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Abstract 

In three experiments we investigated whether two procedures of acquiring knowledge about 

the same causal structure, predictive learning (from causes to effects) versus diagnostic 

learning (from effects to causes), would lead to different base rate use in diagnostic 

judgments. Results showed that learners are capable of incorporating base rate information in 

their judgments regardless of the direction in which the causal structure is learned. However, 

this only holds true for relatively simple scenarios. When complexity was increased, base 

rates were only used after diagnostic learning, but were largely neglected after predictive 

learning. It could be shown that this asymmetry is not due to a failure of encoding base rates 

in predictive learning because participants in all conditions were fairly good at reporting 

them. The findings present challenges for all theories of causal learning. 
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Acquiring causal knowledge about the world belongs to our most important competencies. 

Causal knowledge allows us to predict future events or explain the occurrence of present 

events. Causal information may be presented in different ways (see Reips, 1998; Waldmann, 

1996, 2000, 2001; Waldmann & Holyoak, 1992; Waldmann, Holyoak, & Fratianne, 1995)(see 

Figure 1). Medical textbooks frequently are structured according to disease categories that are 

the causes of symptom patterns. Students of these textbooks will learn to predict symptoms on 

the basis of diseases. Thus, they acquire predictive knowledge (i.e., from causes to effects). 

However, in other contexts information may be presented in the diagnostic effect-

cause direction. A physician who sees a patient for the first time will check the symptoms 

(i.e., effects) and then attempt to settle on a diagnosis of the probable disease (i.e., the cause). 

Also, textbooks that focus on differential diagnosis typically present causal knowledge in the 

diagnostic direction. 

When a physician knows that a patient has a specific disease, she can predict the 

future symptoms. These predictions require knowledge about the strength of the causal 

relations between disease and symptoms but it does not matter whether the disease is rare or 

frequent. In contrast, diagnoses of likely diseases from observed symptoms are only 

appropriate if both are taken into account, causal strength and the frequencies (i.e., base rates) 

of possible diseases. Thus, due to this asymmetry it may well be that predictive but not 

diagnostic learning leads to a neglect of base rates which may entail erroneous judgments if in 

the future the predictive learners will be asked to make diagnostic judgments. 

Very little is known about the relationship between these two different types of 

learning contexts, predictive and diagnostic learning, and their influence on the resulting 

representation of causal knowledge. The main goal of the present research is to close parts of 

this research gap by focusing on one important aspect of normative diagnostic reasoning, 

sensitivity to the base rates of the causes of the observed pattern of symptoms. 
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The Use of Base Rates in Judgments 

One of the most discussed findings in the literature on judgment and decision making is 

Kahneman and Tversky’s (1973) discovery of base rate neglect. In several experiments they 

have found that people do not adequately take into account the base rates of events in 

diagnostic tasks. An example from the medical domain was investigated by Gigerenzer and 

Hoffrage (1995). In one of their experiments they told participants that the probability of 

breast cancer is one percent. Moreover, if the patient had breast cancer, it would be detected 

in a mammography in 80 percent of the cases. If the patient did not have breast cancer, it 

would be incorrectly detected in a mammography in 9.7 percent of the cases. Presented with 

this information, participants tended to drastically overestimate the likelihood of breast cancer 

for a particular woman with a positive mammography. Students and professional physicians 

gave assessments above 50 percent (Eddy, 1982), whereas the actual conditional probability is 

only 7.8 percent. These results indicate that people neglected or underused the information 

about the base rates and tended to base their judgments on the information about the 

likelihoods of positive tests. 

 However, the stability of the base rate neglect phenomenon has been called into 

question (see Koehler, 1996, for a review). Studies that conveyed the information in summary 

format have shown that subtle variations of the wording of the task may affect the degree of 

appreciation of base rates. Tversky and Kahneman (1980) had already shown that base rates 

tend to be used more frequently when they are causally motivated. Others have also 

demonstrated that the perceived relevance of base rates plays an important role (e.g., Ajzen, 

1977; Bar-Hillel, 1980; Gigerenzer, Hell, & Blank, 1988). Moreover, Gigerenzer and 

Hoffrage (1995) have shown that base rates are used more often when the information is 

given in frequency format, at least in situations in which all presented frequencies are related 

to an identical and clearly defined sample (Fiedler, Brinkmann, Betsch, & Wild, 2000).  
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Not all causal knowledge is acquired on the basis of summary and frequency formats. 

When base rate information is conveyed directly through trial-by-trial experience people can 

fully make use of it (e.g., Christensen-Szalanski & Beach, 1982; Gluck & Bower, 1988; 

Shanks, 1990; Spalding & Murphy, 1999). However, some studies have found base rate 

neglect or even an inverse base rate effect with trial-by-trial learning procedures (e.g., Gluck 

& Bower, 1988; Medin & Edelson, 1988; Kruschke, 1996). Holyoak and Spellman (1993) 

have suggested that base rates are implicitly used during learning but may be neglected when 

the test question requires explicit use of base rates. Although this factor seems to be 

important, there are also studies showing base rate neglect with directly experienced data and 

more implicit tests (Goodie & Fantino, 1995; Lovett & Schunn, 1999). The present research 

extends this research by investigating further factors that might affect base rate sensitivity in 

trial-by-trial learning tasks. 

Predictive vs. Diagnostic Learning 

 Medical diagnosis is arguably the most important domain in which base rates should 

be used. Physicians or medical advisors who neglect base rates may give erroneous advice or 

initiate inadequate treatments. The goal of our studies is to focus on trial-by-trial learning in a 

causal task from the medical domain, and investigate the conditions under which base rates 

are used. We are going to study predictive and diagnostic learning of the same causal 

structure of diseases and symptoms, and study their impact on the use of base rates.  

 In order to understand our experimental paradigm (see Figs. 1 and 2), it is important to 

note the distinction between temporal order (cue and outcome) and causal order (cause and 

effect). Cues and outcomes are generic terms for antecedent and consequent events regardless 

of their causal description. A cue can represent a cause and an outcome an effect (predictive 

task) or a cue can represent an effect and an outcome a cause (diagnostic task).  

 In the diagnostic learning task, participants will be given information about symptoms 

(i.e. the effects of diseases) as cues and will be asked to diagnose the disease (i.e., the cause of 
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the symptoms). Each disease has a unique symptom that is only caused by this disease (e.g. 

stiff joints caused by the disease ”pleroia” in Fig. 2), and an ambiguous symptom that is 

caused by two competing diseases (e.g. shortness of breath is present if a patient has pleroia 

or spetitis). The base rates of these two diseases vary. To test sensitivity to base rates, the final 

test questions require diagnostic inferences in the effect-cause direction. The crucial test 

involves the ambiguous symptoms (e.g., shortness of breath in the example in Fig. 2). Since 

each of these symptoms is deterministically caused by two competing diseases (e.g., both 

pleroia and spetitis always lead to shortness of breath), the diagnostic judgments should 

reflect their base rates. Given the ambiguous symptom as a single cue in the test phase, the 

more frequent disease should be judged as more likely than the less frequent disease. In the 

example, given only the information that a patient has shortness of breath and one of the two 

diseases, a good diagnostician should assume that the patient has pleroia with a likelihood of 

75%.  

 In the predictive version of the task we will present the same diseases with identical 

causal structures and base rates in the predictive direction from the causes (the diseases) to 

their effects (symptoms)(see Fig. 1). Thus, learners will be given the individual diseases as 

cues and will have to predict the two symptoms that are deterministically caused by the 

diseases. For example, given pleroia participants will learn to predict the presence of stiff 

joints and shortness of breath in patients. In the test phase, symptoms will be given as cues (as 

in the diagnostic condition), and learners will be asked to assess the likelihood of the diseases. 

Thus, in both conditions participants learn the same causal structures with each disease 

causing two symptoms and with diseases varying in frequency. Moreover, in both tasks 

participants are requested to make diagnostic judgments based on individual symptoms as 

cues. The only difference is that in the diagnostic learning condition participants receive 

symptoms as cues and learn to diagnose the associated diseases, whereas in the predictive 

learning condition they receive diseases as cues and learn to predict the associated symptoms. 
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Normatively, base rates should be used regardless of learning direction. Also if the use 

of base rates hinges on the presentation of trial-by-trial information (Christensen-Szalanski & 

Beach, 1982) or on the presentation of natural frequencies that are related to identical samples 

(Fiedler et al., 2000; Gigerenzer & Hoffrage, 1995), sensitivity to base rates should be equal 

in both conditions. In both learning procedures participants are presented with information of 

sequences of individual patients, and are asked to give identical diagnostic judgments.  

The comparison between predictive and diagnostic learning in the present experiments 

differs from the tasks used in previous studies designed to test causal-model theory (e.g., 

Waldmann & Holyoak, 1992; Waldmann, 2000, 2001). In their experiments the cues were 

either characterized as effects (diagnostic learning) or causes (predictive learning) of the 

outcomes, thus varying causal models of the same structures while keeping the learning order 

and the test questions constant. The goal of the present studies is to keep the causal model of a 

structure constant while studying the impact of learning order (see Figs. 1, 2)(see Cobos, 

López, Caño, Alvarez, & Shanks, 2002; Yamauchi & Markman, 1998; Yamauchi, Love, & 

Markman, 2002, for related paradigms).  

Competing Theories of Learning 

During the last few years there has been a debate between associative and cognitive accounts 

of causal learning (see De Houwer & Beckers, 2002; De Houwer, Beckers, & Vandorpe, 

2005). Thus, it is interesting to consider the predictions of these theories for our tasks.  

Causal-Model Theory. We will discuss causal-model theory as a representative example of 

rational models of complex causal model learning because it is the only theory that has 

addressed the differences between predictive and diagnostic learning so far (but see Gopnik, 

Glymour, Sobel, Schulz, Kushnir, & Danks, 2004, for a related theory). Causal-model theory 

assumes that learners form a representation of causal models regardless of the order in which 

learning information is presented. These causal models contain information about how causes 

are related to effects (i.e., causal structure) along with estimates about the parameters (e.g., 



    Base Rates in Causal Learning 
 

8 

causal strength, base rates) that are gleaned from the learning data. It is typically assumed that 

the parameters are estimated on the basis of the observed frequencies in the learning data 

(Waldmann & Holyoak, 1992; Waldmann & Hagmayer, 2005).  

The focus of the present experiments is the use of base rates in diagnostic judgments. 

The predictive learning condition is the most interesting condition for testing causal-model 

theory because in this condition the task at test is directed in the opposite direction to learning 

order. In this condition participants are required to switch from predictive learning to 

diagnostic judgments. Only if learners correctly acquire a causal model and its parameters 

(causal strength, base rates), and if they can correctly access the model in both predictive and 

diagnostic directions, normative judgments are to be expected for the diagnostic test questions 

after predictive learning. Causal-model theory predicts that learners should attempt to acquire 

causal-model knowledge regardless of learning order, and hence be sensitive to base rates in 

both learning conditions, predictive and diagnostic learning. In the General Discussion an 

extended version of causal-model theory is discussed that is sensitive to the complexity of the 

task (see also Reips, 1998). 

Associative Theories. We will discuss the Rescorla-Wagner theory of associative learning as a 

representative example of this class of theories. This theory has been applied to model 

sensitivity to base rates (Gluck & Bower, 1988; Shanks, 1990). Associative theories would 

model the diagnostic task with symptoms as cues and diseases as outcomes. Since the 

underlying associative learning rule attempts to reduce errors, eventually the learning model 

would correctly diagnose the diseases. These diagnoses would be sensitive to the base rates. It 

is interesting to note that these models explain sensitivity to base rates without having to 

separately represent base rates. The diagnoses are simply a consequence of combining 

associative weights that are tuned to take the objective base rates into account.  

 In the predictive context, associative models would assign the diseases to the cue layer 

and the symptoms to the outcome layer. In this context the models attempt to correctly predict 
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the outcomes (i.e., the symptoms). At the learning asymptote the model should have learned 

maximal weights representing the deterministic relations between each disease and its two 

associated symptoms. Since outcomes, according to the Rescorla-Wagner and related 

theories, do not compete with respect to their cues, the associative weights are solely 

dependent on the contingencies between diseases and symptoms. Base rates do not affect the 

outcome of learning, at least at the asymptotic stage.  

 What would these models predict for the diagnostic judgments? Since our test phase 

requires assessments opposite to the learning direction (from outcomes to cues), additional 

assumptions need to be made. A simple assumption would be that people use the associative 

weights from the learning task also in this phase. In this case associative theories would 

predict base rate sensitivity after diagnostic but not after predictive learning. Possible 

extensions of this basic account and alternative theories will be discussed in the General 

Discussion.  

 One interesting empirical question will be whether participants encode the frequencies 

of the causes even when they are ignored in the actual diagnoses. In the predictive learning 

context the task does not require an encoding of frequencies. However, it has been argued that 

frequencies often are encoded automatically (Hasher & Zacks, 1979; Reber, 1993). Whereas 

causal-model theory assumes that people use conditional frequency information to arrive at 

inferences (Waldmann & Holyoak, 1992), the Rescorla-Wagner model does not predict 

storage of frequency information. It may also happen that people store the base rates but do 

not use them in their judgments. If that was the case, an underuse of base rates would support 

the notion that base rate neglect in our task is not a consequence of a failure to encode 

frequency information during learning but rather a consequence of the fact that participants 

did not embody base rates in the trial-by-trial judgment procedures. Frequencies may be 

stored passively but still not used in the diagnoses. This finding would place further 

constraints on theories of causal learning.  
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Experiment 1 

The first experiment is designed to test whether learners have the competency of correctly 

incorporating base rate information regardless of the sequence of learning. This competency 

is predicted by causal-model theory, but would be at odds with associative theories. To test 

this hypothesis, participants in the predictive and the diagnostic learning conditions received 

identical learning materials that contained information about two different diseases (causes) 

and their three associated symptoms (effects). The only difference in the learning phase was 

that participants in the predictive condition received information about the diseases as cues 

and had to learn to predict symptoms as outcomes, whereas in the diagnostic condition 

learners received information about the symptoms first as cues and had to learn to diagnose 

the diseases. After the learning phase all participants were requested to give assessments of 

the probability of the diseases given information about the presence of individual symptoms. 

Accordingly, the test phase was directed in the diagnostic direction from effect cues to their 

causes.  

To test whether participants were sensitive to base rates we used a causal structure 

(“M-structure”) in which each disease had two symptoms, one of which was unique for the 

disease. The other symptom was shared with a second disease and thus ambiguous (see Fig. 

2). All symptoms were deterministically caused by the associated diseases. We varied the 

base rates of the two diseases that competed for the explanation of the ambiguous symptom 

(see Medin & Edelson, 1988, for a similar task). Base rate sensitivity implies that participants 

would give the more frequent disease a higher probability than the rare disease when the 

ambiguous symptom is present.  

Participants and Design 

There were 24 participants, all students from the University of Tübingen, who received either 

participation credit or DM 5. Half of this group was randomly assigned to either of the two 

learning conditions, predictive or diagnostic learning.   
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Material  

Instructions and learning trials in all experiments were presented in German. As symptoms we 

used stiff joints, shortness of breath, and muscle cramps. The fictitious diseases were 

“pleroia” (frequent) and “spetitis” (rare).  The role of each symptom as either a unique or an 

ambiguous cues was counterbalanced. The order of trials was randomized within blocks, with 

each block representing a complete M structure.  

 The causal “M-structure” underlying the learning material was constructed as follows 

(see Fig. 2): There are two diseases and three symptoms. Each disease deterministically 

causes two symptoms. One of these two symptoms is ambiguous  in that it is an effect of 

either diseases, while the other two symptoms are each caused by one disease only (i.e., 

unique symptoms). For example, the disease pleroia causes both stiff joints and shortness of 

breath, and the disease spetitis causes the symptoms shortness of breath and muscle cramps. 

Thus, shortness of breath is the ambiguous symptom because it does not allow to decide 

between the diagnoses pleroia and spetitis. Base rates were manipulated in a 3:1 ratio, 

meaning that one disease within the M-structure was three times as frequent as the other 

disease. In the experiment participants saw 24 times the frequent disease and its associated 

symptoms on individual index cards, and 8 times the rare disease and its associated 

symptoms. 

Dependent measures 

Our data analysis in all experiments focuses on diagnostic decisions based on the ambiguous 

symptoms because only these are indicators of base rate use. Base rate sensitivity implies that 

the more frequent disease is seen as a more probable cause than the rare disease when an 

ambiguous symptom is present and no other information is available. Sensitivity to base rates 

is indicated when participants give a higher probability rating for the frequent disease than for 

the rare disease when confronted with the ambiguous symptom that is deterministically 

caused by either disease. Thus, we generally defined base rate use as the difference between 



    Base Rates in Causal Learning 
 

12 

participants’ ratings or proportion of choices of the frequent disease minus their ratings or 

proportion of choices of the rare disease. If applicable, the differences were averaged over all 

causal structures (see Experiments 2 and 3), resulting in the measure of base rate use. If the 

measure takes a positive value, it indicates base rate use, if it is zero it indicates no base rate 

use. Negative values would show a reversed use of base rates.  

Procedure 

Participants were run individually. Before going through the learning trials participants 

received typed instructions (in German). To facilitate thorough reading of the instructions all 

participants were told that they would be asked to summarize the written instructions once 

having read through them. Participants were asked by the experimenter to re-read the 

instructions whenever their oral summary indicated a misunderstanding of the instructions. In 

the instructions, all participants were asked to imagine being a guest in a special clinic for 

viro-neuronal tropical diseases for one day. Participants in the diagnostic learning condition 

were told that they would be learning to diagnose diseases, and that their task was to diagnose 

patients’ diseases based on information about the symptoms these patients exhibited. 

Participants in the predictive learning condition were told that they were going to learn to 

predict symptoms, and that their task was to predict patients’ symptoms on the basis of 

information about the disease on the patients' cards. After summarizing the instructions, 

participants began with the learning task. Descriptions of patients were presented by the 

experimenter, one by one, on 32 index cards. Each card displayed two symptoms on one side 

and one disease on the other side. The cards were presented in blocks of four trials, each 

block containing all trials for the base rate distribution within the M-structure. Card order was 

randomized within each block. The participants in the diagnostic learning condition were 

shown the side with the symptoms first. After having announced the diagnosis, learners were 

shown the back of the card, which showed the patient's disease. The participants in the 

predictive learning condition were presented the side with the disease first. After having 
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announced the prediction they were shown the back of the card, which showed the patient's 

symptoms. Figure 3 shows a schematic description of the procedure used. 

After the learning phase, participants were handed typed sheets with rating 

instructions and rating scales. In the instructions participants were told to imagine receiving 

information about the next patient arriving at the clinic. Then it was pointed out that in this 

phase participants would only receive information about a single symptom of the patient. The 

task was to rate the probability of the patient having the respective disease on a scale ranging 

from very improbable (0) to very probable (100). Thus, participants were asked to give ratings 

of the diagnostic relation between individual symptoms and the diseases.1 In addition to the 

ratings, we asked participants to make a forced choice between the diseases in the presence of 

each of the symptoms. We also asked participants to give relative frequency estimates for the 

diseases on a scale from 0 to 100 percent. 

Results and Discussion 

We conducted an ANOVA with the average differences between probability ratings for the 

two diseases in the ambiguous symptoms’ presence. The explicit measure of base rate use was 

not significantly different for causal learning direction, F(1, 22)=0.41, MSE=1023.49, n.s. 

(see Fig. 4). The means of the measure of base rate use were 18 (SD=29) in the diagnostic 

learning condition and 26 (SD=35) in the predictive learning condition. In both learning 

conditions there was clear evidence for base rate use, meaning that the mean probability 

ratings for the more frequent disease were higher than for the less frequent disease. 

In sum, Experiment 1 shows roughly equal amounts of base rate appreciation after 

predictive and diagnostic learning (see Figure 4). In the diagnostic learning condition there 

were four and in the predictive learning condition there were five participants who made use 

of the base rate information. No one gave a higher rating for the rare as compared to the 

frequent disease. The analysis of the forced choice data also revealed a complete lack of an 

asymmetry between the conditions. The same number (9) of participants in both causal 
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conditions chose the frequent disease when confronted with a patient showing the ambiguous 

symptom.  

The ratings for frequencies of the diseases also turned out to be similar in both causal 

conditions (see Fig. 5). An analysis of variance on the differences between the average 

frequency ratings for the frequent diseases versus the rare diseases with the factor causal 

learning direction as the independent variable showed no statistically significant difference, 

F(1, 22)=0.01, MSE=448.11, n.s. The average means for differences were 48 (SD=24) in the 

diagnostic learning condition and 49 (SD=17) in the predictive learning condition. The main 

effect between the learning conditions was not significant. Thus, participants appeared to 

encode frequency information regardless of learning direction. 

In the present experiment participants tended to be equally sensitive to base rates in 

both the diagnostic and the predictive learning conditions even though the predictive learning 

task does not require this sensitivity to achieve error free performance. The results are 

consistent with the predictions of causal-model theory but are at odds with the Rescorla-

Wagner theory and related models. Further evidence for a non-associative account is the fact 

that learners were aware of the different base rates of the diseases in their frequency 

judgments.  

The results of the present experiment are consistent with our previous research 

supporting causal-model theory, which showed that learners try to correctly represent causal 

knowledge regardless of the sequence of the learning input (Waldmann & Holyoak, 1992; 

Waldmann, 1996, 2000, 2001). Whereas previous experiments have demonstrated this skill in 

tasks in which cues and outcomes were kept constant while varying the underlying causal 

model, the current experiment provides the first evidence for the competency to correctly 

learn about identical causal models irrespective of the sequence in which the elements of the 

models are experienced.  
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Experiment 2 

Experiment 1 demonstrated sensitivity to base rates irrespective of learning order. This 

finding is consistent with causal-model theory, which claims that people attempt to form 

adequate representations of causal models regardless of the order in which knowledge is 

acquired (see Waldmann, 1996; Lagnado, Waldmann, Hagmayer, & Sloman, in press). With 

Experiments 2 and 3 we pursued the goal to investigate the boundary conditions of this 

competency. Previous research has shown that the competency to acquire knowledge about 

causal models can break down when complexity of the domain or the task is increased (De 

Houwer & Beckers, 2003; Reips, 1998; Waldmann & Walker, 2005). We therefore increased 

the complexity of the task by increasing the number of diseases and symptoms.2 In 

Experiment 2 we presented a task with six diseases and nine symptoms (triple M-structure). 

As in Experiment 1, one of the two diseases within each M-structure and its symptoms was 

presented three times as frequent as the other disease within that structure.  

 We generally expected that the more difficult condition in which learning order and 

test order mismatch (predictive learning) should be particularly prone to performance deficits. 

Adequate learning of causal models requires the acquisition of knowledge of the structure and 

of the size of the parameters. A plausible strategy used by learners under taxing conditions 

might be to abandon the goal to form complete causal model representations that can be 

flexibly accessed, and fall back on learning only the information that is necessary to minimize 

errors in the current task (see also Lovett and Schunn, 1999). Reducing errors in diagnostic 

learning requires the diagnoses to be tuned to base rates; therefore we expected sensitivity to 

base rates in this condition. In contrast, predictive learning does not require sensitivity to base 

rates. In this condition, learners predict symptoms on the basis of more or less frequent 

diseases. Whereas diseases compete for explaining symptoms, there is no competition 

between symptoms that would require learners to take into account base rate information. 

Thus, learners in the predictive condition may correctly acquire the knowledge about the 
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structure of the causal models (i.e., M-structures with deterministic relations) but reduce the 

learning effort by ignoring parameters, such as the unequal base rates, that are currently not 

relevant for successful performance.  

 An interesting empirical question will be whether participants encode the frequencies 

of the diseases even when they are ignored in the diagnostic estimates. Whereas standard 

associative theories would not predict an encoding of frequency information, probabilistic 

theories (including causal-model theory) assume storage of frequencies. The potential 

dissociation between storage and use of base rates after predictive learning would place 

important constraints on theories.  

Method 

Participants and Design. There were 32 participants, mostly students from the 

University of Tübingen, who were recruited in the university cafeteria. They either received 

participation credit or were paid DM 8. Participants were randomly assigned to either the 

diagnostic learning condition or the predictive learning condition. 

Material and Procedure. The most important difference to Experiment 1 was that we 

presented three M-structures instead of one, with six diseases (“terrigitis”, “spetitis”, “rutix”, 

“pleroia”, “bilea”, “althrax”) and nine symptoms (irritant cough, ear-ache, muscle cramps, hot 

flushes, skin rash, pain in the limbs, stiff joints, eye irritation, shortness of breath). As in 

Experiment 1 each disease deterministically caused one unique and one ambiguous symptom. 

The relative base rates of the two competing diseases were the same as in Experiment 1 (3:1); 

the names of diseases were randomly assigned to the base rates. Moreover, the nine symptoms 

were randomly assigned to the six diseases.  

The learning trials were presented on a computer monitor using the Micro 

Experimental Laboratory (MEL) software. Except for the different frequency judgment scales 

(see below), participants received the same instructions and rating scales as in the first 

experiment, with an additional instruction on how to use the computer, and two new types of 
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questionnaires. Participants were informed that they would receive patient information on the 

computer. Each new display on the computer screen would represent one patient who had just 

been hospitalized. Then participants were instructed that the speed of the experiment would 

be self-paced: The experimenter would press the button to display the label of the disease and 

the symptoms of a patient only after the participant's verbal answer to a trial. The sequence of 

information was similar to the procedure in Experiment 1, which means that disease 

information was presented first in the predictive learning condition and symptom information 

first in the diagnostic learning condition. The next patient's information would be displayed 

only after the participant had studied the feedback and had said “ok” or “continue” or similar. 

In order to reduce task difficulty two sheets of paper that listed all possible diseases and 

symptoms were on display throughout the experiment. We set a learning criterion of two 

completely correctly answered blocks with a minimum of 48 trials and a maximum of 192 

trials (which nobody reached). In addition to the ratings, we asked participants to make a 

forced choice between the diseases in the presence of each of the symptoms. The order of 

symptoms on the response sheets was randomized. Furthermore, we asked participants how 

frequent the diseases were, on a rating scale with the endpoints 1 (“very rare”) and 7 (“very 

frequent”).  

Results and Discussion 

The average means of ratings of the probability of the high frequency diseases conditional 

upon the ambiguous symptom were similar in the causal conditions. They were 63% (SD=25) 

after diagnostic learning and 61% (SD=20) after predictive learning. For the low base rate 

diseases, however, participants in the diagnostic condition rated the probability on average at 

36% (SD=18), while the respective value in the predictive learning condition turned out to be 

64% (SD=23)(see Fig. 6). 

As in Experiment 1, we conducted an analysis of variance on the measure of base rate 

use, that is the difference between probability ratings for the two diseases in the ambiguous 
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symptom’s presence, averaged over all M-structures. In the present experiment with the more 

complex causal structure the measure of base rate use was significantly different in the two 

contrasting conditions, F(1, 30)=11.93, MSE=612.08, p<.01. Base rate appreciation was 

higher after diagnostic learning (M=27, SD=29) than after predictive learning (M=-3, SD=19) 

following the learning of the triple M-structure. Only four out of 16 participants in the 

diagnostic learning condition gave ratings inconsistent with base rate use (three equal, one 

higher for the infrequent cause), in contrast to 13 out of 16 in the predictive learning condition 

(eight equal, five higher for the infrequent cause).  

 In contrast to the probability estimates, the analysis of the forced choice data revealed 

no asymmetry between the conditions. A Kruskal-Wallis test on the differences between the 

number of choices of the frequent diseases and of the rare diseases showed no statistically 

significant difference for causal learning direction, χ2(1, N=31)=0.34, n.s. (one participant did 

not fill out the choice questionnaire). Probably the choice measure is less sensitive to 

differences in the strength of base rate sensitivity than the probability measure because people 

might choose the more frequent disease even when they believe that the probabilities of the 

frequent and the rare disease are very close. 

Ratings for frequencies of diseases again turned out to be similarly accurate in both 

causal conditions (see Fig. 7). An analysis of variance on the differences between the average 

frequency ratings for the frequent diseases versus the rare diseases with the factor causal 

learning direction as the independent variable showed no statistically significant difference, 

F(1, 30)=0.47, MSE=1.26, n.s. The average means for differences were 2.7 (SD=1.2) in the 

diagnostic learning condition and 3.0 (SD=1.0) in the predictive learning condition. There 

were no significant differences between learning conditions. These results suggest that 

participants acquired the base rates of the diseases in all conditions but used them differently 

in probability ratings depending on the learning condition.  
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In summary, in Experiment 2 we used a triple M-structure as the learning material. In 

contrast to the single M-structure of Experiment 1, there was a difference in base rate use 

after diagnostic versus predictive learning. These results contradict the predictions of causal-

model theory, and support associative theories. A modified version of causal-model theory 

that assumes that learners may neglect information that does not seem crucial for successful 

performance may also account for the results (see General Discussion). 

An interesting result concerns the direct assessments of frequencies. Although 

frequencies were neglected in the diagnostic probability ratings after predictive learning, 

participants still encoded the frequencies of rare and frequent diseases equally well in both 

learning conditions. Thus, the found asymmetries of base rate use are not a result of a failure 

of encoding base rates after predictive learning. Since basic associative theories do not predict 

the encoding of frequencies, this finding requires more complex models. This finding is also 

critical for causal-model theory which anticipates storage of frequency information but does 

not predict that encoded frequency information may not be used in diagnostic inference tasks 

(see General Discussion).  

Experiment 3 

The results of Experiment 2 suggest that the asymmetry of base rate appreciation is 

particularly strong when probability assessments were requested, and less strong with the 

choice measure. A plausible explanation of this possible difference may be that the choice 

measure is sensitive to small differences and therefore does not differentiate between different 

sizes of sensitivity to base rates. One goal of Experiment 3 was to use a more sensitive 

measure of diagnostic inference that is based on choice, but is still better comparable with the 

probability measure. Our focus on choice was motivated by our goal to use a more implicit 

measure of base rate sensitivity than explicit frequency estimates. In general, in the present 

experiment we were interested in exploring whether our findings are restricted to explicit 

measures or can also be replicated with more implicit measures. When looking for a more 
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sensitive implicit task that is not based on explicit frequency estimates we tried to capitalize 

on the finding that learners tend to match probabilities when making blocks of diagnostic 

decisions (see Reber, 1993). Therefore, in the test phase all participants received several 

blocks of individual diagnostic trials without feedback. Our goal was to use the relative 

frequencies of the diagnoses of the frequent and the rare diseases given the ambiguous 

symptoms as an implicit indicator of participants’ probability estimates. Thus, different 

probabilities for the frequent and the rare diseases were taken as an implicit indicator of base 

rate sensitivity. 

Participants and Design 

There were 32 participants in this experiment who were randomly assigned to either the 

predictive or the diagnostic learning condition. They received either participation credit or 

DM 10. 

Method and Procedure 

The procedure remained largely unchanged from Experiment 2. Instead of the choice measure 

we used the new implicit probability measure. Again, participants sat in front of a computer 

screen, and were presented screen by screen with information about fictitious patients who 

had supposedly just been hospitalized. The procedure was self paced. Participants were either 

instructed to diagnose diseases or, in the predictive learning condition, to predict symptoms. 

Lists of symptoms and diseases were available throughout the experiment. In the learning 

phase we gave participants a minimum of four and a maximum of 16 blocks of 12 learning 

trials each, using a learning criterion of two completely correct blocks, in which they were 

presented with individual symptoms. In the test phase, participants saw single symptoms, and 

were requested to choose among the possible diseases as probable causes of the symptom. 

There were 48 test trials, presented in random order that presented individual symptoms. The 

frequencies of the individual symptoms mirrored two presentations of each of the three M-

structures. Thus, each ambiguous symptom was presented eight times, each frequent unique 
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symptom was presented six times, and each rare unique symptom was presented twice. 

Participants received no feedback in the test phase.  

The general procedure used in this experiment can be summarized as follows: (1) 

written general instruction, (2) computer instruction, (3) learning phase with feedback, (4) 

instruction for the test phase, (5) test phase of diagnostic judgments without feedback, (6) 

rating questionnaire, (7) frequency questionnaire. The same questionnaires were used as in 

Experiment 2. 

Results and Discussion 

One participant did not meet the learning criterion of two completely correct blocks so that 

this participant’s data were not included in the following statistical analyses. Generally, the 

results were similar to those from Experiment 2. The average means of the ratings of the 

probability of the high base rate diseases were 73% (SD=22) in the diagnostic learning 

condition and 62% (SD=22) in the predictive learning condition. For the low base rate 

diseases, participants in the diagnostic condition rated the probability on average at 46% 

(SD=31), while the respective value in the predictive learning condition turned out to be at 

58% (SD=13). On average (over all three M-structures), only six of the 16 participants in the 

diagnostic learning condition did not use base rates, in contrast to 12 out of 16 in the 

predictive learning condition. 

 As in the previous experiments, we conducted an ANOVA with the average difference 

between probability ratings for the two diseases in the ambiguous symptoms’ presence. 

Again, this explicit measure of base rate use yielded significant results, F(1, 29)=5.68, 

MSE=740.28, p<.05. This finding replicates the results of the previous experiment for the 

explicit measure of base rate use.  

 The novel question in the present study was whether the asymmetry of base rate use 

would also be found in a more implicit measure that was closer to the learning task. Figure 8 

shows the mean percentages of choices of the frequent diseases in the presence of the 



    Base Rates in Causal Learning 
 

22 

ambiguous symptom: the high frequency disease was diagnosed in 70% of the trials in the 

diagnostic learning condition and in 58% in the predictive learning condition, whereas the low 

frequency disease was diagnosed in 20% in the diagnostic learning condition but in 41% in 

the predictive learning condition. Consequently, an analysis of variance with the average 

differences between percentages of choices for the two diseases in the ambiguous symptoms’ 

presence (i.e., implicit measure of base rate use) again revealed a significant difference 

between the causal conditions, F(1, 29)=5.96, MSE=1378.44, p<.05.  

Ratings of the frequencies of diseases once more turned out to be similar in both 

learning conditions, indicating no difference in the encoding of base rates. An analysis of 

variance on the differences between the average frequency ratings for the frequent diseases 

versus the rare diseases with the factor causal learning direction as the independent variable 

showed no statistically significant effect, F(1, 29)=1.46, MSE=1.15, n.s. The average means 

for differences were 3.4 (SD=1.1) in the diagnostic learning condition and 3.0 (SD=1.1) in the 

predictive learning condition. Again there were no significant differences between learning 

conditions. Figure 9 shows the average frequency ratings for the frequent and for the rare 

diseases separated by learning direction. 

In summary, the results from this experiment confirm and expand our earlier findings. 

As in Experiment 2 we used a triple M-structure as learning material. Again, there was a 

pronounced difference in base rate use after diagnostic but not after predictive learning in the 

diagnostic ratings. The interesting novel question whether this effect would also show up with 

a more implicit measure of base rate was answered as well. While we observed a certain use 

of the base rates in the predictive learning condition in the patterns of choices (see Fig. 8) we 

were also able to replicate the basic asymmetry between the causal learning conditions in 

complex tasks with the new measure. The use of base rates in the implicit measure is clearly 

less pronounced in the predictive learning condition than in the diagnostic learning condition. 

We also replicated the finding of Experiments 1 and 2 that participants encoded the 
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frequencies of the diseases fairly well in both learning conditions. This shows again that 

knowledge of base rates is not sufficient for using them in diagnostic judgments. 

General Discussion 

The three experiments present challenges for a unified account of causal learning. Experiment 

1 demonstrates that people incorporate base rate information in their diagnostic inference 

independent of the learning sequence in which the causal model was learned. However, when 

the complexity of the learning domain was increased in Experiments 2 and 3, performance 

deteriorated, especially when there was a mismatch between the learning sequence and the 

test sequence. Whereas learners were sensitive to the base rates of the causes in diagnostic test 

questions after diagnostic learning, they tended to neglect them after predictive learning. This 

asymmetry could be demonstrated in a probability rating task that required some abstraction 

from the learning task but was also prominent in a more implicit task in which participants 

matched the probability of the diseases in blocks of diagnostic judgments. Furthermore, it 

could be shown that this asymmetry is not due to a failure of encoding base rates in predictive 

learning. Participants generally remembered the frequency of the diseases fairly well in both 

learning conditions. In our view, these findings have theoretical as well as practical 

consequences. 

Theoretical Challenges 

The pattern of results in our experiments presents interesting challenges to extant theories. 

The competence of learners, displayed in Experiment 1, supports causal-model theory but 

presents problems for theories that model learning as solely directed from cues to outcomes 

(e.g., associative theories). These theories can explain base rate sensitivity after diagnostic 

learning, but, without an extension, are ill suited to model base rate sensitivity when learning 

proceeded in a direction opposite to the direction of the test questions (predictive learning and 

diagnostic testing).  



    Base Rates in Causal Learning 
 

24 

 One possible explanation of the results of Experiment 1 is to retain the basic version of 

the Rescorla-Wagner theory but make the assumption that learning was pre-asymptotic. As 

pre-asymptotic weights should be smaller for the rare diseases than the frequent diseases this 

may explain base rate sensitivity in Experiment 1 even after predictive learning. However, a 

shortcoming of this approach is that it would also erroneously predict base rate sensitivity in 

predictive learning in Experiments 2 and 3. Moreover, we used a learning criterion in these 

experiments and fairly simple deterministic structures so that this account seems implausible.  

 A possible extension of the basic associative theory would be to propose a model that 

learns bidirectional links between cues and outcomes (Shanks & Lopez, 1996). Such a model 

could propose that people simultaneously learn in both directions which would predict base 

rate sensitivity in both tasks. Alternatively one could propose that learners acquire 

associations between outcomes (i.e., symptoms), or between outcomes and the context. The 

first proposal would lead to stronger associations between the ambiguous symptom and the 

frequent symptom rather than the rare symptom, the second to a stronger association between 

context and the frequent rather than the rare symptom.3 Through the associations between 

symptoms or the presence of the context in the test phase a preference for the more frequent 

disease given the ambiguous symptom could also be predicted. These extensions would again 

handle Experiment 1 but would then fail in Experiments 2 and 3, unless it is argued that the 

learning mechanism changes based on complexity. However, this seems to be an unusual 

theoretical move for a theory that generally tends to postulate a fixed basic learning 

mechanism which should not be affected by greater complexity (see Cobos et al., 2002). 

 In contrast, for Experiment 1 causal-model theory gives a straightforward account which 

postulates that people are capable of acquiring adequate causal model representations that 

contain information about causal structures and their parameters (including the base rate 

parameter)(see Gopnik et al., 2004; Glymour, 2001; Hagmayer, Sloman, Lagnado, & 

Waldmann, in press; Lagnado et al., in press; Waldmann & Hagmayer, 2005). Experiment 1 
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provides the first demonstration that people have the competence to correctly learn about 

causal parameters irrespective of the experienced sequence of learning information when 

identical causal models are presented. Causal-model theory also anticipates storage of 

frequency information, which was found in all experiments. 

 Although the results of Experiment 1 favor causal-model theory, Experiments 2 and 3 

seem to be better predicted by standard associative theories. Basic associative theories predict 

base rate sensitivity after diagnostic learning, but not after predictive learning. However, 

strictly speaking the predictions of associative theories for our predictive-learning tasks 

require an extension. So far, associative theories have not been applied to learning tasks in 

which learning sequence and test sequence do not coincide. Under the assumption that 

learners transfer the associative weights from predictive learning to diagnostic testing these 

theories predict the asymmetry of base rate use, however. One aspect that presents difficulties 

for this class of theories is the fact that people still encoded base rate information even in the 

more complex tasks. A possible route for associative theories would be to postulate multiple 

systems, a frequency based learning system that is used for complex inferences (e.g., against 

the learning direction), and an associative system for basic tasks that require inferences in the 

cue-outcome direction (see Price & Yates, 1995, for such a proposal). However, this model 

does not predict the differences between Experiment 1 and Experiments 2 and 3. An 

alternative would be to postulate associative learning for complex tasks and restrict causal-

model learning to simpler domains (Cobos et al., 2002; Tangen & Allan, 2004). Although this 

theory is a theoretical possibility, a precise model that incorporates both learning components 

along with assumptions about the conditions that trigger the chosen learning strategy has yet 

to be developed (see also López, Cobos, & Caño, 2005). 

 Causal-model theory also needs to be extended to account for the results of Experiments 

2 and 3. Previous research with other tasks has already shown that the competence to form 

adequate causal representations may break down when the task surpasses the processing 
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limits of learners (De Houwer & Beckers, 2003; Reips, 1998; Waldmann & Walker, 2005). A 

plausible hypothesis accounting for performance deficits might postulate that learners 

confronted with complex tasks give up the goal to construct complete causal model 

representations that can be flexibly accessed. A complete causal model representation 

contains knowledge of causal structures and knowledge of the size of the parameters. Since 

structure knowledge is arguably more important than parameter knowledge, a plausible 

hypothesis is that learners are mainly interested in learning the structure of the causal models 

and only focus on the parameters they need for error free performance. For other parameters 

they might fill in default values or use default estimation strategies (Waldmann & Walker, 

2005). The results of Experiments 2 and 3 seem consistent with the notion that participants 

tend to choose a representation during learning that reduces errors (see also Lovett & Schunn, 

1999). Whereas the diagnostic learning task can only be mastered when base rates are taken 

into account at least implicitly, the predictive learning context permits error free performance 

without having to use base rate information. Thus, in the predictive learning condition a 

plausible prediction is that people default on the assumption of equal base rates. 

  In some respects this proposal is similar to the idea of postulating two learning 

mechanisms, a causal-model learning mechanism and an associative mechanism (Cobos et al., 

2002; López, Cobos, & Caño, 2005; Tangen & Allan, 2004). The basic difference is that the 

extended causal-model theory does not postulate two separate systems with different learning 

strategies but a unified learning mechanism that predicts that learners attempt to form causal 

model representations. Instead of postulating a second mechanism, the main hypothesis is that 

learners in complex tasks may neglect individual parameters of the causal models that seem 

less relevant for the present task. Such a model is more parsimonious than a multiple system 

account, and also has the advantage of postulating a unified probability learning mechanism 

instead of having to switch between associative and probability learning (see also Gopnik et 
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al., 2004; Waldmann & Martignon, 1998). However, at this point the data do not permit us to 

empirically decide between the competing accounts. 

 The finding that people encode base rates but do not always use them also poses a 

challenge for causal-model theory. A possible explanation is that people do not combine 

separately stored base rate information with causal strength information (as required by the 

Bayes inversion formula) but rely on direct estimates of conditional probabilities. More 

specifically, in the diagnostic task learners would primarily pick up probabilities (or 

frequencies) conditional on symptoms, whereas in the predictive task, probabilities would be 

learned conditional on diseases. Thus, as in the case of associative theories, base rates would 

be implicitly learned in the diagnostic task, as they are embodied in the probabilities of the 

diseases conditional upon the symptoms. Because base rates are implicitly embodied in the 

diagnostic conditional probabilities (see also Gigerenzer & Hoffrage, 1995), the explicit 

storage of frequencies would be a side effect of probability learning. This would explain why 

frequencies can be stored but still be neglected in the conditional probability estimates. This 

finding also places constraints on causal-model theory’s account of the good performance in 

Experiment 1. Apparently learners need to be able to estimate conditional probabilities in both 

directions to arrive at adequate judgments. Simple knowledge of the base rates is probably not 

sufficient for good performance. 

 An interesting question for future research will be whether the competency to acquire 

flexibly accessible knowledge (as evidenced in Experiment 1) is based on the learning phase 

or on the retrieval phase. One possibility is that learners attempt to simultaneously learn 

knowledge in the predictive and diagnostic direction regardless of the learning task when the 

complexity of the task permits it. Another possibility is that the learners are capable of storing 

patterns of frequencies and co-occurrences in simple situations as in the present experiment 

with a single deterministic M-structure, and derive the necessary conditional probabilities 

from this knowledge base in the test phase (i.e., the retrieval stage). 
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 In summary, none of the competing theories is currently developed far enough to 

simultaneously account for the symmetries and asymmetries of base rate use in the three 

experiments. Hopefully future research will show which of the outlined theoretical 

possibilities is adequate. 

Practical consequences 

 Our research is of considerable practical significance for educational settings. It shows 

that the philosophy of many medical text books to present information organized around 

causes (see Thagard, 2000) may lead to deficits when this knowledge has to be used. Base 

rate neglect with verbally described materials has amply been documented. However, the 

present findings show that even feedback-based trial-by-trial learning and direct observations 

of frequency information are not immune to this error. Regardless of how our empirical 

findings will be theoretically explained, they provide important constraints for the selection of 

suitable learning and training contexts in education.  
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Footnotes 

1After the diagnostic ratings, which always were requested first, participants in some of the 

experiments were asked for their assessment of the predictive relationships (i.e., the 

probability of symptoms given the individual diseases). Since these data are of little 

theoretical significance in the present context we will not discuss these results here. 

 

2We have also conducted an experiment with two M-structures (4 diseases, 6 symptoms), 

which will not be reported here because the results are very similar to the results of the 

present Experiments 2 and 3. 

 

3These theoretical possibilities were suggested by M. Buehner and M. Vadillo. 
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List of Figure Captions 

Figure 1. The same causal structure can either be learned from causes to effects or from 

effects to causes. 

Figure 2. Predictive versus diagnostic learning of a single M-structure with a frequent and a 

rare cause. The disease pleroia is three times as frequent as the disease spetitis, shortness of 

breath (ambiguous symptom) is caused by both diseases. Unique symptoms are caused by 

only one of the diseases. 

Figure 3. Schematic description of the learning task. The final test requests access to the 

diagnostic direction. 

Figure 4. Mean probability ratings for the frequent and rare diseases in the presence of the 

ambiguous symptom in Experiment 1 (single M-structure). Data labels show differences of 

ratings between frequent and rare diseases given the ambiguous symptom. 

Figure 5. Mean estimates of frequencies of frequent and rare diseases after diagnostic and 

predictive learning in Experiment 1 (single M-structure). Data labels show differences of 

estimates between frequent and rare diseases given the ambiguous symptom. 

Figure 6. Mean probability ratings for the frequent and rare diseases in the presence of the 

ambiguous symptoms in Experiment 2 (triple M-structure).  

Figure 7. Mean estimates of frequencies of frequent and rare diseases after diagnostic and 

predictive learning in Experiment 2 (triple M-structure). 

Figure 8. Percent of diagnoses of frequent and rare diseases causing the ambiguous symptoms 

(i.e., implicit test of base rate use) in Experiment 3 (triple M-structure). Data labels show 

differences of percentages. 

Figure 9. Mean estimates of frequencies of frequent and rare diseases after diagnostic and 

predictive learning in Experiment 3 (triple M-structure).  
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