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Abstract 

Whereas the traditional normative benchmark for diagnostic 
reasoning from effects to causes is provided by purely statis-
tical norms, we here approach the task from the perspective of 
rational causal inference. The core feature of the presented 
model is the assumption that diagnostic inferences are con-
strained by hypotheses about the causal texture of the domain. 
As a consequence, the model’s predictions systematically de-
viate from classical, purely statistical norms of diagnostic in-
ference. In particular, the analysis reveals that diagnostic 
judgments should not only be influenced by the probability of 
the cause given the effect, but also be systematically affected 
by the predictive relation between cause and effect. This pre-
diction is tested in three studies. The obtained pattern of diag-
nostic reasoning is at variance with the traditional statistical 
norm but consistent with a model of rational causal inference.   

Keywords: Rational model; Causal learning; Causal reason-
ing; Bayesian inference; Computational Modeling 

Introduction 

In this paper we present a rational analysis of diagnostic 

reasoning – the process of reasoning from effects to causes. 

Diagnostic inferences are not only ubiquitous in medicine, 

but also in everyday reasoning. For example, we reason 

from effects to causes when we try to explain why our car 

does not start or when we try to identify the causes of why 

our computer crashed once again. Whereas the traditional 

normative yardstick for such inferences is provided by pure-

ly statistical norms, we use the framework of causal-model 

theory (e.g., Pearl, 2000; Waldmann & Holoyak, 1992; 

Waldmann, Hagmayer, & Blaisdell, 2006) and causal Baye-

sian inference (Griffiths & Tenenbaum, 2005; Lu, Yuille, 

Liljeholm, Cheng, & Holyoak, 2008) to elucidate the rele-

vant kinds of inputs, computations, and outputs involved in 

diagnostic reasoning.  

We here focus on the most basic type of diagnostic infe-

rence, which involves a single cause-effect relation between 

two binary events. Based on a rational analysis of such 

diagnostic inferences we have developed a computational 

model that details the influence of competing hypotheses 

about causal structure and causal strength. Whereas it is 

usually assumed that diagnostic judgments should merely be 

a function of the empirical conditional probability 

P(Cause | Effect), our analysis reveals that diagnostic infe-

rences should also be systematically affected by the predic-

tive probability P(Effect | Cause) and by the causal power 

(Cheng, 1997) of the target cause. We tested the model’s 

predictions in three studies. While the observed pattern of 

reasoning appears irrational from a purely statistical pers-

pective, our analyses suggest that it may be viewed as re-

sulting from a rational inference strategy that is well adapted 

to the goal of acquiring and using causal knowledge. 

“(aïve Bayes” as a (orm of Diagnostic Inference 

Let C denote a binary cause and E a binary effect, and let c+, 

c− and e+, e− indicate the presence and absence, respectively, 

of these events. Making a diagnostic judgment from effect 

to cause can then be expressed as estimating the conditional 

probability of the cause given the effect, P(c+|e+). Given a 

joint frequency distribution over C and E the empirical 

conditional probability P(c+|e+) can be directly estimated 

from the frequency of co-occurrences �(·). Alternatively, 

one can use Bayes’ rule to derive this probability from the 

conditional probability of the effect given the cause, 

P(e+|c+), the base rate of the target cause, P(c+), and the 

marginal probability of the effect, P(e+): 

����|��� =
����|��� ∙ �����

�����
 (1)

We refer to this approach as naїve Bayes because under this 

view the application of Bayes’ rule is nothing but an ele-

mentary result of standard probability theory. In particular, 

no reference is made to the generative causal processes 

underlying the observed events, and no uncertainty about 

parameter estimates is assumed in these computations. 

This use of Bayes’ rule provides the classical statistical 

norm to which peoples’ diagnostic judgments usually have 

been compared (e.g., Kahneman & Tversky, 1973). Several 

studies have shown that peoples’ judgments often substan-

tially deviate from this norm and have attempted to pinpoint 

factors which lead people to conform to this norm (e.g., 

Gigerenzer & Hoffrage, 1995). However, the prescriptive 

validity of this statistical norm has rarely been questioned 

(but see Krynski & Tenenbaum, 2007). We suggest that 

approaching diagnostic inferences from the perspective of 

causal reasoning may provide a more appropriate standard 

of rational diagnostic inference and a better descriptive 

model of peoples’ diagnostic judgments. 

A Rational Model of Diagnostic Inference 

The core idea behind our model is the assumption that diag-

nostic inferences operate over causal representations that are 

estimated from data (cf. Krynski & Tenenbaum, 2007). 

Thus, the data we encounter are typically interpreted as 

arising from some unobserved causal processes, and our 

inference goal when making predictive and diagnostic infe-

rences is to reason about causal relations, not about the 

noisy data we perceive.  



Briefly, our model consists of the following five steps1: 1) 

Specify alternative causal structures that may underlie the 

data. 2) Use the data to estimate the parameter distributions 

associated with each causal structure. 3) Compute P(c+|e+) 

for each (parameterized) causal structure. 4) Compute the 

posterior probability of each causal model. 5) Integrate out 

the causal models to obtain an overall diagnostic judgment 

P(c+|e+). We next describe these steps in more detail.  

(1) Specifying alternative causal structures Given infor-

mation about the co-occurrences of a single candidate cause 

C and a single effect E there are three qualitatively different 

causal structures that might underlie the observed data. 

These three causal networks, in the following denoted as 

M0, M1, and M2 are shown in Figure 1.  

 

 

Figure 1: Alternative causal models which may underlie a 

co-occurrence of a cause event C and an effect event E. 

 

Each causal structure consists of a set of nodes, which 

represent the domain variables, and directed edges (“causal 

arrows”), which represent hypotheses about the presence of 

causal influences connecting the variables. Thus, a core 

feature of such causal model representations is that they 

mirror a characteristic feature of our environment, namely 

the fact that some events, causes, have the power to generate 

or prevent other events, their effects.  

Each structure expresses a different qualitative hypothesis 

about the generative causal processes assumed to underlie 

the observation of C and E. According to model M0, there is 

no causal relation between C and E. Though the two events 

may sometimes co-occur, the effect is generated by some 

unobserved background cause (A). The second structure, 

M1, states there exists a causal relation between C and E, 

that is, when C occurs it has the power to produce E. How-

ever, there are also alternative background causes that can 

generate the effect. Finally, according to structure M2, event 

C is the only cause of E, as indicated by the missing arrow 

from A to E. Thus, C is necessary for the occurrence of E. 

Note that structures M0 and M2, respectively, are not mere-

ly special cases of structure M1, but constitute qualitatively 

different, less complex hypotheses suggesting different 

causal explanations for the observed data. For example, due 

to their simpler form causal structures M0 or M2 may have a 

higher posterior probability than structure M1 (i.e., Bayesian 

Occam’s Razor), which would not be possible if the former 

were merely special cases of the latter. Rather, the models 

form the background against which the observed data is 

                                                           
1 The stepwise description is for illustrative purposes only.  

evaluated. This, for example, allows the model to be sensi-

tive to the question to what extent some data D provides 

evidence for or against the existence of particular causal 

relations potentially underlying the observations (see also 

Griffiths & Tenenbaum, 2005). 

(2) Parameter estimation Connected with each causal 

structure is a set of parameters w: wbc denotes the base rate 

of cause C, wc denotes the causal strength of C, and wa en-

codes the causal influence of an amalgam of further (unob-

served) background causes of E.2 By Bayes’ rule, the post-

erior probability distributions of each model’s parameters 

given the data, P(w | D), is proportional to the likelihood of 

the data given the parameter set w:  

��
|�) ∝ �(�|
) ∙ �(
) (2)

P(D | w) is the likelihood of the data given the parameter 

values for wbc, wc, and wa, and P(w) refers to the joint prior 

probability of the parameters. The prior distributions of the 

parameters wbc, wc, and wa, are independently set to flat, 

uninformative Beta(1, 1) distributions (e.g., Anderson, 

1990; Griffiths & Tenenbaum, 2005). Under a noisy-OR 

parameterization (e.g., Pearl, 2000), for which Cheng’s 

(1997) causal power measure is the maximum likelihood 

estimate (MLE), the likelihood function P(D | w) is given by  

(1 − 
��)(1 − 
�)��(��,��) ∙ (1 − 
��)
������,��� ∙ 

��(1 − 
�)(1 − 
���(��,��) ∙ 
��(
� + 
� − 
�
�)��(��,��)

 
(3)

The posterior distributions of the parameters P(w | D) are 

derived separately for each of the three causal structures. 

For structure M1 the parameter set consists of wbc, wc, and 

wa. By contrast, M0 and M2 have only two parameters whose 

probability distributions are updated in light of the available 

evidence. According to M0, there is no causal relation be-

tween C and E, therefore only estimates for wbc and wa are 

derived. Conversely, M2 represents the possibility that there 

are no alternative causes. Therefore, only estimates for wbc 

and wc are being computed. Note that the derived parameter 

distributions differ depending on the assumed causal struc-

ture. For example, given some data D the posterior distribu-

tions on wc are not the same under structures M1 and M2.  

(3) Deriving P(c
+
|e

+
) The next step is to derive an esti-

mate of the diagnostic probability P(c+|e+; Mi, w) under the 

different models given their parameters. According to struc-

ture M0, there is no causal link between C and E, therefore 

observing E provides no diagnostic evidence for C. Thus, 

P(c+|e+; M0, w) = P(c+; w) = wbc. In structure M1, P(c+|e+) is 

derived under the noisy-OR assumption:  

�(��|��; ��, 
) = 
��
� + 
��
� − 
��
�
�

��
� + 
� − 
��
�
�

 (4)

Depending on the parameters’ prior distributions this es-

timate may or may not coincide with the empirical condi-

tional probability. 

                                                           
2 Each parameter is defined over the interval [0,1]. 
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Finally, structure M2 expresses the possibility that C is the 

only existing cause of E. Therefore, whenever effect event E 

is present, it is certain that C is also present. Thus, P(c+|e+; 

M2, w) = 1. The target inference for each structure can be 

computed by integrating over the parameters’ values.3 

(4) Computing the models’ posterior probabilities The 

posterior probability of the models is proportional to the 

likelihood of the data given the models, weighted by the 

prior probability of the model (Bayes’ rule): 

����|�) ∝ �(�|��) ∙ �(��) (5)

P(D | Mi) is the likelihood of the data given structure Mi, 

which is simply the integral over the likelihood function of 

the parameters under structure Mi.
4 P(Mi) denotes the prior 

probability of structure Mi. We assume that prior to observ-

ing any data all three models are equally likely, thus, P(M0) 

= P(M1) = P(M2) = 1/3. 

One way to analyze how the predictions of naïve Bayes 

differ from our model is to look at data sets for which naïve 

Bayes predicts identical judgments, whereas our model 

predicts differences. Figure 2a shows the causal models’ 

posterior probabilities for three different data sets with a 

fixed conditional probability of the cause given the effect 

(i.e., P(c+|e+) = 0.75) and varying probability of the effect 

given the cause (0.9, 0.6, and 0.3, respectively). Since the 

value of P(e+|c+) provides the upper boundary for the causal 

strength estimate of C this variation strongly affects the 

likelihood of the three causal models (M0, M1, M2). In par-

ticular, the probability of M1 and M0 varies systematically 

with the value of P(e+|c+): the weaker this relation is, the 

more likely M0 becomes, since a weak observed contingen-

cy may merely be a coincidence. When P(e+|c+) = 0.9, M1 is 

the most likely model, but when P(e+|c+) = 0.3 both struc-

tures M1 and M0 are equally likely. The probability of M2 

remains at zero since in all data sets the effect sometimes 

occurs in the absence of the candidate cause. 

(5) Integrating out the causal models The final step is to 

integrate out the alternative causal structures to obtain a 

single value for the diagnostic probability P(c+|e+). This is 
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done by summing over the values of P(c+|e+; Mi) derived 

under each causal model weighted by the posterior probabil-

ity of the respective model: 

�(��|��; �) = # �(��|��; ��) ∙ �(��|�)
�

 (6)

The result of this Bayesian model averaging is a single val-

ue for P(c+|e+), that takes into account uncertainty about 

causal structures and parameter estimates. Fig. 2b shows 

how the resulting estimate for P(c+|e+) deviates from the 

empirical probability. A comparison with Fig. 2a shows that 

this downward trend is due to the increased likelihood of 

structure M0 across the three data sets: the more likely M0 

becomes, the stronger the derived estimate of P(c+|e+) de-

viates from the empirical conditional probability. 

Asymmetries between diagnostic and predictive infe-

rences The analyses also reveal an interesting asymmetry 

between predictive and diagnostic inferences.5 Whereas our 

model predicts that diagnostic judgments should be affected 

by the predictive probability and by the causal strength of 

the target cause, the converse is not necessarily true. Thus, 

predictive judgments should usually only be affected by the 

predictive probability P(e+|c+), but not by the diagnostic 

probability P(c+|e+). The reason for this asymmetry is that 

under structure M0 the estimated value of wa is larger than 

under M1 since all occurrences of the effect must necessarily 

be attributed to the influence of the background causes. As a 

consequence, an increase in the likelihood of M0 usually 

entails only a small decrease for estimates of P(e+|c+) when 

integrating out the causal models. Figures 2c and 2d illu-

strate this prediction for three data sets with a fixed level of 

P(e+|c+) but different values of P(c+|e+) (1.0, 0.75, and 0.6, 

respectively). The figure also shows that M2 is the most 

likely model when the effect never occurs in the absence of 

the target cause, which entails that P(c+|e+) = 1.0. 

Summary The presented model provides a rational account 

of diagnostic reasoning. Because the computations involve 

alternative hypotheses about the existence and strength of 

causal dependencies, the model’s predictions substantially 

                                                           
5 Predictive inferences from cause to effect are modeled analo-

gously to the diagnostic inferences. Thus, an estimate of P(e+|c+) 

is derived under the three causal structures, which are then inte-

grated out to obtain a single estimate. 

Figure 2. a) Posterior probabilities of models M0, M1, and M2 for different data sets with fixed P(c+|e+) and varying 

P(c+|e+). b) Estimates of P(c+|e+) after model averaging. c) Posterior probabilities of models M0, M1, and M2 for three data 

sets with fixed P(e+|c+) and varying P(c+|e+).  d) Estimates of P(e+|c+) after model averaging. 
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deviate from the empirical conditional probability in the 

data (“naїve Bayes”). These analyses demonstrate that caus-

al norms and statistical norms do not necessarily coincide 

and illustrates how rational Bayesian causal inference can 

lead to very different predictions than a purely statistical 

account. 

Experiment 1 

The main goal of Experiment 1 was to investigate whether 

people’s diagnostic judgments are indeed not only affected 

by the diagnostic probability P(c+|e+), but also by the predic-

tive probability P(e+|c+) and the causal strength of the can-

didate cause. We therefore factorially combined three levels 

of the diagnostic probability P(c+|e+) (1.0, 0.75, and 0.6, 

respectively) with three levels of the predictive probability 

P(c+|e+) (0.9, 0.6, and 0.3, respectively). The resulting nine 

conditions are shown in Table 1. 

Participants and Design Thirty-six University of Göttingen 

undergraduates participated for course credit. The factors 

‘learning data’ and ‘type of causal judgment’ (predictive vs. 

diagnostic) were varied within subjects.  

Instructions We used a medical scenario according to 

which physicians are investigating how certain diseases 

causally relate to the presence of certain substances found in 

the blood of people. Participants were told that they would 

be requested to make two judgments after being presented 

with some data. They were informed that one question 

would require them to make an inference from the cause 

event (disease) to the effect event (substance), whereas the 

second question would refer to a diagnostic inference ques-

tion from effect (substance) to its potential cause (disease).  

Table 1. Learning data in Experiment 1. 

 P(c+|e+) 

 1.0 0.75 0.6 

P(e+|c+) 

P(e+|c-) 

18/20 

 0/20 

18/20 

 6/20 

18/20 

12/20 

P(e+|c+) 

P(e+|c-) 

12/20 

 0/20 

12/20 

 4/20 

12/20 

  8/20 

P(e+|c+) 

P(e+|c-) 

6/20 

 0/20 

6/20 

 2/20 

6/20 

4/20 

Learning Data Subsequent to reading the instructions par-

ticipants received a sheet of paper presenting 40 (rando-

mized) individual cases referring to patients who had been 

tested for the presence of the disease and substance, respec-

tively (Table 1). Each disease-substance combination was 

denoted by different (fictitious) labels (e.g., Mido-

sis/Rothan). The order of the nine disease-substance combi-

nations was counterbalanced across subjects. 

Test Phase After examining the data sheet, participants 

were presented with the two test questions, with the order of 

questions being counterbalanced across participants. The 

predictive question reads like this (translated from German): 

“How certain are you that a novel patient who has been 

infected with [Midosis] has the substance [Rothan] in his 

blood?” Estimates were given on a rating scale ranging from 

“0 = I am absolutely certain that the patient does not have 

the substance in his blood“ to “7 = I am absolutely certain 

that the patient does have the substance in his blood”. The 

diagnostic question asked for an inference from effect to 

cause: “How certain are you that a novel patient who has the 

substance [Rothan] in his blood has been infected with [Mi-

dosis]?” The rating scale ranged from “0 = I am absolutely 

certain that the patient does not have the disease “ to “7 = I 

am absolutely certain that the patient does have the disease”. 

Subsequent to answering the two questions participants 

proceeded to the next disease-substance combination.  

Results and Discussion Table 2 shows participants’ res-

ponses to the predictive and diagnostic inference questions. 

A first inspection of the data indicates that the predictive 

judgments were not affected by the diagnostic probability 

P(c+|e+), but that the diagnostic causal judgments seem to 

decrease proportionally to the size of the predictive proba-

bility P(e+|c+).  

Table 2. Mean estimates (±SEM) for predictive and diag-

nostic inference questions in Experiment 1. All judgments 

were made on a scale from 0 to 7. 

  P(c+ | e+) 

  1.0 0.75 0.6 

 Pred. Diag. Pred. Diag. Pred. Diag. 

P
(e

+
 | 

c+
) 0.9 

5.67 

(.23) 

6.31 

(.17) 

5.67 

(.13) 

5.00 

(.17) 

5.42 

(.17) 

4.11 

(.20) 

0.6 
4.36 

(.27) 

5.86 

(.31) 

4.03 

(.18) 

4.28 

(.19) 

4.03 

(.17) 

3.97 

(.14) 

0.3 
2.78 

(.25) 

5.94 

(.32) 

2.78 

(.23) 

3.72 

(.26) 

2.58 

(.17) 

3.36 

(.21) 
 

For the predictive inference questions, an analysis of va-

riance with level of predictive probability P(e+|c+) and level 

of diagnostic probability P(c+|e+) as within-subject va-

riables revealed a main effect of predictive probability, 

F(2, 70) = 100.7, p < .001, but no effect of diagnostic prob-

ability, F(2, 70) = 1.29, p = .28. Thus, participants’ res-

ponses to the predictive causal inference questions were 

only determined by the predictive probability P(e+|c+). The 

same analysis was conducted for the diagnostic questions. 

Not surprisingly, participants’ responses to these questions 

were strongly influenced by the diagnostic probability 

P(c+|e+), F(2, 70) = 74.02, p < .001. However, the analysis 

also revealed a strong influence of the predictive probability 

P(e+|c+), F(2, 70) = 12.83, p < .001. The lower the predic-

tive probability P(e+|c+), the lower the diagnostic judgments 

turned out to be, despite identical empirical probabilities 

P(c+|e+). An exception seemed to be when the cause is a 

necessary event for the effect (i.e., when P(c+|e+) = 1.0); 

here the response pattern indicates only a weak influence of 

the predictive probability P(e+|c+). As a consequence, the 

analysis also revealed a significant interaction, 

F(4, 140) = 2.51, p < .05.  

Taken together, these results show that participants’ pre-

dictive judgments were only affected by the probability of 

the effect given the cause, while the diagnostic inferences 

were affected by both the predictive and diagnostic proba-



bility. In particular, the diagnostic judgments systematically 

decreased with the predictive strength of the cause event. 

These patterns clearly support our rational model and indi-

cate that participants attempted to make assessments on the 

causal level rather than on the data level. 

Experiment 2 

The goal of Experiment 2 was to examine more closely 

conditions in which the candidate cause is necessary for the 

effect, which implies that observations of the effect are 

perfectly diagnostic for the candidate cause. The diagnostic 

probability P(c+|e+) was fixed to values of 1.0 and 0.8, re-

spectively, whereas the predictive probability P(e+|c+) could 

take values of 0.8 and 0.4. The conditions in which 

P(c+|e+) = 1.0 provide an interesting test case as our model 

predicts no influence of the predictive probability in this 

case. The reason is that in these conditions structure M2 

(which entails that P(c+|e+) = 1.0)) has the highest posterior 

probability of all three models (cf. Fig. 2c). By contrast, for 

the two conditions in which P(c+|e+) = 0.8 an influence of 

the predictive probability is predicted since structure M0 is 

more likely when P(e+|c+) = 0.4 than when P(e+|c+) = 0.8. 

Participants and Design Ninety-six University of Göttin-

gen undergraduates participated for course credit or were 

paid 5€. The factor ‘learning data’ was varied between sub-

jects, the factor ‘type of causal judgment’ (predictive vs. 

diagnostic) was varied within subjects. We used the same 

procedure and materials as in Experiment 1.  

Table 3. Learning data in Experiments 2 and 3. 

  Experiment 2 Experiment 3 

  P(c+|e+) P(c+|e+) 

  1.0 0.8 0.8 0.4 

P(e+|c+) 

P(e+|c-) 

16/20 

 0/20 

16/20 

 4/20 

8/10 

2/10 

  8/10 

 12/60 

P(e+|c+) 

P(e+|c-) 

8/20 

0/20 

8/20 

2/20 

 8/20 

 2/10 

  8/20 

12/60 
 

Results and Discussion Table 4 shows the results for the 

predictive and diagnostic inference questions. As in Expe-

riment 1, participants’ responses to the predictive inference 

questions were only determined by the value of the predic-

tive probability P(e+|c+), F(1, 92) = 53.45, p < .001, but not 

by the diagnostic probability. Similarly, the obtained diag-

nostic judgments systematically varied with the level of the 

diagnostic probability, F(1, 92) = 12.18, p < .001. A more 

detailed analysis of the diagnostic responses revealed an 

interesting asymmetry between the conditions in which the 

target cause was necessary and those in which the effect 

also occurred in the absence of the target cause. For the two 

conditions in which the target cause was not necessary for 

the occurrence of the effect (i.e., P(c+|e+) = 0.8), partici-

pants’ judgments again systematically varied in accordance 

with the predictive strength of the target cause. Thus, people 

were more certain that the target cause would be present 

when the cause had a high predictive power (i.e., 

P(e+|c+) = 0.8) than when it had a low predictive power 

(i.e., P(e+|c+) = 0.4), t(46) = 1.89, p < .05 (one-tailed). By 

contrast, the predictive probability had no influence on the 

diagnostic judgments when the cause was necessary for the 

occurrence of the effect (i.e., when P(c+|e+) = 1.0). In these 

conditions equal estimates were obtained regardless of the 

predictive strength of the candidate cause. 

Table 4. Mean estimates (±SEM) for predictive and diag-

nostic inference questions in Experiments 2 and 3. 

  Experiment 2 Experiment 3 

  P(c+|e+) P(c+|e+) 

  1.0 0.8 0.8 0.4 

  Pred. Diag. Pred. Diag. Pred. Diag. Pred. Diag. 

P
(e

+
|c

+
) 0.8 

5.42 

(.20) 

5.75 

(.38) 

5.00 

(.26) 

5.00 

(.31) 

5.06 

(.22) 

5.31 

(.19) 

4.78 

(.29) 

3.66 

(.30) 

0.4 
3.46 

(.20) 

5.75 

(.33) 

3.58 

(.26) 

4.13 

(.35) 

3.13 

(.22) 

4.25 

(.31) 

3.13 

(.22) 

3.28 

(.24) 

In summary, in Experiment 2 two major findings were ob-

tained. First, in the conditions in which the target cause was 

not a necessary event for the occurrence of the effect (i.e., 

P(c+|e+) = 0.8), participants’ diagnostic judgments again 

declined with the decrease of the predictive probability 

P(e+|c+). These results replicate the previous findings in a 

between-subjects design. The second result concerns the 

conditions in which P(c+|e+) = 1.0, for which our model 

predicts that the value of P(c+|e+) should not affect the di-

agnostic judgments. Consistent with this prediction, no 

influence of the strength of the predictive relation was ob-

tained between these conditions.  

Experiment 3 

The previous two experiments demonstrated how people’s 

diagnostic inferences are systematically influenced by the 

probability with which the effect occurs in the presence of 

the candidate cause. In these studies, the diagnostic proba-

bility P(c+|e+) was fixed at constant levels by decreasing 

P(e+|c-) along with P(e+|c+) (i.e., by varying the strength of 

the (unobserved) alternative cause). In Experiment 3 we 

fixed the strength of the unobserved background cause to 

P(c+|e-) = 0.2. To fix the diagnostic probability to two dif-

ferent levels (0.8 and 0.4, respectively) we varied the base 

rate P(c+) accordingly (Table 3). The rational model again 

predicts that the diagnostic judgments would decrease with 

a decline of the predictive probability P(e+|c+ ). 

Participants and Design Thirty-two University of Göttin-

gen undergraduates participated for course credit or were 

paid 5€. The factors ‘learning data’ and ‘type of causal 

judgment’ (predictive vs. diagnostic) were varied within 

subjects. We used the same procedure and materials as be-

fore.  

Results and Discussion Table 4 shows the results of Expe-

riment 3. For the predictive inference questions, an analysis 

of variance with predictive probability P(e+|c+) (0.8 vs. 0.4) 



and diagnostic probability P(c+|e+) (0.8 vs. 0.4) as within-

subject variables revealed only a main effect of predictive 

probability, F(1, 31) = 68.78, p < .001, but no effect of the 

diagnostic probability and no interaction. By contrast, par-

ticipants’ responses to the diagnostic inference questions 

were not only influenced by the value of P(c+|e+), 

F(1, 31) = 16.53, p < .001, but also by the predictive proba-

bility P(e+|c+), F(1, 31) = 14.25, p < .001. 

Thus, as in Experiments 1 and 2 participants’ estimates for 

the predictive inference questions were only influenced by 

the predictive power of the candidate cause, P(e+|c+), their 

diagnostic causal judgments were not only determined by 

the diagnostic probability P(c+|e+), but also by the causal 

strength of the candidate cause. This pattern again supports 

our rational model in a situation in which the diagnostic 

probabilities in the data were fixed by varying the base rate 

of the target cause. 

General Discussion 

We have presented a rational model of diagnostic reasoning 

based on the framework of causal-model theory and causal 

Bayesian inference. The key feature of this model is that it 

assumes that diagnostic inferences operate on the causal 

level, and therefore are sensitive to the noise inherent in the 

data that are used to infer the underlying causal relations. As 

a consequence, the model’s predictions strongly deviate 

from a purely data oriented statistical account, which is 

often considered the normative benchmark for diagnostic 

inferences. Our studies revealed that participants’ diagnostic 

judgments were systematically affected by the predictive 

relation between cause and effect and therefore by the caus-

al power of the target cause. This inference pattern is at 

variance with a purely statistical model (“naïve Bayes”) but 

consistent with a rational causal inference strategy that goes 

“beyond the information given.” 

Another weakness of using a purely statistical framework 

is that it lacks the representational power to express differ-

ent types of diagnostic queries. A causal inference frame-

work, by contrast, does not only allow us to compute how 

likely the candidate cause is present given the occurrence of 

the effect. It can also be used to provide an answer to other 

queries, for example concerning the degree of “causal re-

sponsibility,” which refers to the probability that the ob-

served effect was indeed produced by the candidate cause 

(cf. Cheng & Novick, 2005). In related research we have 

extended the presented model to inferences regarding this 

quantity, too, and we have also been able to disentangle 

different types of diagnostic queries empirically. In addition, 

we have also applied the model to more complex situations 

involving multiple observed causes. 

In summary, we suggest that acquiring causal knowledge 

about a domain may be viewed as a fundamental distal goal 

of an agent with data providing the proximal evidence for 

achieving this goal. Causal model representations which 

take into account the generative nature of the causal 

processes in the environment enable the agent to reach her 

distal goals, such as prediction, diagnosis, and planning of 

actions (Krynski & Tenenbaum, 2007; Waldmann, Hag-

mayer, & Blaisdell, 2006; Waldmann, Cheng, Hagmayer, & 

Blaisdell, 2008). Analyzing human judgment and decision 

making from the perspective of causal reasoning may allow 

us to reach a deeper understanding of the mind than cogni-

tive models restricted to standard probability calculus or 

traditional logic.  
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