmm_é&_o:m m.um
n:o:m.vﬁimn: events (e.g., Allan, 1993; Shanks & Dickinson, 1987). i e
_um<:w<.m dog, which has learned to predict food when it hears a .S:m :.o SM:_E., -
mo:&wccs_.:wv_ orto arat’s learning that a lever press produces food (j.e. :..ﬁ.m s
conditioning), we learn about predictive relations in our world. ,:.,Q.m.mm n Cou g
~.:m. concept of causality in this view, Thus, following the epistemology of _oemnn_mn mwa
:E,,,.:_ the concept of causality was dropped altogether and R_u_mnmn_ b - nﬂ.vo.a_,
relations exhibited in covariational patterns between observable events, ey
.S\:% do we gain by having causal representations beyond what we b_.m»n_
with n...mn:.n:.,\m relations gleaned from learning data? Developing earlier Mnm: L
causal inference (e.g,, Goodman, 1983; Kant, 1781/1965; Skyrms, 2000) rzomo_‘_”.o:
and _um<.n:o_om§m have analyzed this question in great depth in Nra vmm.ﬁﬂmnmmcv =
have pointed to several crucial differences (see Pearl, 1988, 2000; Spirtes et al. nwm”w: a
Woodward, 2003): (1) If we had no causal knowledge we could not represent Sm. .Q.Q :
ence between causal and spurious statistical relations, such as the relation vmz_e el
vmacam.nma and the weather. Barometers covary with the weather as does smoki n.n“
:mmam disease. However, the first relation is spurious due to a common cause, Mw 4
pheric pressure, whereas the second describes a direct causal relation Im,:mm “”cm.
~._._mnr~=:n.m_.:~ change the reading of the barometer, the weather will sm- be mm,mﬂn““m
<.<—_2.nuv. giving up smoking will decrease the likelihood of heart disease. This &mnan..
.:o: is Q..:QN_ for planning actions (see Woodward, 2003). We can mnnm.ﬂa events by
intervening mn their causes, whereas interventions in spurious correlates are in»mmn%m
(2) Another important aspect of causality is its inherent directionality. Causes generate
effects ?:. not vice versa. For example, the thrusting position of a fist on m illow
causes the indentation in the pillow, rather than vice versa. In contrast 8<m1m:%a are
c:a:mﬂm.n_ and therefore do not allow us to make informed _.:mmnm:na.m about the out-
comes of interventions. (3) A final example of the advantages of causal representations
is ﬂr.m:‘ parsimony when multiple events are involved. For example, learning predictive
relations between six events requires us to encode 15 pairwise nc<mrmmc=m,w%=_< some
of the necessary information may have been made available to learners, however. In
contrast, causal models allow us to form more parsimonious Rv_.mma:am:.o.nm and make
informed guesses about covariations we may never have observed. For example, if we
r.:oi that one event is the common cause of the other five, we can infer all 15 nc“..mam‘
tions from knowledge of the causal strength between the cause and each of its five
effects (see Pearl, 1988, 2000; Spirtes et al., 1993).
mo_._oi.iw Hume, learning theory has focused on the covariations inherent in the
_mmq:Em.EwE.. and has neglected how covariations give rise to causal representations.
The basic claim was that knowledge about causal relations is nothing more than
_A:o‘\”,._m%,m of covariations. However, there is another route that can be traced back to
Kant’s (1781/1965) view of causality. Hume, who did not deny the possibility of hid-
den nw:mw_ powers, was indeed right when he pointed to covariations as the primary
nxmm_._n::& input suggesting the existence of causal relations. However, his empiricist
epistemology was mistaken. As many philosophers of science have _..m<mu_mmvw_um:
from concepts referring to observable events, our theories also contain -rmo__.m:ﬂm_
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concepts that are only indirectly tied to the observable data (see Glymour, 1980;
Quine, 1960; Sneed, 1971). Thus, it is possible to grant that we only have covariational
data to support causal hypotheses, while retaining the view that we go beyond the
information given and use covariations along with background assumptions to
induce genuinely causal relations.

Cheng (1997) was the first to take this path in psychology. She has developed a
theory (power PC theory), which formalizes how we can infer unobservable causal
powers from covariations (see also Buehner & Cheng, 2005). According to this
view, we enter the learning process with abstract assumptions about causes
generating or preventing effects in the potential presence of hidden causal events.
These assumptions combined with learning input allow learners to induce the
causal power of events.

Causal-model theory (Waldmann & Holyoak, 1992) whose focus is on more com-
plex causal models similarly has stated that people interpret covariations in light of
prior assumptions about causal structures. A consequence of this view, supported in
numerous empirical studies, is that identical learning input may lead to different
causal representations depending on the characteristics of prior assumptions (see
Waldmann et al., 2006, for an overview).

Most recently, causal Bayes net theory has been proposed as a psychological theory
of causal cognitions (Gopnik et al., 2004; Sloman, 2005). Whereas power PC and
causal-model theory were developed as psychological theories, causal Bayes net the-
ory was originally developed by philosophers, computer scientists, and statisticians as
a rational tool for causal discovery in empirical sciences (see Pearl, 1988; Spirtes et al.,

1993). Thus, primarily this approach aimed at developing a complex, normative the-
ory of causal induction, and only secondarily claimed to be a psychological theory of
everyday learning.

Given that the majority of learning theories have asserted that causal learning can
be reduced to forming associations, one of the main goals in the empirical studies of
power PC and causal-model theory was to test these theories against the predictions
of associative theories (see Cheng, 1997; Buehner & Cheng, 2005; Waldmann, 1996;
Waldmann et al., 2006, for overviews). For example, Buehner et al. (2003) tested a
novel pattern of an influence of the base rate of the effect on judgments of causal
strength predicted by the power PC theory and no other theories. They showed that
when a question measuring estimated causal strength is unambiguous, the results
supported the key prediction of power PC theory that people use estimates of causal
power to assess causal strength (see also Wu & Cheng, 1999; Liljeholm & Cheng,

2007). Waldmann and colleagues have shown that people are sensitive to causal direc-

tionality in learning (e.g., Waldmann, 2000, 2001) and to the difference between

causal and spurious relations (Waldmann & Hagmayer, 2005). All these findings are
inconsistent with the predictions of associative learning theories.

With the advent of causal Bayes net theory there is a major new competitor for
power PC and causal-model theory, which often makes similar predictions as these
theories. In fact, some have argued that previously developed theories such as power
PC theory can be modeled as a special case of causal Bayes nets (see Glymour, 2001).
We therefore think it is time to take a closer look at discriminating between different
computational theories of causal reasoning.
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Developing and testing rational models:

the dominant view

Thus far, all theories of causal cognitions are developed at the computational leve,
which, according to Marr’s (1982) famous distinction, is concerned with the goals and
constraints rather than the algorithms of computations. Moreover, all theories share
the view that a rational analysis of what an organism should compute should be the
starting point of a successful theory in this field.

Anderson’s (1990) book on rational madels has been one of the main influences of
the current collection. In the first chapters of this book he proposed a methodological
strategy for developing rational models, which will provide the starting point of our
discussion (see also Chater & QOaksford, 2004). Anderson (1990) motivates rational
SOMm:bm by pointing to the problems of empirically identifying theories at the
implementation level. In psychology we use observable inputs and outputs to induce
unobservable mechanisms. Theoretically all mechanism hypotheses are equivalent
that generate the same input-output function. This, according to Anderson (1990),
leaves us with the problem of the unidentifiability of psychological theories at the
mechanism level. Whenever such theories compute identical input-output functions
a decision between them is impossible.

An alternative strategy, according to Anderson (1990}, is to abandon the search for
mechanisms and focus on rational modeling. He postulates six steps in developing a
rational model: (1) We need to analyze the goals of the cognitive system, and (2) develop
a formal model of the environment to which the system is adapted. (3) Psychology
only enters in the form of minimal assumptions about computational limitations.
These assumptions should be minimal, according to Anderson, to guarantee that the
analysis is powerful in the sense that the predictions mainly flow from an analysis of
the goals of the cognitive system and the environment and do not depend on assump-
tions about (unidentifiable) mechanisms. Then (4) a rational model is developed that
derives the optimal behavioral function given the stated constraints of the environ-
ment and the organism. (5) Finally, these predictions can be compared with the
results of empirical behavioral studies. (6) If the predictions are off, the process iter-
ates by going back and revising previous analyses.

This view has been very popular in causal reasoning research, especially in the
Bayesian camp. For example, Steyvers et al. (2003) defend the priority of rational
analysis over theories of psychological implementation. They argue that their model
attempts to explain people’s behavior ‘in terms of approximations to rational statisti-
cal inference, but this account does not require that people actually carry out these
computations in their conscious thinking, or even in some unconscious but explicit
format. (p. 485). After this statement they acknowledge that simple heuristics might
also account for their findings. Similarly, Gopnik et al. (2004) pursued the goal to
show that the inferences of preschoolers were consistent with the normative predic-
tions of causal Bayes nets, while ignoring that simpler and less powerful causal
approaches can account for many of the presented findings.

Thus, there is a tendency of some researchers in this field to focus on the global fit
between a single rational model and observed behavior. Alternative theories are either
neglected or reinterpreted as possible implementations of the rational account. In our
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view, it is time to reconsider the relation between rational models and empirical evi-
dence, and revisit the research strategy Anderson (1990) has proposed.

The indeterminacy of rational models

The underdetermination of psychological theories by the data has been one of the
driving forces behind Anderson’s (1990) rational analysis approach. However, in our
view this argument is not restricted to theories at the mechanism level. The underde-
termination problem is a general issue for empirical sciences regardless of whether
they study the mind or environmental processes (Quine, 1960). In most areas, multiple
theories compete, and it is far from clear whether a unique theory will emerge as a win-
ner. Let us revisit some of Anderson’s methodological steps in light of this problem in
the area of causal reasoning, and show that there is theory competition at each step:

Step 1 requires an analysis of the goals of the cognitive system. It can easily be seen
that in causal reasoning research the goal specifications have been highly dependent
on the theory that is endorsed by the researcher. An associationist will see the ability
to predict events as the primary goal of cognitive systems; somebody who sees causal
forces and mechanisms as the basis of causality will instead choose the understanding
of causal systems as primary; finally, a causal Bayes net researcher might focus on the
goal of representing interventions and observations within a unified causal represen-
tation. Of course, all these approaches might be partially correct. But these examples
show that there is theory dependence already at the level of the postulation of goals.

Step 2 focuses on the analysis of the environment. Again research on causality pro-
vides an excellent example for the theory-ladenness of environmental theories. Causal
Bayes net theory is a recent example of a theory whose primary goal was to provide a
framework for describing and discovering causal relations in the environment (Pearl,
2000; Spirtes et al., 1993). However, apart from causal Bayes nets there is a wealth of
alternative theories of causality which are in part inconsistent with each other but still
claim to provide a proper representation of causal relations in the world (see
Cartwright, 1989, 2004; Dowe, 2000; Shafer, 1996).

Step 4, the development of a rational model, is clearly dependent on the model of the
environment, and is therefore subject to the same constraints. Causal Bayes net theory is
a good example of this dependence as it has simultaneously been proposed as a psycho-
logical theory (Gopnik et al., 2004) and as a theory of scientific discovery of causal
models in the environment (Spirtes et al., 1993). However, other psychological theories
of causality were similarly influenced by normative models. Associative accounts such as
the probabilistic contrast model (Cheng & Novick, 1992) have predecessors in philoso-
phy (Suppes, 1970; Salmon, 1980) as have psychological theories (Ahn et al., 1995;
Shultz, 1982) focusing on causal mechanisms (Dowe, 2000; Salmon, 1984).

The main goal of the present section is to show that it is premature to expect that a
careful analysis of the goals of the cognitive system and the environment will generate
a unique rational model. The recent debate on the proper rational model for logical
or probabilistic reasoning is a good example of how different assumptions may lead
to competing theories (see Oaksford & Chater, 2007). We have argued that the steps
postulated by Anderson (1990) are tightly constrained by each other. Goals, environ-

ment and cognitive systems need to be modeled as a whole in which all components
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influence each other, and jointly should be confronted with empirical data. A rational

Eo“m_ for the aplysia will surely look different from one for humans. Consequently,

we have to be concerned with the possibility of multipl i i .
ple competing rational

that need to be tested and evaluated. L

Minimal rational models as a methodological heuristic

We will defend the position that it is useful to consider whether there are alternative
._.m:.o:& theories which are less computationally demanding while still fully account-
ing for the data (see also Daw et al., this volume, for a different but similar]
motivated approach). This methodological heuristic we will call minimality _‘3::,%\
ment. Given the indeterminacy at all levels, it is clear that rational models, just like
models at other levels, need to be empirically tested. Due to the potential tradeoffs
between goals, environment, (innate and acquired) learning biases and information
processing limitations, different rational models can be developed and will therefore
compete. How can competing rational models be tested? We will discuss some
general principles:

(1) The more psychological evidence we consider, the higher the likelihood that we
will be able to empirically distinguish between thearies. For example, causal Bayes
net theory (Gopnik ef al., 2004) requires sensitivity to conditional dependence
and independence information, whereas alternative theories do not. Showing that
people can or cannot pick up conditional dependency information might there-
fore be relevant for distinguishing between theories. Of course, answering the
question of what computations organisms can accomplish is not always easy. For
example, many psychologists believed that we cannot, explicitly or implicitly,
compute multiple regression weights until a theory, the Rescorla-Wagner model
(1972), was developed which shows how such weights can be computed with
fairly easy computational routines.

(2) A minimal model allows us to understand better which conclusions are war-
ranted by the evidence and which not. Moreover, they give us a better under-
standing of what aspects of theories are actually 2:.3:.8_? supported, and
which are in need of further research. Minimality is a particularly useful heuristic
when theories that are hierarchically related compete with each other. For exam-
ple, power PC theory can be modeled as a special case of causal Bayes nets (see
Glymour, 2001). However, this does not mean that all the evidence for power PC
theory immediately is inherited by causal Bayes net theory, because this more
complex theory may exaggerate the computational capacities of organisms.

o

Empirical tests of rational models proposed in the literature often blur the dis-
tinction between rational models of scientific discovery and of a rational model
of the mind. Causal Bayes net theory is an extreme example, as virtually the same
model has been postulated for both areas. However, due to different information
processing constraints of computers versus humans, a rational model in Artificial
Intelligence will certainly be different from one developed in psychology. The dis-
tinction between the normative and the psychological is particularly important
when it comes to the question of how heuristics or psychological theories relate to
rational models. Often it is argued that rational models let us understand what
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heuristics try to compute. This is certainly useful as long as it is clear that the
rational model merely provides a normative analysis of the situation to which an
organism adapts rather than a computational model of the mind. For example,
the Bayesian inversion formula can be seen as a tool to compute normative
responses in a diagnostic judgment task. But that does not mean that the avail-
ability heuristic (Tversky & Kahnman, 1973) should be regarded as an implemen-
tation of the normative formula. Heuristics and rational models may lead to
similar judgments in a wide range of cases; nevertheless they compute different
functions. The goal of minimal rational modeling is to discover the function peo-
ple are actually computing (see also Danks, this volume). Then it might be
informative to compare the predictions of minimal rational models with norma-

tive rational models.

Causal learning as a test case

Research on causal learning represents an ideal test case for the question of how

rational models should be evaluated. In the past decade several theories have been

proposed that compete as rational accounts of causal learning. Since it is not possible
to discuss all theories, we will focus on three approaches and discuss them on the
basis of recent evidence from our laboratories:

(1) Associative Theories. Standard associative accounts of causal learning (e.g.,
Rescorla-Wagner, 1972) will serve as a base-line for our discussion. To demon-
strate that human or nonhuman animals are indeed using causal representations,
it is necessary to show that the obtained experimental effects cannot be explained
with a simpler associative account such as merely predictive learning. According
to associative theories events are represented as cues and outcornes rather than
causes and effects (see also Waldmann;, 1996; Waldmann et al., 2006). Cues are
events that serve as triggers for outcome representations regardless of whether
they represent causes or effects. Thus, associative theories are insensitive to causal
directionality. Moreover, it is assumed that learning is sensitive to observational
covariations rather than causal power (see Cheng, 1997). Thus, there is no dis-
tinction between covariations based on spurious (e.g., barometer-weather) as
opposed to causal relations ( atmospheric pressure-barometer). Finally, covaria-
tion knowledge may be acquired between different observable events (i.e., classi-
cal conditioning) or between acts and outcomes (i.e., instrumental learning).

)

Causal Bayes Nets. Currently different variants of causal Bayes nets are being

developed, which compete with each other (see Gopnik & Schulz, 2007, for an

overview). We are going to focus on the version proposed by Gopnik et al. (2004).

[n this framework causal models are represented as directed acyclic graphs, which

contain nodes connected by causal arrows. ‘Acyclic’ means that the graph does not
contain loops. It is assumed that the graphs satisfy the Markov condition which
states that for any variable X in a set of variables S not containing direct or indirect
effects of X, X is jointly independent of all variables in S conditional on any set of
values of the set of variables that are direct causes of X. An effect of X is a variable
that is connected with a single arrow or a path of arrows pointing from X to it.
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Figure 20.1 shows an example of three basic causal models. Model A (left) repre-
sents a common-cause model in which a common cause (e.g., atmospheric
pressure) both causes effect_1 (e.g., barometer) and effect_2 (e.g., weather). The
two direct causal links imply covariations between the common cause and either
effect. Moreover, the Markov condition implies that the two effects should be
spuriously correlated but become independent conditional on the states of their
common cause. Model B (middle) represents a causal chain, which has similar
implications. The initial cause should covary with effect_1 and effect_2, which is
caused by effect_1. Due to the Markov condition, the cause and effect_2 should
become independent conditional on effect_1. Finally, Model C (left) represents a
common-effect model. In the absence of further external common causes of
the two causes 1 and 2, these causes should covary with their joint effect but be
mutually marginallyindependent. However, the causes should become dependent
conditional on their common effect.

An important claim of Gopnik et al. (2004) is that people should be capable of
inducing causal structure from conditional dependence and independence infor-
mation. Again the Markov assumption along with additional assumptions (e.g.,
faithfulness) is central for this achievement. Gopnik et al. (2004) discuss two
Bayesian induction strategies. According to constraint-based learning people
should analyze triples of events (such as in Fig. 20.1) within causal models and
select between causal models on the basis of conditional dependence and inde-
pendence information. Sometimes this will yield several (Markov equivalent)
alternatives. Additional cues (e.g., temporal order information) may help to
further restrict the set of possibilities. An alternative to this bottom-up approach
are Bayesian algorithms, which assign prior probabilities to possible causal
models, which are updated by the application of Bayes’ theorem given the actual
data. Both methods rely on conditional dependence and independence
information implied by the Markov condition.

Apart from allowing us to predict events, causal models can also be used to plan
actions. Unlike associative theories, causal models are capable of representing the
relation between inferences based on observations of events and inferences based
on interventions in these events (see also Hagmayer et al., 2007). For example, the
common-cause model depicted in Fig. 20.1A implies that the observation of
effect_1 (e.g., barometer) allows for inferring the state of effect_2 (weather) based

Model A: Model B: Model C:
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on the diagnostic link between effect_1 (atmospheric pressure) and its cause, and
the predictive link between the cause and effect_2. However, manipulating the
reading of the barometer by tampering with it should not affect effect_2. Causal
Bayes nets allow for modeling this difference by modifying the structure of the
graph (Pearl, 2000; Spirtes et al., 1993; Woodward, 2003). Deterministic manipu-
lations of effect nodes render the state of these nodes independent of its causes, as
long as some plausible boundary conditions apply (e.g., independence of the
instrumental action with the relevant events of the causal models). This can be
modeled by removing the arrow between the cause and the manipulated event,
which Pearl (2000) vividly called graph surgery (see Fig. 20.2).

The possibility of representing both observational and interventional inferences
within a single causal model is one key feature of causal Bayes nets that render them
causal. The fact that interventions often imply modifications of causal models turns
interventions into an additional powerful tool to induce causal structure. Learning
can capitalize from both observational and interventional information and
combine these two components during learning (see Gopnik et al., 2004).

(3) Single-effect Learning Model. Given our interest in minimal rational models it is

useful to test the simplest possible theory of causal learning as an alternative
account. Buehner and Cheng (2005) have proposed that organisms primarily
focus on evaluating single causal relations during learning. The individual links
are integrated into a causal model or causal map (Gopnik et al., 2004; Waldmann &
Holyoak, 1992). Should several causal relations contain overlapping events it is
possible to make inferences across complex causal networks by chaining the links.
The focus on evaluating a single causal relation does not imply that causes of
the same effect e that are not currently evaluated are ignored; accounting for e due
to causes other than the candidate ¢ is an essential part of inferences about the

Observation Intervention

Atmospheric

Atmospheric
Pressure

Pressure

Barometer
Reading
2

Barometer
Reading

Common Cause Causal Chain Common Effect
Fig. 20.2. Observing an effect (left) versus intervening in an effect (right) of a common
cause: While an observation of an effect allows inferring the presence of its cause, an

\
intervention in the same variable renders this variable independent of its cause. See text

Fig. 20.1. Three types of acyclic causal models connecting three events.
d for details.
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relation between ¢ and e. Thus, the common-effect structure (e.g., Fig. 20.1C) is
the basic unit in which learning occurs, as has been assumed by previous psycho-
logical learning theories (e.g., Cheng, 1997; Griffiths & Tenenbaum, 2005;
Rescorla & Wagner, 1972). A single-effect learning strategy may be an effective
default strategy because, in contrast to the typical wealth of data mined by Bayes
nets algorithms, information available to humans and other species regarding rel-
evant causal variables may often be very limited. The information available may
be further impoverished by the reasoner’s memory and attention constraints. The
present chapter will review and explain how, under causal-power assumptions
(Cheng, 1997), (1) complex causal models (Waldmann & Holyoak, 1992) are con-
structed via single-effect learning, and (2) making predictive and diagnostic link-
by-link inferences based on the models account for observational and
interventional inferences within complex causal networks.

Review of causal model construction via
single-effect causal learning

Cheng’s (1997) power PC theory provides an account of the learning of the strength of
the primary unit of causality—a causal relation between a single candidate cause and a
single effect. Whereas associative theories merely encode observable covariations,
causal relations do not primarily refer to observable statistics but unobservable theo-
retical entities. To estimate the causal strength of these unobserved causal relations sev-
eral assumptions need to be made. The power PC theory partitions all causes of effect e
into the candidate cause ini question, ¢, and a, a composite of all observed and unob-
served causes of e. The unobservable probability with which ¢ produces e is termed gen-
erative power, represented by g.. The generative power of the composite a is analogously
labeled g,. On the condition that ¢ and a influence ¢ independently, it follows that

P(e|c) = .+ P(alc) q,- 9. P(alc) q, (1),and

P(e|~c) = Pa]~c) g, (2).

Equation (1) implies that effect e is either caused by ¢, by the composite a, or by both,
assuming that c and a produce e independently. The difference between P(e|c) w:&
P(e|~c) is called AP, which is a frequently used measure of covariation in learning
research. Thus, from Equation 2, it follows that

AP= g+ Palc) q,— q. P(alc) q,— P(a]~c) q, (3)-
Equation (3) shows why covariations do not directly reflect causality. There are four
unknowns in the equation. The lack of a unique solution for g, the desired unknown.
corresponds to the intuitive uncertainty regarding ¢, in this situation: if we observe
the presence of a candidate cause c and its effect e, we do not know whether e was
actually caused by c, by a, or by both. If ¢ and a are perfectly correlated, we may
observe a perfect covariation between ¢ and ¢, and yet ¢ may not be a cause n.vm«
because the confounding variable a may be the actual cause. The learner therefore
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restricts causal inference to situations in which ¢ and a occur independently; that is,
there is no confounding. In that special case, (3) reduces to (4):

q.= AP/(1— P(e]~c)) (@)

The above analysis holds for situations in which AP>0. A similar derivation can be made
for situations in which AP < 0, and one evaluates the preventive causal power of c.

The ‘no confounding’ prerequisite that follows from Equations 3 and 4 explains
why interventions have special status as a method for inducing causal power.
Interventions typically are assumed to occur independently of the other causes of the
target event. This prerequisite also explains why when an intervention is believed to
be confounded (e.g., placebo effect; see Buehner & Cheng, 2005; Cheng, 1997), it is
not different from any other confounded observation; in this case interventions do
not have any special status. Note that to satisfy the ‘no confounding’ assumption, one
does not need to know the identities of other causes or observe their states; one only
needs to know that these causes, whatever they may be, occur independently of the
candidate cause (e.g., consider the case of random assignment to a treatment and a
no-treatment group). Confounding may of course be due to observed alternative
causes as well. Research on confounding by observed causes has shown that people
are aware of the confounding and therefore tend to create independence by holding
the alternative cause constant, preferably in its absent value (see, for example,
Waldmann & Hagmayer, 2001; Spellman, 1996).

Thus, while the focus is on the learning of a single causal relation, the possibility
of the effect due to other causes is acknowledged. (Information about multiple can-
didate variables is of course required when one evaluates a conjunctive candidate
cause, one that involves a combination of variables.) The single-effect learning the-
ory explains why causal learning can proceed even when one has explicit knowledge
of the states of only two variables, the candidate cause and the target effect. The
work on causal Bayes nets, in which ‘no confounding’ is not a general prerequisite
for causal learning, have not considered the role of this prerequisite in the case of
link-by-link single-effect learning, arguably the most common type of biological
learning.

In summary, the basic unit of causal analysis is a common-effect network with an
observable candidate cause, alternative hidden or observable causes, and a single
effect. These three event types allow organisms to go beyond covariational informa-
tion and estimate theoretical causal entities.

Causal directionality

A key feature of causal relations is their inherent causal directionality. Causes generate
effects but not vice versa. Correct assessments of causal power require the distinction
between causes (¢, a) and effect (e). However, it is a well-known fact that causal direc-
tionality cannot be recovered from covariation information between two events
alone. For example, a flagpole standing on a beach covaries with its shadow on the
sand as does the shadow with the flagpole, but the flagpole causes the shadow rather
than vice versa. Covariations are symmetric whereas causal power is directed.
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Learners’ sensitivity to causal directionality has been one of the main research areas of
causal-model theory (see Waldmann, 1996; Waldmann et al., 2006, for overviews),
According to this theory people use non-statistical cues to infer causal directionality
(see Lagnado et al., 2007). These cues, although fallible, provide the basis for hypothe-
ses regarding the distinction between causes and effects. What cues are typically used?

Interventions are arguably the best cue to causal directionality. Manipulating a
variable turns it into a potential cause, and the change of subsequent events into
potential effects. Interventions are particularly useful if they are not confounded
(i.e., independent), which may not always be the case, as mentioned earlier.
Interventions, particularly unconfounded ones, are not always available. Temporal
order is another potent cue. Typically cause information temporally precedes effect
information. However, the phenomenal representational capacities of humans allow
for a decoupling between temporal and causal order. For example, a physician may see
informatien about symptoms prior to the results of tests reflecting their causes, but
still form a correct causal model. Research on causal-model theory has shown that
humans are indeed capable of focusing on causal order and disregarding temporal
cues in such situations (e.g., Waldmann & Holyoak, 1992; Waldmann et al., 1995;
Waldmann, 2000, 2001). Coherence with prior knowledge is a further potent cue to
causal directionality (see also Lien & Cheng, 2000). For example, we know that elec-
trical switches are typical causes even when we do not know what a particular switch
causes in a learning situation. Prior knowledge may finally be invoked through com-
munication. Instructions may teach us about causal hypotheses.

Diagnostic causal inference under

causal-power assumptions

Cheng (1997) and Novick and Cheng (2004) focused in their analysis on predictive
inferences from cause to effect. Causal relations may also be accessed in the opposite
diagnostic direction from effect to cause. Research on causal-model theory has shown
that people are capable of diagnostic inferences in trial-by-trial learning situations
(see Reips & Waldmann, 2008; Waldmann et al., 2006). The same causal-power
assumptions underlying predictive inferences apply to diagnostic inferences. These
assumptions are defaults (see Cheng, 2000, for an analysis of various relaxations
of these assumptions); the first two are empirical, and may be revised in light of
evidence:

(1) C and alternative causes of E influence E independently,

(2) causes in the composite background A could produce E but not prevent it,

(3) causal powers are independent of the occurrence of the causes, and

(4) E does not occur unless it is caused.

Below we illustrate how these assumptions can be applied to explain a variety of
related diagnostic inferences. Consider, for example, diagnostic inferences regarding a
causal structure with two causes of a common effect E: CE « D. How would
explanation by causal powers account for the simplest diagnostic inference—the
intuition that having knowledge that E has occurred, compared to the absence of such
knowledge, would lead to the inference that each of the causes is more likely to have?
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Similarly, how would this approach explain the intuition that given knowledge that E
has occurred, the target cause C is less likely to have occurred if one now knows that
an alternative cause D has occurred, compared to when one does not have such
knowledge (the ‘explaining away’ or discounting phenomena)?

A basic case of single-effect diagnostic inference and

some special variations

Here we show a causal-power explanation of an intuitive diagnostic inference from the
occurrence of E to the occurrence of target cause C, namely, the intuition that the
probability of C occurring given that E has occurred, P(c[e), is higher than the uncon-
ditional probability of C occurring, P(c). In our derivations below, ¢ represents the
event that C has occurred, and likewise for 4 and e with respect to cause D and effect E.
Let g be the generative power of C to produce E,

qp be the generative power of D to produce E,

€C.oniy be the event that E is produced by C alone (i.e., not also by D), and

ep be the event that E is produced by D, whether or not it is also produced by C.

By definition of conditional probability,

P(c,e)
) (5)

P(c|e) =

Event e can be decomposed into ep and ec. ..y, two mutually exclusive events. Making
use of this decomposition of ¢, and of causal-power assumptions, to put the right-
hand-side of Equation 1 into causal power terms, one obtains:

Plc.e) _ P()-gp PO +[1- P@) gp] PO -4 ®)

P(e) P(d)-qp +[1 - P(d)  qp] - P(c) - 4¢

The numerator shows the probabilities of the two conjunctive events — (1) C occurring
and E caused by D, and (2) C occurring and E caused by C alone. The components of each
conjunctive event occur independently of each other. From (5) and (6), it follows that:

P(d) - qp +[1- P(d) 45 - ac -
P(d) - qp + P(©)-[1 - P(d) - ap] - 4¢

P(c|e) = P(c)-

From (7) it is easy to see the relation between P(c) and P(c |¢). In the trivial case in
which P(c) = 1, P(cle) of course also equals 1.

When C does not always occur
But in the more interesting case, if P(c) <1, Equation 7 implies that
P(cle) > P(c), (8)

thus explaining the basic diagnostic intuition that knowing that a particular effect
has occurred increases the probability that its causes have occurred. As can be seen
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from (7), this inequality holds regardless of the magnitude of g as long as p(d) = g
for example, in the trivial case in which C is the only cause of E (i.e., when 9-p=0),(7)
implies that given that E has occurred, the probability of C occurring is increased to 14
(See section on ‘Intervening versus Observing’ regarding the special case in which both
p(d) and gp, equal 1.)

Combining link-by-link inferences

The capacity to access causal relations in the predictive and diagnostic direction
allows us to make inferences consecutively across causal networks by going from one
link to the other. For example, the basic diagnostic inference just shown can be
applied to the common-cause model (Fig. 20.1A) to infer the state of effect_2 from
the state of effect_1 (treating effect_1 as the common effect E in the basic learning
unit): First, diagnostically infer that the cause must have occurred when effect_1 is
observed (i.e., P(cleffect_I)=1; this is the single-cause special case in (7) in which
P(d)=0 or Qeseffect_1 = 0); that s, there is no causal influence from D to effect_1.
Second, infer the state of effect_2 from the presence of the cause just inferred (i.c.,
P(cleffect_1) + q. —seffect_2, WherTe q_,g.q » is the causal power of  to produce effect_2).
Note that Equation 7 would similarly apply for the more general other case in which
P(d)>0 and q,_,frecy > 0; that is, there is a causal influence from D to effect_1. In the
case in which D is a background cause that is constantly present, P(d)=1. Similar con-

secutive inferential steps can be derived for the chain model; for example, with respect

to the causal chain C—effect_1—effect 2 (Fig. 20.1B), P(effect_2|c) = Qeseffect_|

*effect_1— effect_2- More generally, for diagnostic reasoning Equation 7 applies, and for
predictive reasoning the causal powers of the relations in question apply.

It is important to note that combining these steps builds on individual links rather
than any quantitatively coherent causal model representation. Note that in our deri-
vations we did not use the Markov constraint in any of our inferential steps. Thus, it is
not necessary to assume that learners use the Markov constraint in their inferences.
Inferential behavior consistent with the Markov condition is in these cases a side
effect of chaining the inferences, it is not an explicit part of the postulated graphical
representation. For example, for the common-cause structure (Fig. 20.1A), a reasoner
may or may not take the additional step of inferring the independence between
effect_1 and effect_2 conditional on the common cause. If that step is not taken, say,
during the initial learning of the structure when attention is focused on the learning
of individual links, then a violation of that independence relation (as implied by the
Markov condition when applied to the structure) will 8o unnoticed. Thus, more gen-
erally, although under conditions in which typical attention and memory constraints
are bypassed, model construction via link-by-link causal inference will be consistent
with the Markov condition, in typical situations conforming to the Markov condition
for inferences regarding relationships between indirectly linked variables will depend
greatly on attentional and memory factors.

Common-effect models (Fig. 20.1C) provide another interesting test case because
normatively it is not permissible to chain the predictive link between cause_1 and
effect, and then proceed in the diagnostic direction from the effect to cause_2 while
disregarding the first link. Chaining these two inferences would erroneously predict a
correlation between the two variables that are not directly linked, violating the Markov
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assumption as applied to Fig. 20.1C. Doing so would mean that all three models in
Fig. 20.1 make the same predictions regarding the indirectly linked variables (the two
effects of the common-cause model, the two causes of the common-effect model, and
the cause and effect_2 in the causal chain model). However, whereas effects make each
cause individually more likely, diagnosing a target cause when an alternative cause is
present should make the target cause less likely than when the state of the alternative
cause is unknown (i.e., explaining away). Correct inferences within a common-effect
model need to consider all three event types defining causal relations: (1) target cause,
(2) target effect, and (3) alternative observable and unobservable causes.

Explaining away

To explain ‘explaining away’ in causal-power terms, let us return to Equation 7
(assuming P(c) < 1). One can see that as P(d) increases, P(c|e) decreases, as does the
difference between P(cle) and P(c) (although, as just explained, P(cle) is still greater
than P(c) because P(c) < 1). In the special extreme case in which P(d) = 1, the left-
hand-side of (7) becomes P(cle,d), and P(cle) is at its minimum (assuming unchanged
causal powers). That is, the probability of C given that both E and D have occurred is
less than the probability of C given E when the state of D is unknown. More generally,
(7) implies that knowing that one of the two causes of an effect has occurred, relative
to not knowing that, reduces the probability that the other cause has occurred (the
case of discounting or explaining away):

P(cle,d) < P(cle) (9)

We assume that people are capable of making the above inferences when their atten-
tion is brought to the relevant variables. An interesting test case for our model, how-
ever, concerns cases in which participants consecutively access the two links of a
common-effect model, in the order cause_1, effect, and cause_2. People’s focus on
single links may mislead them into making a simple diagnostic inference from the
effect to cause_2 while disregarding the previously accessed link from cause_ 1 to its
effect (see below for empirical evidence). They make the mistake of inferring P(effect|
cause_1) followed by P(cause_2| effect), instead of making a one-step inference
regarding P(cause_2 | effect, cause_1) as just shown (see (9)).

Intervening versus observing

A final important question refers to the distinction between intervening and observ-
ing within the single-effect learning model. Observing an effect provides diagnostic
evidence for its cause, whereas intervening on the effect does not. We have already
elaborated on how observational diagnostic inferences should be handled. A simple
model of interventional inferences would just add a causal link from the intervening
agent to the manipulated variable, thus creating a new common effect structure in
which the agent is a new cause (see Fig. 20.3) (see also Dawid, 2002). Let alternative
cause D in this case be the added intervening agent (see Fig. 20.3). The inferences
following hypothetical interventions then follow from (7), which implies explaining
away when multiple causes compete for predicting a specific effect (see also Morris &
Larrick, 1995). Consider the simple case in which the target cause C and the inter-
vening agent D are the only causes of E. The analysis generalizes to more complex
cases involving multiple causes of E in addition to the intervening agent.



468 | CAUSAL LEARNING IN RATS AND HUMANS: A MINIMAL RATIONAL MODEL

1 ‘ Intervention as Intervention as
Causal Model modeled by graph modeled by single-
surgery i effect theory |
7 Other 7 Other

.
\ Causes D /' + Causes D
e S s

7

i

| .

Fig. 20.3. Modeling intervention in an effect according to causal Bayes net theory and
the single-effect learning theory. See text for details.

The above diagnostic inference regarding an intervention is the special case of (7)
in which the intervention is always successful in producing the target effect, namely,
P(d)qp = 1. In that case, according to (7),

P(cle) =P(c) (10).

That is, knowing that E has occurred does not affect the probability of C. The differ-
ence shown in our analysis between the result indicated in (10) and that in (8)
explains the distinction between inferences based on intervening to obtain an effect
versus merely observing the effect.

Note that when the intervention is viewed as deterministic and independent of the
other cause, this analysis yields the same results as graph surgery, without removing
the causal link between the usual cause and the target effect. In this special case, the
manipulated effect and its usual cause become independent, which means that this
cause occurs at its base rate probability.

Probabilistic Interventions

Beyond this special case the present analysis also allows for predicting the outcomes of
hypothetical interventions that only probabilistically alter their target variable, or that are
confounded with other events in the causal model. For example, as explained earlier,
(7) shows that when the intervention is only probabilistically successful (i.e., gp <1), 0n€e
can in fact infer from knowing that E has occurred (whether or not E was caused 5.. D,
the intervening variable) that the probability of C is increased relative to not knowing
that E has occurred (i.e., P(c|e) > P(c), Equation 8). That is, there should be no graph
surgery. Thus, the classical diagnostic analysis has the advantage of greater generality.

Empirical case study 1: causal learning in rats

Although in the past decades there has been a debate about whether human causal learn-
ing can be reduced to associative learning processes or not (see Cheng, 1997; Shanks &
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Dickinson, 1987; Waldmann et al., 2006; special issue of Learning & Behavior, 2005,
Volume 33(2)), until recently most researchers have agreed that nonhuman animals
are incapable of causal reasoning. Although many of these psychologists believed that
even infants have the capacity for causal representations, they drew a line between
human and nonhuman animals, turning causal reasoning into a uniquely human
capacity similar to language. For example, Povinelli argued about chimpanzees that
‘their folk physics does not suffer (as Hume would have it) from an ascription of
causal concepts to events which consistently co-vary with each other’ (Povinelli, 2000,
p- 299; see also Tomasello & Call, 1997, for a similar argument). Gopnik and Schulz
(2004, p. 375) claimed: ‘The animals seem able to associate the bell ringing with food,
and if they are given an opportunity to act on the bell and that action leads to food,
they can replicate that action. Moreover, there may be some transfer from operant to
classical conditioning. However, the animals do not seem to go directly from learning
novel conditional independencies to designing a correct novel intervention.

Blaisdell et al. (2006) tested whether rats are capable of causal learning and reasoning.
Their goal was to show that rats distinguish between causal and spurious relations,
and are capable of deriving predictions for novel actions after purely observational
learning. Their experiments were modeled after a previous study on humans
(Waldmann & Hagmayer, 2005). In this study participants were provided with
instructions suggesting a common-cause or a causal chain model and were given data
to learn about the base rates of events and about the causal strength of the causal
links. In the test phase, participants were given questions regarding hypothetical
observations and hypothetical interventions. For example, in one experiment they
learned about a common-cause model (see Fig. 20.1A), and then were asked in what
state effect_2 would be given that effect_1 was observed (observation question). The
corresponding intervention question asked participants about effect_2 when effect_1
was manipulated by an external intervention. The responses showed that participants
were sensitive to the distinction between observing and intervening consistent with
the assumption that they had formed a causal representation of a common-cause or
causal chain model. They also proved sensitive to the size of the causal strength
parameters and the base rates.

In Blaisdell et al.’s study (2006) rats also went first through a purely observational
learning phase. In their Experiment 1, rats observed three types of trials, a light fol-
lowed by a tone, the light followed by food, or a click occurring simultaneously with
food. These three trial types were separately presented several times during a week
(see Fig. 20.4). The idea was to present rats with the individual links of a common-
cause model with temporal cues suggesting the roles of potential causes and effects.
We chose to separately present the link information to avoid that rats would form a
model in which the two effects are directly causally instead of spuriously linked. This
learning procedure was motivated by research on second-order conditioning. Yin,
Barnet, and Miller (1994) have shown that with few trials rats that separately learn
about two links of a chain tend to associate the first event with the last event although
these two events never co-occurred. In second-order conditioning they are in fact
negatively correlated. Only with many trials do rats notice the negative (inhibitory)
relation. Following these findings we chose trial numbers that favored the integration
of the separate links into a model in which all events are positively associated.
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Causal model Learning Trials Test Trials
| e e Light — Tone Tone
Light — Food Click

Click : Food Lever press — Tone

Lever press — Click

Fig. 20.4. Causal model presened to rats in Blaisdell et a/. (2006, Experiment 1)(left).
Each causal link was presented separately (— signifies temporal order,: signifies
simultaneous presentation)(middle). Test trials presented either the alternative effect of
the cause of food (tone), the second cause of food (click), or these two events as a
causal outcome of lever presses (click and tone were counterbalanced)(right). Rats’
expectations’ of the presence of food were assessed by measuring their search behavior
(nose poking). See text for further details.

This prediction was supported in the subsequent test phase in which rats were pre-
sented with the tone as a cue (observation test). The results showed that the tone
apparently led them to believe that food was present, which was measured by the time
they searched for food in a niche (i.e., nose poking). This behavior is consistent with
the view that the rats accessed a common-cause model to infer from one effect (tone)
to the other (food)(see Fig. 20.5). The crucial test involved a novel intervention. In
this part of the test phase, a lever the rats had never seen before was pznnon:nwa into
the cage. (Actually there were also levers during the abservation tests but pressing the
levers there did not cause an event.) Whenever the rats curiously pressed the lever, z..m
tone was presented (intervention test). Now, although tone and food had been associ-
ated by the rats in the learning phase as indicated in the observational test phase, they
were less inclined to search for food after the lever presses (see Fig. 20.5). Blaisdell e al.
(2006) viewed this behavior as evidence for the rats having formed a noaic:.nm.:mm
model in which, consistent with the Markov condition, a spurious positive correlation
is implied by the two generative causal links emanating from the common cause-
Whereas in the observation test rats apparently reasoned from one effect through .:_m
common cause to the second effect, they seemed to be aware of the fact that during
the intervention test they and not necessarily the light were the cause of the tone. This
is consistent with the view that the rats assumed that light and tone are independent
during the intervention. 4 ;

One could argue that the rats may have been distracted by the lever presses an :
therefore may have been reluctant to search for food. This possibility is ruled out by
further test conditions in which the rats either observed the click or pressed the lever:
which generated the click signal (see Fig. 20.4). In this condition rats expected mo.cm
regardless of whether they heard the click or pressed the lever generating the clic
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O Intervene
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Fig. 20.5. Results of
Blaisdell et al. (2006,
Experiment 1, reproduced
with permission).

Rats either observed tone
and intervened in click,
or observed click and
intervened in tone

(tone and click were
counterbalanced).

Mean nose pokes

Direct-cause

Common-cause
(Tone) (Click)

(see Fig. 20.5). This pattern is again consistent with the assumption that rats had
formed causal knowledge. Regardless of whether a direct cause is observed or gener-
ated by an intervention the effect should occur. As an additional test, Blaisdell et al.
(2006) presented in a second experiment a causal chain in which, again using a
second-order conditioning procedure (sensory preconditioning), the tone preceded
light which in turn preceded food. Consistent with a causal analysis the rats expected
food regardless of whether they observed the tone or generated it with the lever. This
shows again with a second-order conditioning task that the rats were not generally reluc-
tant to expect food after a novel intervention. We will now revisit the results of Blaisdell
et al. (2006) discussing them in greater detail in the context of the three models.

Associative theory

Although previous research on second-order conditioning has focused on chain-like
structures and not common-cause models, the findings are consistent with second-
order conditioning in both experiments. However, why second-order conditioning
oceurs is not entirely clear, especially because it seems to be dependent on trial num-
ber (Yin er al., 1994). According to associative theories, rats should associate light
with tone, and light with food. If this is represented in the typical one-layer network
with one cue (light) and two independent outcomes (tone, food), two positive asso-
Clative weights should be formed for either link. Without any further learning these
outcomes would indeed be correlated, which is consistent with the findings in the
observational test phase. However, this prediction only holds if it is assumed that the
575:0@ relation between the two outcomes tone and food is not encoded, at least
Wwith few trials. Thus, according to the associative view, rats might associate tone with
food through second-order conditioning when the additional assumption is made
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that no associations between outcomes will be learned. However, the associative view
breaks down when the intervention test is considered. It cannot explain why, given
that rats associate tone with food, they nonetheless did not expect food when their
actions caused the tones.

It is important to note that acquisition-based theories (e.g., Rescorla & Wagner,
1972) do not predict that lever presses compete with light as an explanation of tones
because the light-tone trials and the lever press-tone trials were separately presented,
thus preventing cue competition.' Another possible argument might be that the
intervention test is in fact a novel instrumental conditioning task. Thus, rats may not
expect food in Experiment 1 because the instrumental action is novel so that they had
not formed any associations between lever presses, tone and food. However, this
explanation is contradicted by the direct cause (click) condition and by the causal
chain experiment (Experiment 2). In these conditions, interventions and observa-
tions led to equal amounts of search for food. In sum, the results by Blaisdell et al.
(2006) are inconsistent with current associative theory.

Causal Bayes nets
Causal Bayes net theory (Gopnik et al., 2004) can be applied to both the learning
phases and the testing phases of Blaisdell et al’s (2006) experiments. It is obvious that
a bottom-up constraint-based learning algorithm is incapable of explaining the
results of the learning phase, even when temporal order cues are used that aid the
induction process. The temporal order of events suggests that light is a potential cause
of tone and of food. However, the learning patterns are inconsistent with a common-
cause or causal chain model in which the Markov condition holds. For example, in
Experiment 1 rats observe the patterns light-tone-absence of food (P(t.L.~f)) or .:mw?
food-absence of tone (P(Lf.~t)), along with additional click-food trials. According g.o
the Markov condition, P(t|Lf) should be equal to P(t|L.~f). But the first probability is
zero, the second probability is one, which clearly violates the Markov 35&:0? .:._.n
same problem arises for the causal chain condition (Experiment 2) in which tone is
negatively correlated with food. .
An alternative to constraint-based learning might be a Bayesian algorith
assigns prior probabilities to all possible models. It might be possible to dev:
model, which makes use of temporal order cues (i.e., light is the potential cause)
assigns very high prior probabilities to common-cause and causal chain models t
honor the Markov condition. This model might also predict Yin et al.s (1994) m:nEm
that the negative correlation in the chain structure only becomes salient wamn many n.:&w
However, this model is computationally very demanding. Bayesian u_mozz._a.w QEQ:«
require many learning trials to converge, more than are usually Emmas.ﬁm in experi-
ments with humans and nonhuman animals (see Tenenbaum & Griffiths, Ncouﬁ
Moreover, it is post hoc: The strong assumption needs to be made that rats represen

m Srmhr
elop a
and
hat

I Matute and Pinefio (1998) and Escobar, Matute, and Miller (2001) found evidence %m.a n:m.uw
that had been paired separately to a common outcome can compete, but in recent m.cm_mm:,“m
(Leising, Wong, Stahiman, Waldmann, & Blaisdell, in press) have demonstrated that even
assaciative mechanism cannot account for the effects reported by Blaisdell et al. (2006)-
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simple causal models as priors that are strong enough to override the violation of the
Markov condition for those models (e.g., the common-cause model in Figure 1A
rather than one with added inhibitory links between the two effects). Thus far, there is
no independent evidence for this claim.

The results of the test phase are indeed consistent with the assumption that rats
formed and accessed a Bayesian common-cause or causal chain network in
Experiments 1 and 2 (Blaisdell et al., 2006). However, the causal Bayes net account
suffers from the problem that it is unclear how these models were induced from the
learning data. Thus, there is a gap between learning and testing that currently cannot
easily be filled by causal Bayes net theory.

Single-effect learning model

According to this theory simultaneously considering complex patterns of events
involving multiple effects is too demanding for rats (and possibly also often for humans).
Instead we assume that rats focus their attention on single effects, as mentioned earlier.
According to this model, in the learning phase rats should either focus on the
light-tone, or the light-food relation. (There is also the click-food link which we will
ignore in this section.) According to the model temporal cues are used to distinguish
potential causes (e.g., light) from potential effects (tone, food). When the light cue is
present, rats may learn to expect both tone and food. However, the focus on single
effects will lead the rats to update with respect to one effect at a time. Hence, once
tone or food is present, they should focus on learning the link that leads to the present
effect, and ignore the second link.

This model therefore explains how rats learn about two separate links that happen
to share a common element without assuming that they use information about how
the indirectly linked elements are related to each other. More specifically, it need not
be assumed that the rats make the Markov assumption and represent the three events
as part of a Bayesian common-cause model.

How does the single-effect learning model explain the behavior in the test phase?
During the observation tests rats hear tones as cues. The tones lead them to diagnosti-
cally infer the light. Then they proceed in the predictive direction from light to food.
The link-by-link inferences according to this model explain why the rats expect food
although in the learning phase tone and food are negatively correlated. Since the links
overlap in the light event, rats are capable of making an inference across the network.
It is important to note that there is no need to assume that rats represent a coherent
common-cause model obeying the Markov assumption. Inferences consistent with
the Markov condition are a side effect of chaining separately represented links in the
common-cause and the chain models; the Markov condition is neither part of the
representation of available information nor of the computational steps involved in
the inference processes.

One curious finding is that in the test phase rats infer food from a tone cue
although light—the common cause—is absent. This creates an inconsistency between
(1) the inference steps going from tone to light and then to food, and (2) the observed
information. One possible explanation might be that in the test phase the rats focus
on the target cue but do not check whether the state of other events outside their
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attentional focus is consistent with their predictive steps. This may be particular]
plausible to rats in Experiment I because the effect of lever presses—the tones. d
should occur after their usual cause, the light, so that the absence of the light mj; _l..l
not be salient.? Both the learning and the test phases show that rats do not seem to ﬁm M
absent events outside their attentional focus as informative (see below for ?::w
elaborations). 1
The second test condition involves interventions. According to the single-effect
learning model interventions are represented as external causes. In Blaisdell etal’s
(2006) experiments this means that the lever presses should be represented as m.:
additional cause of tones, which turns the tones into a common effect of light and
lever presses. In the test phase lever presses deterministically cause tones. Although
lever presses cause tones only in the absence of light, a plausible assumption is that
human and nonhuman animals tend to view their arbitrary interventions as inde-
pendent of alternative causes. This should lead to a discounting of the cause (light)
and hence to a lowering of the expectation of food.

Under the condition that lever presses are viewed as deterministic and independent
causes, it is possible to infer the probability of light. We have already shown that in
this special case there should be complete explaining away of the tone by the lever
press, with light to be expected to occur at its base rate (see (10)). Again the inference
is :._o.am_mn as a chaining of individual links. First, as explained by comparing
Equation 10 with Equation 8, the presence of the tone after an intervention, relative to
merely observing the tone, should lead to a lowered expectation of light; second, the
expectation of light in turn should lead to a lowered expectation of food. This predic-
tion is equivalent to the assumption of graph surgery in a causal Baves model but it
neither requires the assumption that the common cause renders its mm»,mna condition-
ally independent (i.e., Markov condition) nor the deletions of preexisting causal rela-
tions. Traditional explaining away will generate the same prediction as graph surgery,
and additionally has the advantage of being the more general account (e.g., probabilis-
tic interventions; conditional or confounded interventions) (see also Dawid, 2002).

: The single-effect learning model in its present version predicts inferences conform-
ing to a common-cause model with positively correlated effects regardless of whether
the effects were positively or negatively correlated in the learning phase, if the relation
between the two effects is unnoticed. The positive correlation is generated as a conse-
quence of sequential access to individual causal links, rather than being directly
acquired during the learning phase. If increasing the number of trials increases the
chance that the relation between the two effects is noticed, however, this model would
also be consistent with Yin et al’s (1994) finding that with many trials rats become
aware of the negative correlation of the indirectly related events. The assumption that the
Markov condition is merely a consequence of link-by-link inference under propitious

2 .~..Em assumption is actually less plausible in the chain condition of Experiment 2 in which
light follows tone. Interestingly, Blaisdell et al. {2006) needed to hide the light behind a salient
cover to obtain second-order conditioning. Hiding the light makes its absence ambiguous, it

could be absent but it could also be merely invisible.
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circumstances rather than a constraint in inference explains why support for the role
of that condition can vary from situation to situation. Once the salient individual
causal relations are learned, rats may become capable of attending to less salient relations.
According to this view, learning is dependent. At the beginning of the learning phase
all attention needs to be devoted to picking up single cause-effect contingencies. Once
learning is stabilized, this may free attention limitations.

In summary, the single-effect learning model provides the most parsimonious
account of the three theories of Blaisdell et al’s (2006) results. The model implies that
rats indeed learn and reason about causal relations in a sense that is inconsistent with
current associative theories. Moreover, it demonstrates that computations using the
Markov condition underlying causal Bayes nets are not necessary to account for the
data. Furthermore, the less computationally demanding causal inferences in the sin-
gle-effect model can explain what Bayes net theory fails to explain. Thus, the model is
an example of a minimal rational model.

Empirical case study 2: combining causal relations

We rarely acquire knowledge about complex causal models all at once. Often we only
learn about fragments of causal knowledge, which we later combine to more complex
causal networks (see also Lagnado et al., 2007; Waldmann, in press). For example, we
may learn that we tend to get a stomach ache when we eat sushi or when we take an
aspirin. We may never have taken aspirin with sushi but still will have a hunch what
the effect on our stomach might be.

Hagmayer and Waldmann (2000; in preparation) have investigated the question of
how people combine individually learned causal relations (see also Ahn & Dennis,
2000; Perales et al., 2004). In a typical experiment participants had to learn about the
causal relations between the mutation of a fictitious gene and two substances. The
two relations were learned on separated trials so that no information about the
covariation between the two substances was available. Although the learning input
was identical, the instructions about the underlying causal model differed in the con-
trasted conditions. To manipulate causal models participants were either told that the
mutation of the fictitious gene was the common cause of two substances, or they were
told that the two substances were different causes of the mutation of the gene.
The strength of the causal relations was also manipulated to test whether people are
sensitive to the size of the parameters when making predictions (Fig. 20.6 only shows
the results for the conditions in which strength was strong). Note that participants,
like the subjects in Blaisdell ef al’s (2006) rat studies, learned about each causal link
individually. However, participants were told that the events involved in the
two causal relations were studied at two universities, which invites the inference that
the second cause or effect currently not presented is not necessarily absent but simply

not measured.

The main goal of the study was to test what predictions people would make about
the correlation between the events that were presented in separate trials. A correlation
should be expected between the two substances when they were effects of a Bayesian
common-cause model that honors the Markov condition with the size of the correla-
tion being dependent on the size of causal strength of the causal links. By contrast,
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Fig. 20.6. Selected results from Hagmayer and Waldmann (2000; in prep.). In study 1,
participants first made multiple trial-by-trial predictions of the two effects (common-
cause model) or the two causes (common-effect model) based on the assumed presence
or absence of the cause or the effect, respectively (middle). Subsequently they provided
conditional frequency judgments concerning the two effects (commen-cause model)
or the two causes (common-effect model)(i.e., estimates, left). In the second study
(right), participants were requested to predict, again across several trials, first the
common effect on the basis of information about cause_1, and then to diagnose
cause_2. The graph shows the mean correlations (and standard errors) that were
Qm:<mm from participants’ conditional frequency estimates or the patterns generated

in the trial-by-trial judgments.

two causes of a common effect should be independent regardless of the strength of
the causal relations.

To test this knowledge, participants were given two different tasks in Study 1: In
the first task, participants were given new cases along with information about ir&rﬂ.
a mutation had occurred or not. Their task was to predict on each trial whether L
of the two substances was present or absent. Thus, in the common-cause n.o:o::c.“
people predicted the presence or absence of the two effects based on 5?.-3&5: h_w“uzu
the presence or absence of the common cause, in the no_._._BOj-n:nQ n.o: 2 v
people diagnosed the presence or absence of each cause based on _:mo_‘.:m“c: i
the presence or absence of the common effect. This way, participants ma e p i
tions for the two substances they had never observed together. Across multiple pr .
tions participants generated a correlation between the two substances ﬁrm_ﬂn”w&
be used as an indicator of the expected implied correlations. The second tas s
participants directly to estimate the conditional frequency of the second Z&S“_umm::
a set of trials given that the first substance was either always present or u_€u<m. e
These two estimates were combined to calculate the inferred correlations betweer

substances.

e
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The results of this and other experiments show little sensitivity to the differences
between common-cause and common-effect models in the conditional frequency
estimations. Although some basic explicit knowledge cannot be ruled out (see Perales
ei al., 2004), Hagmayer and Waldmann’s (2000, in preparation) experiments show
that people exhibit little awareness of the relation between the causal strength of the
links and the implied spurious correlation. By contrast, the task in which participants
made trial-by-trial predictions corresponded remarkably well to the predictions
entailed by the contrasted causal models. Whereas a spurious correlation was pre-
dicted in the common-cause condition, the predicted correlation stayed close to zero
in the common-effect condition (see Fig. 20.6).

In further experiments Hagmayer and Waldmann (in preparation) followed up on
the online trial-by-trial prediction measure, which in the first experiment yielded
results corresponding to Bayesian common-cause and common-effect models. As it
turns out, this effect can only be found in a task in which the two substances were pre-
dicted simultaneously. In Study 2 participants again learned the individual links of a
common-effect model. Now one of the tasks was to first predict the effect based on
one cause, and then make inferences about the other cause. In this study people’s
inferences exhibited a spurious correlation between the causes of a common effect,
similar to what they predicted for the effects of a common cause. We will again use
these studies to evaluate the different theoretical accounts.

Associative theory

Associative theories could be used to explain why people generate a correlation between
multiple outcomes of a common cue, as in the common-cause condition of the first
study of Hagmayer and Waldmann (2000; in preparation). Within a one-layer network
multiple outcomes of a common cue should be correlated. This theory may also explain
the correlation of multiple causes of a common effect found in the second study as an
instance of second-order learning. However, this model is refuted by the finding in
Study 1 that, when the cue represented a common effect and the outcomes alternative
causes, with identical learning input participants did not generate a correlation between
the causes in their trial-by-trial predictions. This result clearly supports causal over
associative learning theories. It also demonstrates people’s capacity to separate the
representation of causes and effects from the representation of temporally ordered cues
and outcomes: Although effect information temporally preceded cause information in
the common-effect condition of Study 1, participants correctly induced a common-
effect model. This finding adds to the substantial number of studies that have shown
that humans are capable of disentangling temporal order from causal order
(see Lagnado et al., 2007; Waldmann, 1996; Waldmann et al., 2006, for overviews),

Causal Bayes nets

Unlike in Blaisdell e al’s (2006) studies, the learning phases in these experiments do
not violate the Markov condition. Learners may learn about each link separately, and
make assumptions about the probable state of the third event that currently was not
measured. With the aid of the instructions that suggested which events were causes
and effects, it is possible to learn a common-cause and common-effect model that is
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consistent with the Markov condition by updating causal strength estimates within
the instructed model. Causal Bayes net theory can also explain why people in Study 1
generate correlations in the common-cause condition, but not in the common-effect
condition. These inferences also fall out of the assumption that people represent and
access Bayesian causal models that honor the Markov condition. However, causal
Bayes net theory fails to explain why people only conformed to the predictions of this
theory when they made trial-by-trial online predictions but not when they made con-
ditional frequency judgments. Causal Bayes net theory, being derived m,n.v:.. a :ouu.;.
tive theory of theory discovery, predicts behavior conforming to their normative
prescriptions regardless of the way the data are presented or the test questions are
asked. Consequently, causal Bayes net theory also fails to explain why people generate
a correlation between alternative causes of a common effect when asked about the
two links consecutively, as in Study 2. This inference clearly violates the assumptions
underlying common-effect models.

Single-effect learning theory
For the learning phase we assume that participants, like the rats in Blaisdell .2.&.
(2006), update each link individually. Unlike associative theories, this theory distin-
guishes between causes and effects, and can therefore capture the &mwnm:.nm Um?.aw:
diagnostic effect-cause and predictive cause-effect learning. F?::»:o:._m stored in
the weight and direction of individual links in a causal network. Due to its focus on
individual causal effects, the theory explains why participants in the first study did
not have explicit knowledge (i.e., conditional frequency estimates) about the struc-
tural implications of common-cause versus common-effect Eon_.m_m. Koﬁoﬁr Ga
theory predicts that learners correctly generated the correlations implied by the dif-
ferent causal models. In the common-effect condition in Study 1, learners were pre-
sented with a common-effect model with a single effect and alternative causes. ._.,rm
task was to simultaneously diagnose the alternative causes on the basis of specific
effect tokens, which served as cues. According to our analysis, learners should ?n.sm
on individual effects and be aware of the ‘discounting’ of a cause by m_nm_.nm.:mé
observable and unobservable causes (9). Thus, learners should be reluctant to in M_.
the presence of multiple causes, when one cause sufficiently explains :_m. om.mmar _ua
contrast, in the common-cause condition learners should generate vnma_n:o_% M
focusing on one effect after the other. This strategy would mmawaﬁ no:.m_mwmn_ _n Hmw
although participants may not become aware of the correlation. Interesting M». o
prediction is supported by the fact that learners did not show any awareness i
effect correlation in the conditional frequency judgments m_nrcc@ these judgm
followed the online trial-by-trial generation phase in Study 1 (see Fig. NPE.
The results of Study 2 can also be explained by the single-effect learning m
this study participants were led to nc:manﬁ:ﬁ.; access the two nmw_._”mw -
Diagnosing a cause from a single effect may be mivnmcozw. for learners. If t mmm _
focus on the state of the effect as unconditional information and no_nv.:rw the
hood of the second presented cause, the effect should provide positive nrmwsasm
port for the cause. Only if learners consider that the effect token can be pro
by cause_1 should the diagnostic inference to effect_2 be lowered. Howeveh

odel. In
1 links.
imply
ikeli-
sup-
uced
this

CONCLUSION | 479

inference requires considering all three events at once. In Study 1, the task highlighted
the potential competition of the two causes by having learners diagnose them both at
once, whereas in Study 2 the consecutive nature of the task may have led participants
to access the second link while disregarding the first link, as they would do in a causal
chain or common-cause situation. Thus, in sum, the single-effect learning account
provides the broadest and at the same time simplest model for the data.

Note that in Hagmayer and Waldmann’s (2000, in preparation) studies cover stories
were used that encouraged the assumption that the currently non-observed second
effect may actually be present but is just not shown. Thus, participants knew that the
fact that they only see one effect at a specific learning trial does not necessarily mean
that the second effect is absent. We did not present participants with a learning phase
in which a common cause generates negatively correlated effects, as in Blaisdell et al.’s
(2006) study. Consistent with our speculation on the role of attention in rats’ learn-
ing, we predict that human learners, due to their greater attention span, should in fact
become aware of the negative correlation between the effects of a common cause
much earlier if this information is saliently presented.

Nevertheless, we expect that learning about a common cause with negatively corre-
lated effects is actually a more difficult task than learning about standard common-
cause models. Not only the single-effect learning model, but also causal Bayes net
models cannot easily represent such causal structures. A typical solution, to add an
inhibitory link between the effects, seems rarely plausible as a description of the
underlying causal mechanisms. One example for such an atypical common-cause
model would be a situation in which a beam emitting x-rays could be spatially
focused on two different locations. Another example, which is suggested by Cartwright
(1989), is the negative dependency that arises when one has a limited amount of
money for buying meat and vegetables in a grocery store so that the first (presumably
independent) decision limits the second. In both scenarios, a simple representation of
the common cause as independently influencing two effects is inappropriate.
A deeper re-representation is required that reflects the underlying mechanism or
capacity limitations. Instead of inferring the state of the common cause from one
effect, and using this state to make further inferences, different hidden properties of
the cause need to be induced and used for inferences in these more complex scenarios
(see Rehder & Burnett, 2005, for relevant findings). In sum, we assume that more
complex structures are indeed learnable but that they require some extra effort. The
initial bias of learners may still be the simpler inferences afforded by the proposed
single-effect learning model.

Conclusion

Our test cases demonstrated the value of rational models while at the same time
adhering to the traditional standards of empirical theory testing. Like other psycholog-
ical theories, rational models can be tested against each other. We also demonstrated
the usefulness of the heuristic to search for minimal rational models, Our two test
cases showed that both human and nonhuman animals go beyond the information
given by inferring unobservable causal processes on the basis of observable data.
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Thus, Hume’s view that we are restricted to observable covariations is refuted. Both
causal Bayes net theory and our single-effect learning theory provide a rational
account of causal learning. Both theories claim that the goal of causal learning is to
adapt to the causal texture of the world, but based on different assumptions about
cognitive capacities their answers are different.

The search for minimality highlights the deficits of causal Bayes net theory. The
problem with this theory is that it is overly powerful. It was originally developed as a
normative tool and is therefore developed to yield normative answers in all possible
circumstances. Thus, it is ill-prepared to account for failures and strategy-based
restrictions of human and nonhuman learning, and it overestimates the complexity of
reasoning in biological systems. Causal Bayes net theory makes strong assumptions
about the structure of causal network (i.e., Markov condition) that may be method-
ologically useful but may not represent what people and animals actually believe
(see also Cartwright, 2001, 2004). Thus far, there is little evidence that people assume
the Markov condition when reasoning about causal models (see Rehder & Burnett,
2005). Although it is possible to construct a more complex Bayes net with hidden
nodes that predicts violations of the Markov condition in inference patterns (e.g.,
Rehder & Burrett, 2005) it remains to be seen whether the structural constraints
underlying these models prove plausible as accounts of reasoning and learning. Our
single-effect learning theory showed that it is possible to model reasoning regarding
causal models without using the Markov condition as a constraint. Depending on the
task requirements, such as the way the knowledge is accessed however, the predictions
may or may not conform to the Markov condition.

Although the empirical evidence we presented favored the single-effect learning
model, it is too early to decide whether it will prove superior in other learning scenar-
jos as well. We have already discussed the problems that arise with unusual causal
structures, such as common-cause models with negatively correlated effects. Moreover,
we have only discussed studies in which learners were presented with individual causal
relations in the learning phase. This may have favored strategies consistent with
our model. Future research will have to test the generality of this theory, for example,
in learning situations in which multiple effects are presented simultaneously.

We presented two sets of studies to illustrate how rational models can be tested.
Although in early stages of research there may be only a single rational model, the
possible tradeoffs between different factors entering rational model construction
make it likely that in more advanced stages there will be competing theories. Theories
can best be evaluated when they are compared with each other. Each of the three the-
ories we have selected is supported by empirical evidence, which the researchers
endorsing the theories discuss in the articles presenting the theories. Fitting data to
individual models is not a very conxincing way to test theories (see Roberts & Pashler,
2000). Most of the time there is evidence supporting the theories, and data contra-
dicting the theory can often easily be explained away as noise, performance factors, 0f

as results which do not fall under the scope of the theories. A more promising strategy
is to test specific competing theories against each other. Unlike what Anderson (1990)
has proposed we believe that all the relevant psychological evidence that can be found
should be brought to bear on the models. Taking into account all available nw<nro_o%nn_
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data reduces rather than increases the possibility of indeterminacy. Currently indeter-
minacy seems more like a theoretical than a practical threat anyhow. We are not aware
of any cases in psychology in which theories make identical predictions in all situations.
Should this case occur, then there is indeed no way to decide between the equivalent
theories except on the basis of other criteria, such as simplicity. However, we are far
from reaching the luxurious state of having to choose between equivalent theories.
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Chapter 21

The value of rational analysis: an
assessment of causal reasoning
and learning

Steven Sloman and Philip M. Fernbach

Brown University, Providence, RI, USA

Our goal in this chapter is a rational analysis of human causal reasoning and learning.
We take a rational analysis to be an assessment of the fit between data and a certain
kind of model (Danks’s chapter offers a more multi-faceted view of rational analysis).
In the rational analysis tradition of Anderson (1990) and Oaksford and Chater (1998;
in press), the term ‘rational’ has come to have three different meanings that vary in
normative force. The first section of this chapter will be devoted to explicating these
different meanings and evaluating their usefulness. The second section will apply
these interpretations to assess the rationality of causal reasoning and learning.

The value of a rational model

In the rational analysis tradition, ‘rational model’ and ‘computational model’ tend to
be used synonymously (e.g., Griffiths et al., in press). Danks (Chapter 3, this volume)
challenges this equation. According to Marr (1982), who introduced the computa-
tional level of description, a computational model describes the goal of a computa-
tion, why it is appropriate, and the logic of the strategy by which it can be carried out.
What is missing from Marr’s analysis is what determines the computation. Is it deter-
mined through an analysis of the task or must the analyst first observe what computa-
tion is actually being performed before engaging in a computational analysis? This is
the critical question in determining whether or not a computation is ‘rational.’ Here
are three different senses of ‘rational model’:

Normative model

This sense of rational model has its origins in Savage’s (1972) analysis of subjective
probability, a concept whose influence in psychology is primarily due to Kahneman
and Tversky (1982). A rational model in this sense is a representation of the best way
to perform  task. Given some goal, a normative model dictates what is necessary to
achieve that goal. For instance, in the context of causal reasoning, if a machine is bro-
ken, a normative model might dictate the most cost-effective action to fix it.



