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Abstract 

One of the most fundamental assumptions underlying causal 
Bayes nets is the Markov constraint. According to this 
constraint, an inference between a cause and an effect should 
be invariant across conditions in which other effects of this 
cause are present or absent. Previous research has 
demonstrated that reasoners tend to violate this assumption 
systematically over a wide range of domains. We hypothesize 
that people are guided by abstract assumptions about the 
mechanisms underlying otherwise identical causal relations. 
In particular, we suspect that the distinction between agents 
and patients, which can be disentangled from the distinction 
between causes and effects, influences which causal variable 
people blame when an error occurs. We have developed a 
causal Bayes net model which captures different error 
attributions using a hidden common preventive noise source 
that provides a rational explanation of these apparent 
violations. Experiments will be presented which confirm 
predictions derived from the model. 

Keywords: causal reasoning; Bayesian modeling; Bayes nets; 
Markov condition. 

Introduction 

Causal Bayes net theory is an increasingly popular approach 

to model causal reasoning in humans, especially in domains 

in which multiple variables are causally interrelated. Causal 

Bayes nets can be graphically represented as sets of 

(observable and hidden) variables that may represent present 

or absent events, and arrows that express the direction of the 

causal influences between the interconnected variables (for 

an example, see Fig. 1).  

To make inferences in this network, additional 

assumptions need to be made about how the three arrows 

interrelate. A central assumption that turns probabilistic 

networks into Bayes nets is the Markov condition (see Pearl, 

2000). The Markov condition states that for any variable X 

in a set of variables S not containing direct or indirect 

effects of X, X is jointly independent of all variables in S 

conditional on any set of values of the set of variables that 

are direct causes of X. An effect of X is a variable that is 

connected with a single arrow or a path of arrows pointing 

from X to it. The Markov condition implies in the common-

cause model that each effect is independent of all the other 

effects conditional upon the presence or absence of its cause 

C. 

The Markov condition provides Bayes nets with 

substantial computational power. Assuming conditional 

independence allows for learning and reasoning about 

subsets of variables while ignoring the states of other 

independent variables. For example, we can infer the 

presence or absence of an effect from the state of its cause 

without having to consider the states of the other 

conditionally independent effects. When using Bayes nets 

we are not forced to believe that in every situation effects of 

a common cause are conditionally independent. Whenever 

we have reasons to question this assumption, it is possible to 

model violations by adding hidden variables (again obeying 

the Markov constraint) representing unobserved causal 

influences. However, the validity of the Markov condition is 

typically assumed as a default unless we have domain 

knowledge that suggests hidden variables. 

 

 
 

Figure 1: An example of a simple common-cause structure 

with a cause variable C and three effect variables E1, E2, E3. 

The state of each effect variable depends statistically only 

on the state of the cause variable. 

 

Rehder and Burnett (2005) developed a reasoning task 

which allowed for testing people’s intuitions about the 

Markov condition. For example, subjects had to rate the 

conditional probability of an effect’s presence given the 

state of its cause C. The crucial manipulation was whether 

other effects of C were present or absent. According to the 

Markov condition subject’s ratings should be invariant 

across these conditions. Contrary to this prediction, the 

ratings were clearly sensitive to the states of other effects of 

C. The more collateral effects were present, the higher the 

rating of the conditional probability of the target effect 

given the presence of C. This Markov violation was 

extremely robust across many cover stories and domains. 

Walsh and Sloman (2007) followed up on this research. 

They were interested in the boundary conditions of 

violations of the Markov condition. In one experiment they 
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presented subjects with a common-cause model in which 

loud music in an apartment building represented the 

common cause of the complaints of the neighbors on the left 

and the right side of the apartment in which the music was 

playing. Again the crucial test question referred to a case in 

which loud music was playing but the left neighbor was not 

complaining. According to the Markov condition this should 

not affect the rating of the likelihood that the right neighbor 

is complaining. However, Walsh and Sloman reasoned that 

the likelihood that complaints of the right neighbor are 

predicted should depend on the ad hoc explanations of why 

the left neighbor did not complain. If subjects were 

instructed that all neighbors were invited to the apartment in 

which music was playing, subjects should expect both 

neighbors not to complain (i.e., Markov violation). In 

contrast, when subjects were told that the left neighbor has 

left the building there is no reason to expect that the second 

neighbor will not complain (i.e., no Markov violation). The 

experiments confirmed these predictions although there was 

a fairly strong tendency to violate the Markov condition in 

all conditions. In this experiment the difference between the 

inferences is due to the fact that the initial causal model was 

differently augmented and changed in the contrasted 

conditions by adding further causal variables. In one 

condition an additional causal event, the invitation, was 

introduced, in the other condition one effect was effectively 

removed from the model, thus deleting its diagnostic 

relevance.  

Agents and Causes 

We are also interested in conditions moderating the degree 

of Markov violations. Whereas Walsh and Sloman (2007) 

have shown that different models containing different kinds 

of disabling events influence the inferences, our goal is to 

study the influence of assumptions about causal 

mechanisms while keeping the causal model on the surface 

level invariant. Causal Bayes nets combine assumptions 

about causal mechanisms with probabilistic covariations, 

but the assumed mechanisms are not elaborated. Tellingly, 

Pearl (2000) describes causal arrows as mechanism 

placeholders. Although recent empirical studies have casted 

doubt on the assumption that people have elaborate 

knowledge about mechanisms (Rozenblit & Keil, 2002), 

recent research on causal reasoning and language 

understanding has suggested that people may have abstract 

notions of basic properties of mechanisms (see Talmy, 

1988; Wolff, 2007). Particularly relevant in the present 

context is the distinction between agents and patients, 

which is one of the important distinctions in our causal 

semantics introduced by Talmy. Agents are causal events 

that we represent as active in the generation of a causal 

relation. Patients are passive recipients of causal power. For 

example, in the familiar Michotte task the ball pushing the 

second ball is viewed as an agent endowed with force, 

whereas the ball that is being pushed is represented as a 

patient exerting resistance (White, 2009).  

Agents and causes typically fall together but can be 

separated. Consider the example of tuners that receive music 

from a music station. Within a causal Bayes net the station 

would play the role of a common cause because sending out 

waves precedes the reception by tuners. However, 

depending on the focus, it is possible to view the sender as 

active senders and the tuners as passive receivers, or it is 

possible to highlight the active role of the tuners as receivers 

without whom no music can be heard. Thus, effects in a 

common cause model can be agents or patients depending 

on the framing. Our key prediction is that the agent role is 

associated with attributions of causal responsibility and 

blame. If something goes wrong in a causal transmission, 

then the agent will be the primary target of error 

attributions. 

 

 
 

Figure 2: An example of a test item used in Waldmann et al. 

(2007).  

Pilot Study 

In an initial experiment, we tested this theory (Waldmann et 

al., 2007). Subjects were presented with instructions about 

four aliens, Gonz, Murks, Brxxx, and Zoohng, who mostly 

think of nothing and sometimes think of “POR” (food in 

alien language; material adapted from Steyvers et al., 2003). 

In one condition it was pointed out that Gonz is able to 

transmit its thoughts into the heads of the other alien 

(sending condition). In the contrasting condition it was 

pointed out that Murks, Brxxx, and Zoohng are able to read 

the thoughts of Gonz (reading condition). So, in both 

conditions the thoughts of Murks, Brxxx, and Zoohng are 

statistically and causally dependent on the thoughts of Gonz. 

Hence, both cases can be represented as a common-cause 

network (see Fig. 1; Gonz as the cause C and Murks, Brxxx, 

and Zoohng as the effects E1, E2, and E3). However, the 

agent role was manipulated across conditions. Whereas in 

the sending condition cause and agent fall together, in the 

reading condition the effects were framed as agents. In the 

test phase subjects were requested to rate the conditional 

probability of a target alien, e.g., Zoohng, thinking of POR 

given the thoughts of the cause and the other effect aliens 

(for an example, see Fig. 2). Interestingly, the “Markov 

violation” was significantly stronger in the sending 

condition than in the reading condition (see interaction of 

upper two lines in Fig. 3), which confirms our prediction 
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that errors are associated with the agent. If there is only one 

agent (sending condition) then the failure of one of the 

receiving aliens to read his thoughts becomes diagnostic for 

a failure of the sending agent that also should affect the 

other aliens. In contrast, if the effects are represented as 

agents, then the error attributions should be locally 

attributed to the respective effect. The failure of one reader 

to read the thoughts of the cause alien should not predict 

whether the other readers will also fail or not.  

Another important finding of the pilot study which we 

will follow up in Experiment 1 is that Markov violations in 

the sending condition were only observed when the cause 

was present but not when the cause was absent (see lower 

two lines in Fig. 3). Intuitively this can be interpreted as 

evidence for the assumption that sending errors can only 

occur when the cause alien is trying to send. 

 

 
 

Figure 3: Mean ratings (and standard error) representing the 

estimates of the relative number of times the target alien 

thinks of “POR” in ten fictitious situations. The X axis 

represents the number of collateral effect aliens thinking of 

“POR”.  The upper two lines correspond to the cause alien 

thinking also of “POR”, the lower two lines to the cause 

alien thinking of nothing. The dashed lines indicate the 

sending condition, whereas the solid lines indicate the 

reading condition. 

 

In the next section we report a model that captures our 

intuitions about the role of agents in causal models. 

Subsequently we will report experiments testing the model. 

A Bayes Net Model of Error Attributions 

In Bayes nets, errors which are due to hidden mechanisms 

can be represented by hidden nodes in the network. We 

propose that each cause contains a hidden common 

preventive noise (PN) node which is connected to all effects, 

and can therefore alter the influence of the causes on their 

effects. Hence, in common-cause model there is one PN 

attached to its effects. This common noise source 

summarized all influences which potentially decrease the 

ability of the cause to bring about its effects (e.g., common 

preventer; missing enabling conditions, etc.)
1
 (see Fig. 4). 

The strength of this noise source (wPN) and its a priori base 

rate are domain dependent. In the sending condition, we 

assume that wPN is pre-set to high values, thus increasing the 

influence of common preventive noise. In the reading 

condition, people should primarily attribute errors to the 

error links that are attached to each effect node and that are 

in Bayes nets assumed to be independent of each other. 

Thus, different parameterizations of wPN explain the 

different degrees of Markov violations in the sending versus 

reading conditions. 

 
Figure 4: A simple common-cause structure extended by an 

unobserved common preventive noise node PN. The 

preventive noise interacts with the causal influence of C. If 

PN is present the power of C is lowered for all its effects. 

Thus, if 𝐸1 , … , 𝐸𝑛−1 are observed as absent, even if the 

cause C is present, the presence of PN is likely. This lowers 

the predicted probability of 𝐸𝑛  being present. 

 

Asking people to judge the probability of a target effect 

alien (En) thinking of POR given the thoughts of the other 

aliens (C, E1, …, En-1) is formally equivalent with asking the 

conditional probability of En: 𝑃(𝐸𝑛 = 1|𝐶, 𝐸1 , … , 𝐸𝑛−1). In 

a regular common cause structure (without a common noise 

source) this question simplifies to 𝑃(𝐸𝑛 = 1|𝐶) due to the 

Markov condition: The presence of the target effect only 

depends on the state of the cause, not on the states of the 

collateral effects. Introducing an unobserved common 

preventive noise node and integrating it out leads to the 

following derivation
2
: 

 

𝑃 𝐸𝑛 = 1 𝐶, 𝐸1 , … , 𝐸𝑛−1  

=  𝑃 𝐸𝑛 = 1 𝐶, 𝑷𝑵, 𝐸1 , … , 𝐸𝑛−1 ∙ 𝑃(𝑷𝑵|𝐶, 𝐸1 , … , 𝐸𝑛−1)

𝑃𝑁

 

=  𝑃 𝐸𝑛 = 1 𝐶, 𝑷𝑵) ∙ 𝑃(𝑷𝑵|𝐶, 𝐸1 , … , 𝐸𝑛−1 

𝑃𝑁

 

 

The second simplifying step in this derivation is possible 

because in the network with the common preventive noise 

                                                           
1 Note that this is a specific preventive cause which does not 

affect the probability of the effect when the cause is absent. 
2 Actually, also the prior assumptions of the parameter values 

given by a set of Beta distributions are integrated out. To simplify 

the discussion we left this out in the description. The complete 

derivation includes a multiple integral over the parameter vector: 
P En = 1 C, E1 , … , En−1 =  P En = 1 C, E1, … , En−1, 𝐰 p w dw 
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node the Markov condition holds: Given C and PN the 

target effect En is independent of the collateral effects. Thus, 

reasoning in this simple model can be thought as a two-step 

process: First the state of the noise is inferred, and then 

given that state (and given the a priori state of C) the state of 

the unobserved target effect is inferred. 

The model predicts that inferences about the presence of 

an unobserved target effect in the presence of the cause 

should be influenced by the number of collateral effects that 

are present or absent. Absent effects in the presence of the 

cause should via the PN lower the ratings for the target 

effect. This influence should increase with increasing 

numbers of absent effects when the cause is present. When 

the cause is absent, however, no such pattern should be 

observed.  

Experiment 1 

When the cause varies between present (i.e., active) and 

absent (i.e., inactive), the model predicts an asymmetric 

influence of PN since in the cause’s absence the PN cannot 

prevent C to bring about the target effect. Thus, the Markov 

violation in the sender condition should only be observed 

when the cause is present. In our pilot experiment we have 

indeed confirmed this prediction. In contrast, our model 

predicts a symmetric influence of the PN when the cause 

has two distinct but causally active states (i.e. A/B instead 

of 0/1). This prediction is tested in Experiment 1. 

Method 

Participants 56 students from the University of Göttingen 

participated in exchange for candy. 

 

 
 

Figure 5: An example of a test item used in Experiment 1.  

 

Procedure and Material In the instruction phase we 

presented subjects with instruction about four aliens: Gonz, 

Brxxx, and Zoohng, who usually think of “TUS” and 

sometimes think of “POR” (indicated by a bubble 

containing “TUS” or “POR”; see Fig. 5) (POR and TUS 

were counterbalanced). In two conditions it was either stated 

that the upper alien can transmit both thoughts to the lower 

three (sending condition), or that the lower three aliens can 

read the thoughts of the upper one (reading condition). It 

was pointed out that the effect aliens frequently think of 

“POR” or “TUS” when the cause alien thinks of “POR” or 

“TUS”.  

In the test phase, subjects were presented with six test 

panels with all the non-target aliens thinking of either 

“POR” or “TUS” (for an example, see Fig. 5). The order of 

test panels was randomized. For each panel, subjects were 

asked to imagine ten situations with the given configuration, 

and then to judge in how many of these situations the target 

alien (indicated by a question mark above its head) would 

probably think of “POR”. This way we obtained probability 

assessments from the subjects. 

 

Design The predictions were tested in a 2×2×3 ANOVA 

design with “sending” vs. “reading” as a between-subjects 

factor. The state of the cause alien (“POR” or “TUS” 

thoughts) and the number of collateral effect aliens thinking 

of “POR” (0, 1, or 2) were manipulated within subjects.  

Results and Discussion 

Figure 6 displays the results for Experiment 1. In general, 

the ratings for the target effect alien thinking of “POR” were 

higher when the cause alien thinks of “POR” (F1,54=146.05, 

p<.001, 𝜂𝑝
2=.73). 

 

 
 

Figure 6: Mean ratings (and standard error) representing the 

estimates of the relative number of times the target alien 

thinks of “POR” in ten fictitious situations. The X axis 

represents the number of collateral effect aliens thinking of 

“POR”. The upper two lines correspond to the cause alien 

thinking of “POR”, the lower two lines to the cause alien 

thinking of “TUS”. The dashed lines indicate the sending 

condition, whereas the solid lines indicate the reading 

condition.  

 

As predicted by the model, people’s judgments were 

symmetrically influenced by the states of the other effects 

for both states of the cause: In case of C representing “POR” 

(the upper two lines in Fig. 6) the ratings substantially 

increased with the number of effect aliens thinking of 

“POR” (F2,108=31.47, p<.001, 𝜂𝑝
2=.37). As in our pilot study 

this influence was stronger in the sending condition than in 
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the reading condition yielding a significant interaction 

(F2,108=8.94, p<.001, 𝜂𝑝
2=.14). In case of C representing 

“TUS” (the lower two lines in Fig. 6) the ratings also 

increased the more effect aliens thought of “POR” 

(F2,108=20.25, p<.001, 𝜂𝑝
2=.27). As predicted by the model 

and in contrast to what we observed for the absent state of 

the cause in our pilot study the influence of the collateral 

effects was also stronger in the sending condition than in the 

reading condition when the cause alien thought of “TUS” 

(F2,108=4.20, p<.05, 𝜂𝑝
2=.07). The descriptively weaker two-

way interaction in the “TUS” case is predicted by the model 

as a consequence of the low base rate of “TUS”. No three-

way interaction was obtained, as predicted (F2,108=1.37, 

p=.26). 

The results confirm our model. Subjects’ inferences were 

influenced by the location of the agent (sending vs. reading) 

in a fashion predicted by the error attribution model. 

Moreover, the model’s predictions about the type of states 

of binary causal variables were confirmed. Our patterns in 

the sending condition correspond to the findings of Rehder 

and Burnett (2005), who also found symmetric influences of 

the states of other effect variables for both states of the 

cause. Although Rehder and Burnett described these states 

as present and absent, the two states in their experiments 

actually also represented two active states on a continuous 

dimension (typical vs. atypical). 

Experiment 2 

In our model, the common preventive noise node PN is 

attached to the specific cause it regulates. Therefore, in a 

causal chain structure each causal link should have its own 

PN node (see Fig. 7).  This entails that the strength of each 

PN in the chain should not bias people’s assumptions about 

the states of other variables. Consequently, our model 

predicts that in causal chain structures no Markov violation 

should be observed and that manipulations of people’s 

assumptions about the location of the agent (i.e., sending vs. 

reading) should not have any effect. This prediction is tested 

in Experiment 2. 

 

 
Figure 7: An extended causal chain model with two indirect 

causes (IC1, IC2), a direct cause (DC) and a final effect (E). 

Since the preventive noise (PN) is part of the causal process 

and therefore attached to each direct cause-effect relation, in 

each cause variable has its own preventive noise source. 

Method 

Participants 50 students from the University of Göttingen 

participated in exchange for candy. 

 

Procedure and Material As in Experiment 1, we presented 

subjects with instruction about four aliens: Gonz, Brxxx, 

and Zoohng, who—as in the basic experiment—usually 

think of nothing and sometimes think of “POR” (indicated 

by an empty bubble or a bubble containing “POR”, 

respectively; see Fig. 8). It was pointed out that—in the 

sending condition—an alien can transmit its “POR”-

thoughts to its right neighbor or—in the reading condition—

an alien can read the “POR”-thoughts of its left neighbor. 

Again it was stated that effect aliens frequently think of 

“POR” when the corresponding cause alien (the left 

neighbor) also thinks of “POR”.   

In the test phase subjects were presented with six test 

panels with the non-target aliens thinking of “POR” or 

nothing (for an example, see Fig. 8). The order of test panels 

was randomized.  The target alien was generally the right 

most alien in the chain. As in Experiment 1, subjects were 

asked to judge in how many of ten situations the target alien 

would probably think of “POR”. 

 

 
 

Figure 8: An example of a test item used in Experiment 2.  

 

Design The predictions were tested in a 2×2×3 ANOVA 

design with “sending” vs. “reading” constituting a between-

subjects factor and the state of the direct-cause alien (“POR” 

or nothing) as well as the number of indirect-cause aliens 

thinking of “POR” as within-subjects factors (0, 1, or 2).  

 

 
 

Figure 9: Mean rating (and standard error) of number of 

times the target aliens thinks of “POR” in ten fictitious 

situations plotted against the number of indirect-cause aliens 

thinking of “POR” (columns). The upper two lines 

correspond to the direct cause (DC) alien thinking also of 

“POR”, the lower two lines to the direct cause alien thinking 

of nothing. The dashed lines represent the sending 
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condition, whereas the solid lines represent the reading 

condition. 

Results 

The results of Experiment 2 are shown in Figure 9. As in 

Experiment 1, the ratings for the target effect alien thinking 

of “POR” were higher when the direct-cause alien also 

thought of POR (F1,48=191.99, p<.001, 𝜂𝑝
2=.80).  

The prediction that different assumptions about the agents 

in the chain (sending vs. reading) should not matter was 

clearly supported. As predicted by the model, the sending 

vs. reading manipulation revealed no interaction with the 

states of the non-direct causes, neither in the presence of the 

direct cause (F2,96<1, p=.5) nor in its absence (F2,96<1, 

p=.66). However, in contrast to the predictions, significant, 

although very weak violations of the Markov condition in 

both the presence (the upper two lines in Fig. 9; F2,96=11.77, 

p<.001, 𝜂𝑝
2=.20) as well as the absence of the direct causes 

(the lower two lines in Fig. 9; F2,96=6.47, p<.01, 𝜂𝑝
2=.12) 

could be seen (see also Rehder & Burnett, 2005). The three-

way interaction was clearly not significant (F2,96<1, p=.99). 

Discussion 

The results of Experiment 2 show sensitivity to the 

instructed causal model and support the assumption inherent 

in our Bayesian model that preventive noise sources are 

attached to specific causes. Hence, whether preventive noise 

predicts error correlations is dependent on the underlying 

causal structure in which these nodes are an intrinsic 

property of each cause-effect relations. 

However, our model cannot account for the small but still 

significant Markov violations in the data. Possibly subjects 

doubt that chain variables fully screen off previous 

influences or there are additional assumptions underlying 

causal chain representations. 

General Discussion 

Traditional causal theories view causes as endowed with the 

power to generate effects. However, little is known about 

how the mechanisms relating causes and effects are 

represented, and what influence assumptions about the 

mechanisms have on causal inferences. We have pinpointed 

one relevant factor, the distinction between agents and 

patients which can be separated from the distinction 

between causes and effects. We have used the example of 

sending versus reading to disentangle the location of the 

agent from the location of the cause. Our main hypothesis is 

that people tend to attribute potential errors to agents rather 

than patients. This intuition was formalized in a Bayesian 

model of error attribution which adds hidden preventive 

noise nodes to capture our intuitions about sources of error. 

Interestingly, this model explains violations of the Markov 

condition using a model that honors the Markov condition. 

Two experiments were conducted which tested and largely 

confirmed specific predictions of the model.  

Traditionally there has been a conflict between 

covariation and mechanism (or force) theories. The present 

research shows that it is fruitful to combine the two 

approaches. Causal models are needed to guide processing 

of statistical covariations in data. However, the simple 

assumptions typically underlying these models are 

insufficient because additional knowledge about the 

mechanism seems to influence both the assumed  hidden 

and observed structure of the model and the 

parameterization (see Mayrhofer et al., 2008). Future 

research will have to further elaborate the intricate relation 

between mechanism assumptions and causal models.  
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