
How do people infer the consequences of active inter-
ventions in events when only knowledge from passive 
observations is available? Associative accounts of causal 
cognition distinguish between two types of causal learn-
ing, observational learning which consists of associating 
observed causal events, and instrumental learning which 
consists of associating actions with outcomes (e.g., Dick-
inson, 2001). Thus, a tempting solution as to how people 
go from passive observations to knowledge of the con-
sequences of active interventions would be to equate ob-
servational knowledge with instrumental knowledge and 
proceed from there. Unfortunately, this strategy will often 
lead to erroneous inferences and ineffective actions. For 
example, observing (“seeing”) the status of a barometer 
enables us to predict the approaching weather, but this 
does not license the inference that manipulating (“doing”) 
the barometer will affect the weather. Thus, although as-
sociative accounts distinguish between observational and 
interventional learning, they are prone to errors when pre-
dictions for instrumental actions are derived from obser-
vational knowledge.

Although both interventional and observational learn-
ing have been investigated in a number of studies (e.g., 
Gopnik et al., 2004; Steyvers, Tenenbaum, Wagenmakers, 
& Blum, 2003) very few studies have pursued the ques-
tion whether people are capable of deriving correct in-
terventional predictions after purely observational learn-
ing. Sloman and Lagnado (2005) addressed this question 
using logical reasoning tasks and demonstrated that par-
ticipants correctly distinguished between observational 
and interventional predictions. Waldmann and Hagmayer 
(2005) went one step further in the direction of learning 

(see Blaisdell, Sawa, Leising, & Waldmann, 2006, for an 
analogous study with rats). Participants were first shown 
diagrams similar to the one depicted in Figure 1 (without 
the numbers), which provide representations of causal 
models, that is, hypotheses about the structure of causal 
systems. Subsequently learners were handed a tabulated 
list of individual cases on a sheet of paper. The results not 
only showed that people are indeed sensitive to the distinc-
tion between observational and interventional predictions 
but also that learners took into account the parameters of 
the causal models (e.g., the strength of the causal rela-
tions), which they had gleaned from the presented data.

Although Waldmann and Hagmayer (2005) provided 
their participants with learning data it could be argued 
that, due to the presentation of tabulated data, the tasks 
were more like reasoning than standard learning tasks. 
Moreover, some researchers have claimed that processing 
of tabulated data is handled by different learning mech-
anisms than trial-by-trial learning (e.g., Shanks, 1991). 
Therefore, one novel feature of the present study is the use 
of a passive trial-by-trial observational learning paradigm 
to test whether learners are capable of deriving interven-
tional predictions from passive observations of a set of 
separated learning trials.

Studying inferences based on trial-by-trial learning also 
introduces cues to causal structures that might compete 
with the initially instructed causal model. According to 
causal-model theory (Waldmann, Hagmayer, & Blaisdell, 
2006) people primarily induce hypotheses about causal 
structures on the basis of cues, such as temporal order 
or verbal instructions (Lagnado & Sloman, 2006; Lag-
nado, Waldmann, Hagmayer, & Sloman, 2007). In most 
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of our previous experiments learners were provided with 
structure hypotheses solely on the basis of initial instruc-
tions. However, there are cases in which temporal and 
causal order mismatch. For example, physicians often 
observe symptoms (i.e., effects) prior to learning about 
their causes. In these cases it is crucial that the temporal 
order of experiencing events is ignored as a cue to causal 
structure. Therefore, a second novel feature of the experi-
ments involves the manipulation of temporal cues while 
holding the instructed causal model constant. In Experi-
ment 1 the temporal order during learning conforms to the 
causal order (predictive learning from causes to effects), 
whereas in Experiment 2 the temporal order is reversed 
(diagnostic learning from effects to causes). Thus, in the 
diagnostic learning condition there is a mismatch between 
the temporal order implied by the causal model and the 
experienced learning order. Based on previous research 
on causal-model theory we expected participants to be ca-
pable of letting causal order override learning order, that 
is, we expected learners to stick to the initially suggested 
causal structure. However, the diagnostic learning con-
text might influence the acquisition of the causal model’s 
parameters thereby jeopardizing learners’ competency to 
derive interventional predictions.

Seeing Versus Doing: 
Modeling Observations and Interventions

Normatively, predictions based on observed values of a 
variable often differ from inferences drawn from the very 
same states brought about by active interventions. For ex-
ample, if we arbitrarily change the reading of a barometer, 
our action renders the reading independent of its usual 
cause, atmospheric pressure. Such “strong” interventions 
(Woodward, 2003) can be formalized by Pearl’s (2000) 
“do-operator,” written as do (•) (see Spirtes, Glymour, & 
Scheines, 1993, for an alternative notation). Whereas the 
expression P(a | c) refers to the probability of A 5 a, given 
that C 5 c was observed, the expression P(a | do c) refers 

to the probability of A 5 a, given that C is fixed to state c 
by means of an intervention.1

Correct predictions about the outcomes of interven-
tions require that learners are sensitive to the structure of 
causal models and the difference between observations 
and interventions. In the present experiments we use the 
diamond-shaped causal model shown in Figure 1. Within 
this model the observed states of event C provide diag-
nostic evidence for the state of its cause A, thus P(a | c) . 
P(a | ¬c). (See the Appendix for the formal derivations.) 
In contrast, manipulations of effects do not change their 
causes; hence, the probability of A remains at its base rate 
when the presence or absence of C is generated by means 
of an intervention [i.e., P(a | do c) 5 P(a | do ¬c)]. The 
fact that (strong) interventions create independence also 
implies a difference between observations and interven-
tions in predictive reasoning from C to D. Obviously, there 
is the direct causal link connecting C to D, but there is 
also a second cause of D, event B. Observational predic-
tions need to take the alternative pathway ABD into 
account because observed values of C provide diagnostic 
evidence for A and, therefore, also include the influence 
of B on D. For example, observing C to be absent indi-
cates that A, and therefore also B, is likely to be absent. 
However, the situation is different when C is not merely 
observed to be absent, but is actively prevented from oc-
curring. Although this intervention ensures that event D is 
not influenced by C, the model’s initial event A will still 
occur with its base rate probability and influence D by 
way of B. As a consequence, the probability of the final 
effect D is lower when C is merely observed to be absent 
than when the occurrence of C is prevented by means of 
an intervention [i.e., P(d | ¬c) , P(d | do ¬c)].

ExpErIMEnt 1

The goal of the first experiment was to investigate 
whether learners are capable of deriving predictions for 

Figure 1. the parameterized causal model used in Experiments 1 and 2. 
Arrows indicate causal relations between variables; conditional prob-
abilities encode the strength of these relations. All parameters were preset 
except P(d | b. c), which is computed by a noisy-Or-gate (pearl, 1988).

P(b | ¬a) = .1
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C
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P(a) = .5
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) =
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P(c | a) = .9

P(d | b. ¬c) = .75

P(d | ¬b.c) = .75
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hypothetical interventions after an observational trial-by-
trial learning phase in which learning order corresponds 
to causal order.

Method
participants and Design

Twenty-four students from the University of Göttingen, Germany, 
participated for course credit. The factors intervention vs. observa-
tion and presence vs. absence of C were varied within subjects.

Materials and procedure
Causal model instructions. The variables of the causal model 

depicted in Figure 1 were introduced as four fictitious chemical 
substances causally interacting in wine casks. In addition, partici-
pants were shown a graphical representation of the causal structure 
similar to Figure 1 (without information about the model’s param-
eters). They were instructed to learn about the strength of the causal 
relations from the learning data shown in Table 1, which embodied 
the probabilities shown in Figure 1. The kind of questions learners 
would have to answer after the learning phase was not mentioned 
until the test phase. Learners did not see the figure showing the 
model during either the learning or test phase.

Observational learning phase. The learning phase consisted of 
40 trials presenting information about the states of the four variables 
on a computer screen, with each trial referring to a different wine 
cask. Each chemical substance was represented by a circle with the 
label of the corresponding substance; the circles were spatially ar-
ranged as a diamond-shaped form but without arrows (see Figure 1). 
At the beginning of each trial, all four circles were labeled with 
question marks indicating that the variables’ states in the wine cask 
were not yet known. Then temporally ordered information about 
the presence and absence of the four variables was given. The pres-
ence of a chemical substance was signaled by a colored circle, its 
absence by a crossed-out circle. First, information about variable A 
was presented; then, simultaneously, variables B and C were shown; 
and, finally, information about event D was given. The interstimulus 
interval was 1 sec; the whole pattern stayed for another 2 sec on 
the screen before the next trial automatically began. Participants 
passively observed the unfolding events without making overt 
predictions.

test phase. The learning phase was followed by a test phase in 
which participants were requested to answer four questions about 
hypothetical observations and four questions about hypothetical in-
terventions. For the two observational diagnostic questions, partici-
pants were instructed to imagine observing the presence [absence] 
of substance C in 40 previously unseen wine casks and to estimate 
the number of casks in which substance A would also be found, 
that is, they had to estimate P(a | c) and P(a | ¬c) in a conditional 
frequency format. The two interventional diagnostic questions asked 
learners first to imagine that substance C was added to 40 casks, or 
that C was prevented in 40 casks, and then to estimate the number 
of casks in which substance A would also be found [i.e., participants 
estimated P(a | do c) and P(a | do ¬c)]. The same set of questions 
was asked about D, the effect of C; that is, learners were requested 
to estimate the predictive probabilities P(d | c), P(d | ¬c), P(d | do c), 

and P(d | do ¬c). Interventional and observational questions were 
blocked; the order of blocks was counterbalanced.

results and Discussion

Table 2 shows the means of the conditional frequency 
estimates along with the values derived by a causal model 
analysis (see the Appendix).

Diagnostic Inferences
Whereas observed states of C are diagnostic for its 

cause A, generating or preventing C by means of interven-
tion renders the event independent of A. Therefore, the ob-
servational probabilities should differ, whereas the inter-
ventional probabilities should stay at a constant level. To 
test these predictions, we conducted a number of planned 
within-subjects comparisons. Consistent with the predic-
tions participants’ mean estimates for the two observational 
probabilities differed [F(1,23) 5 36.51, MSe 5 59.17, p , 
.001], but they judged the interventional probabilities to be 
at the same level (F , 1). Moreover, the estimates for the ob-
servational and interventional probabilities differed: P(a | c) 
received higher estimates than P(a | do c) did [F(1,23) 5 
4.61, MSe 5 63.93, p , .05]. Conversely, P(a | ¬c) received 
lower estimates than P(a | do ¬c) did [F(1,23) 5 21.03, 
MSe 5 58.99, p , .001]. Although participants’ estimates 
did not perfectly match the quantitative causal model pre-
dictions, the qualitative pattern of the results provides clear 
evidence for participants’ sensitivity to the difference be-
tween seeing and doing in diagnostic judgments.

predictive Inferences
Within the chosen causal model predictive inferences 

are more complicated than the requested diagnostic in-
ferences. Whereas the latter only require considering the 
direct causal relation between A and C, the inferences con-
cerning variable D require taking into account the com-
plete model, in particular the alternative causal pathway 
ABD. If C is observed to be present, then its cause A 

table 1 
Learning Data of Experiments 1 and 2 (40 trials)

 Data Pattern  Frequency  Data Pattern  Frequency  

a. b. c. d 14 ¬a. b. c. d  0
a. b. c. ¬d  1 ¬a. b. c. ¬d  0
a. ¬b. c. d  2 ¬a. ¬b. c. d  1
a. ¬b. c. ¬d  1 ¬a. ¬b. c. ¬d  0
a. b. ¬c. d  2 ¬a. b. ¬c. d  1
a. b. ¬c. ¬d  0 ¬a. b. ¬c. ¬d  1
a. ¬b. ¬c. d  0 ¬a. ¬b. ¬c. d  0

 a. ¬b. ¬c. ¬d   0  ¬a. ¬b. ¬c. ¬d  17  

table 2 
Conditional Frequency Estimate results referring  
to 40 Cases in Experiment 1 (predictive Learning) 

 and Experiment 2 (Diagnostic Learning)

Causal 
Model

 
Experiment 1

 
Experiment 2

  Predictions  M  SD  M  SD

Diagnostic Inferences
 Observation
  P(a | c) 38 30.5  7.6 33.5  8.6
  P(a | ¬c)  4 17.1 10.4 15.4 11.2
 Intervention
  P(a | do c) 20 25.5 10.6 25.5 11.2
  P(a | do ¬c) 20 27.3  8.6 22.4 10.3

Predictive Inferences
 Observation
  P(d | c) 36 29.7 10.0 30.5 10.1
  P(d | ¬c)  5 14.8 11.6 18.3 13.3
 Intervention
  P(d | do c) 33 27.5 11.6 29.7 10.9
  P(d | do ¬c) 14 21.6 12.6 20.3 11.7

Note—For the derivation of the causal model predictions, see the 
Appendix.
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and, therefore, the second causal pathway is likely to be 
instantiated. Therefore, large differences between the ab-
sence and presence of C are to be expected. In contrast, an 
intervention on C leaves the second pathway untouched; 
hence a smaller difference is to be expected for the inter-
vention questions. As can be seen from Table 2, partici-
pants were indeed sensitive to these differences. As shown 
by the significant interaction contrast, the difference be-
tween the responses to the observational questions proved 
larger than the difference between the responses to the in-
terventional questions [F(1,23) 5 8.73, MSe 5 54.65, p , 
.01]. A second crucial test is provided by the comparison 
of P(d | ¬c) and P(d | do ¬c). Consistent with the causal 
model predictions, participants judged the probability of 
the occurrence of D to be significantly higher when C 
was prevented by an intervention than when it was merely 
observed to be absent [F(1,23) 5 9.57, MSe 5 57.83, p , 
.01]. In accordance with the parameterization of the causal 
model, there was only a slight, nonsignificant difference 
between P(d | c) and P(d | do c) [F(1,23) 5 1.0, MSe 5 
53.75, p 5 .33]. This test is important, as there might have 
been a general tendency to answer interventional ques-
tions differently from observational questions. In sum-
mary, both diagnostic and predictive inference reflected a 
remarkable grasp of the observational and interventional 
inferences afforded by the presented causal model.

ExpErIMEnt 2

The main goal of Experiment 2 was to test whether peo-
ple access causal models adequately when learning order 
does not match causal order. The same experimental design, 
cover story, and instructions were used as in Experiment 1.

Method
Again, 24 participants from the University of Göttingen partici-

pated; none of them had taken part in Experiment 1. In contrast to 
Experiment 1, the temporal order of learning events did not match 
their causal order (i.e., diagnostic learning from effects to causes). 
In each trial, participants were first informed about the status of ef-
fect D, then simultaneously about the mediating variables B and C, 
and finally about the initial cause A. As in Experiment 1, learners 
were requested to estimate the conditional frequencies of A and D, 
given observations of or interventions in C.

results and Discussion
Diagnostic inferences. As can be seen from Table 2, 

learners’ responses to the diagnostic inference questions 
closely resemble the ones in Experiment 1. The observa-
tional questions differed significantly [F(1,23) 5 63.88, 
MSe 5 61.43, p , .001], but there was no difference 
between the interventional questions [F(1,23) 5 1.52, 
MSe 5 75.26, p 5 .23]. As in Experiment 1, learners’ es-
timates for the observational and interventional probabili-
ties differed: Whereas P(a | c) received higher estimates 
than P(a | do c) did [F(1,23) 5 21.28, MSe 5 35.72, p , 
.001], P(a | ¬c) was judged lower than P(a | do ¬c) was 
[F(1,23) 5 13.15, MSe 5 45.24, p , .01]. The diagnostic 
inferences show again a remarkable grasp of the differ-
ence between seeing and doing despite the added com-
plexity entailed by the diagnostic learning procedure.

predictive inferences. As in Experiment 1, partici-
pants were asked to estimate the probability of D when 
C was observed or manipulated by an external interven-
tion. However, in contrast to Experiment 1, the difference 
between the observational questions proved statistically 
equivalent to the difference between the interventional 
questions (F , 1). Moreover, in contrast to Experiment 1 
the crucial test between P(d | ¬c) and P(d | do ¬c) failed to 
reach significance (F , 1). Thus, there was no evidence 
that participants correctly differentiated between seeing 
and doing in the more complex predictive task.

GEnErAL DISCuSSIOn

Taken together, the results of the two experiments pro-
vide convincing evidence that learners are capable of 
deriving correct predictions for hypothetical interven-
tions after trial-by-trial observational learning. Thus, the 
competency discovered in previous studies is clearly not 
restricted to causal reasoning based on tabulated data 
(Waldmann & Hagmayer, 2005) or descriptions of causal 
situations (Sloman & Lagnado, 2005). The present find-
ings strongly support the role of causal models in causal 
learning, and demonstrate a competency that goes beyond 
the expressive power of associative theories.

Although the qualitative pattern of responses con-
forms to the predictions of the causal model analyses, the 
quantitative estimates were not perfect, of course. For ex-
ample, learners had difficulties with correctly assessing 
cases in which events were observed to be absent [e.g., 
when estimating P(a | ¬c)]. We think that these devia-
tions are mainly rooted in imperfect parameter estimation 
processes. After observing the results of Experiment 1, in 
Experiment 2 we additionally asked participants to esti-
mate the base rate of event A after they had answered the 
observational and interventional questions. Interestingly, 
participants consistently overestimated this parameter: 
Whereas the actual value of P(a) was .5, learners’ mean 
probability judgment was .65. Since, normatively, the pos-
terior probability P(a | ¬c) increases with an increase of 
P(a), such an overestimation is likely to have contributed 
to the quantitative mismatch.

In a similar vein, we believe that the impaired perfor-
mance regarding the predictive inferences in Experiment 2 
is rooted in the parameter estimation processes. For ex-
ample, participants observed the probability of B and C 
given D but had to infer the probability of D given B and 
C as a parameter of the causal model. Therefore, the learn-
ing process may have led to inadequate estimates of the 
model’s parameters, which is particularly likely to affect 
the complex predictive inferences. Whereas the diagnostic 
questions could be correctly answered by recognizing that 
interventions render the manipulated variables indepen-
dent of their actual causes, correct estimates for the predic-
tive inferences require considering all of the model’s pa-
rameters. Thus, if the parameters are not acquired correctly 
during learning the inferences are likely to be wrong.

One reviewer raised the question whether our results 
demonstrated learning of parameters or could be pre-
dicted on the basis of knowledge about the causal struc-
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ture alone. One finding casting doubt on this hypothesis is 
the difference between Experiment 1 and 2 which shows 
that, despite of identical structures, the arrangement of the 
learning input matters. We also have completed further 
experiments (unpublished) in which we varied the size of 
the model’s parameters which systematically influenced 
learners’ inferences (cf. Waldmann & Hagmayer, 2005).

There are also open questions which future studies 
need to address. For example, one important question is 
how people exactly learn to parameterize causal mod-
els, particularly when data is presented in a trial-by-trial 
learning procedure. Recent work on dynamical models 
of causal learning has begun to address this issue (e.g., 
Danks, Griffiths, & Tenenbaum, 2003). Another question 
is how knowledge about causal structures guides causal 
reasoning. One idea is that people use causal model rep-
resentations to run mental simulations of real-world situ-
ations. By mirroring the causal features of the represented 
domain, such simulations constrain people’s intuitive 
causal reasoning and allow them to derive causal judg-
ments without the computationally demanding processes 
implied by a quantitative Bayesian analysis (Hagmayer & 
Waldmann, 2000).

In summary, the present studies provide clear evidence 
for the use of causal model representations in causal learn-
ing and causal reasoning and challenge associative accounts. 
Future research will have to develop psychological models 
that integrate competence and performance in causal learn-
ing and causal reasoning.
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nOtE

1. A more general representation of outside interventions within causal 
models is provided by augmenting causal model representations with 
intervention nodes representing additional cause variables (cf. Dawid, 
2002). Within this framework, predictions of the outcomes of differ-
ent types of interventions can be modeled as probabilistic inferences 
(so-called “explaining away,” cf. Pearl, 1988). However, to simplify the 
derivations in this article, here we use the do-operator.
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AppEnDIx

The probability distribution associated with the model shown in Figure 1 can be factored by applying the 
causal Markov condition (Spirtes et al., 1993; Pearl, 2000) to the causal model:

 P A B C D P A P B A P C A P D B C( . . . ) ( ) ( | ) ( | ) ( | . ).= ⋅ ⋅ ⋅  (A1)

Modeling Observations
Based on the decomposed probability distribution, the probabilities implied by the observational data can be 

computed. For example, a diagnostic inference from C to A is computed using Bayes rule:
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A more complex example is the prediction of variable D from observations of event C:
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and

 

P d c P A c P B A P d B c

P a

i i i i
i

( | ) ( | ) ( | ) ( | . )

(

¬ = ¬ ⋅ ⋅ ¬

=

∑

|| ) ( | ) ( | . ) ( | ) ( | ) ( |¬ ⋅ ⋅ ¬ + ¬ ⋅ ¬ ⋅c P b a P d b c P a c P b a P d ¬¬ ¬
+ ¬ ¬ ⋅ ¬ ⋅ ¬ + ¬ ¬

b c

P a c P b a P d b c P a c

. )

( | ) ( | ) ( | . ) ( | )) ( | ) ( | . ).⋅ ¬ ¬ ⋅ ¬ ¬P b a P d b c  (A5)

By conditionalizing A on C, these computations take into account that observed states of C are diagnostic for 
the state of A. The probability of the final effect D reflects both the influence of B and C.

Modeling Interventions
Pearl’s (2000) “do-operator” provides a formal means for representing the notion of strong interventions that 

fix the value of the target variable. For example, an intervention in C renders the event independent of its actual 
cause A, therefore,

 P a c P a c P a( | ) ( | ) ( ).do do= ¬ =  (A6)

The probability of D 5 d given that C is generated (do c) or inhibited (do ¬c) by means of an intervention, 
is given by
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and

 

P d c P A P B A P d B c

P a

i i i i
i

( | ) ( ) ( | ) ( | . )

( )

do ¬ ¬= ⋅ ⋅

=

∑

⋅⋅ ⋅ + ⋅ ¬ ⋅ ¬
+

P b a P d b c P a P b a P d b c( | ) ( | . ) ( ) ( | ) ( | . )¬ ¬

PP a P b a P d b c P a P b a P d( ) ( | ) ( | . ) ( ) ( | ) (¬ ⋅ ¬ ⋅ + ¬ ⋅ ¬ ¬ ⋅¬ || . ).¬b c¬  (A8)

In contrast to the computations underlying the observational inferences, in the interventional inferences vari-
able A is no longer conditionalized on C. On the right-hand side of the equations, only parameters that can be 
derived from observational learning are involved.

(Manuscript received December 20, 2006; 
revision accepted for publication June 9, 2007.)


