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Abstract: Recently, a number of rational theories have been put forward which provide a coherent formal framework for 

modeling different types of causal inferences, such as prediction, diagnosis, and action planning. A hallmark of these 

theories is their capacity to simultaneously express probability distributions under observational and interventional scenar-

ios, thereby rendering it possible to derive precise predictions about interventions (“doing”) from passive observations 

(“seeing”). In Part 1 of the paper we discuss different modeling approaches for formally representing interventions and 

review the empirical evidence on how humans draw causal inferences based on observations or interventions. We contrast 

deterministic interventions with imperfect actions yielding unreliable or unknown outcomes. In Part 2, we discuss alterna-

tive strategies for making interventional decisions when the causal structure is unknown to the agent. A Bayesian  

approach of rational causal inference, which aims to infer the structure and its parameters from the available data,  

provides the benchmark model. This account is contrasted with a heuristic approach which knows categories of  

causes and effects but neglects further structural information. The results of computer simulations show that despite its 

computational parsimony the heuristic approach achieves very good performance compared to the Bayesian model.  

Keywords: Causal reasoning, causal decision making, Bayesian networks, rational inference, bounded rationality, heuristics, 
computer simulation.  

INTRODUCTION 

 Causal knowledge underlies various tasks, including  
prediction, diagnosis, and action planning. In the past decade 
a number of theories have addressed the question of how 
causal knowledge can be related to the different types of 
inferences required for these tasks (see [1] for a recent over-
view). One important distinction concerns the difference 
between predictions based on merely observed events (“see-
ing”) and predictions based on the very same states of events 
generated by means of external interventions (“doing”) [2, 
3]. Empirically, it has been demonstrated that people are 
very sensitive to this important distinction and have the  
capacity to derive correct predictions for novel interventions 
from observational learning data [4-7]. This research shows 
that people can flexibly access their causal knowledge  
to make different kinds of inferences that go beyond mere 
covariation estimates. 

 The remainder of this paper is organized as follows. In 
the first part of this article we discuss different frameworks 
that can be used to formally represent interventions and to 
model observational and interventional inferences [2, 3, 8]. 
We also discuss different types of interventions, such as 
“perfect” interventions that deterministically fix the state of  
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the target variable and “imperfect” interventions that only 
exert a probabilistic influence on the target variable. Finally, 
we outline the empirical evidence regarding seeing and do-
ing in the context of structure induction and probabilistic 
causal reasoning.  

 In the second part of the paper we examine different 
strategies an agent may use to make decisions about inter-

ventions. A Bayesian model, which aims to infer causal 

structures and parameter estimates from the available data, 
and takes into account the difference between observations 

and interventions, provides the benchmark model [9, 10]. 

This Bayesian model is contrasted with a heuristic approach 
that is sensitive to the fundamental asymmetry between 

causes and effects, but is agnostic to the precise structure and 

parameters of the underlying causal network. Instead, the 
heuristic operates on a “skeletal causal model” and uses the 

observed conditional probability P(Effect | Cause) as a proxy 

for deciding which variable in the network should be tar-
geted by an intervention. To compare the models we ran a 

number of computer simulations differing in terms of avail-

able data (i.e., sample size), model complexity (i.e., number 
of involved variables), and quality of the data sample (i.e., 

noise levels).  

CAUSAL MODEL THEORY AND CAUSAL  
BAYESIAN NETWORKS  

 Causal Bayesian networks [2, 3] provide a general  
modeling framework for representing complex causal  
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networks and can be used to model different causal queries, 
including inferences about observations and interventions. 
Formally, these models are based on directed acyclic graphs 
(DAGs), which represent the structure of a causal system 
(Fig. 1). On a causal interpretation of these graphs (as  
opposed to a purely statistical semantics) the model can be 
used for reasoning about interventions on the causal system. 

 Graphical causal models make two central assumptions 
to connect causal structures with probability distributions 
over the domain variables: the causal Markov assumption 
and the Faithfulness assumption (for details see [2, 3] for a 
critical view see [11]). The causal Markov assumption states 
that the value of any variable Xi in a graph G is independent 
of all other variables in the network (except for its causal 
descendants) conditional on the set of its direct causes. Ac-
cordingly, the probability distribution over the variables in 
the causal graph factors such that: 

=
XX

iii

i

XpaXPXP ))(|()(       (1) 

where pa(Xi) denotes the Markovian parents of variable Xi, 
that is, the variable’s direct causes in the graph. If there are 
no parents, the marginal distribution P(Xi) is used. Thus, for 
each variable in the graph the Markov condition defines a 
local causal process according to which the state of the vari-
able is a function of its Markovian parents. The second im-
portant assumption is the Faithfulness assumption, which 
states that the probabilistic dependency and independency 
relations in the data are a consequence of the Markov condi-
tion applied to the graph, and do not result from specific  
parameterizations of the causal structure (e.g.,  that there are 
no two causal paths that exactly cancel each other out).  

 Within the causal Bayes nets framework, a variety of 
learning algorithms have been developed to infer causal 

structures and parameter values [12]. Briefly, one can distin-

guish two classes of learning algorithms: constraint-based 
and Bayesian methods. Constraint-based methods [2, 3] ana-

lyze which probabilistic dependency and independency rela-

tions hold in the data. This information is used to add or re-

move edges between the nodes of the network. The alterna-

tive approach, Bayesian methods [9, 13], starts from a set of 

hypotheses about causal structures and updates these  
hypotheses in the light of the data. The models’ posterior 

probabilities serve as scoring function to determine the graph 

that most likely underlies the data. Alternatively, one can use 
other scoring functions, such as the Bayesian information 

criterion (BIC) or Minimum Description Length (MDL), 

which penalize complex models with many parameters [14].  

 A variety of approaches address the problem of parame-

ter learning. The simplest approach is to compute maximum 
likelihood (ML) estimates of the causal model’s parameters, 

which can be directly derived from the observed frequency 

estimates. An alternative approach is to compute a full poste-
rior distribution over the parameter values, whereby the prior 

distributions are updated in accordance with the available 

data [10, 15, 16].  Given a posterior distribution over the 
parameters, one can either obtain a point estimate (e.g., the 

maximum a posteriori (MAP) estimate) or preserve the full 

distributions.  

PART 1: OBSERVATIONS AND INTERVENTIONS  

 There is an important difference between inferences 
based on merely observed states of variables (“seeing”) and 
the very same states generated by means of external inter-
ventions (“doing”) [2, 3, 17, 18]. For example, observing the 
state of a clinical thermometer allows us to make predictions 
about the temperature of the person (observational infer-
ence), whereas the same state generated by an external ma-
nipulation obviously does not license such an inference (in-
terventional inference).  

 Most of the debate on the difference between observa-
tional and interventional inferences has focused on the im-
plications of interventions that deterministically fix the target 
variable to a specific value. Such “perfect” interventions 
have been variously referred to as “atomic” [2], “strong” 
[18], “structural” [19], or “independent” [20] interventions. 
This type of intervention also provides the basis for Pearl’s 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Basic causal models. The lower row illustrates the principle of graph surgery and the manipulated graphs resulting from an 

intervention in B (shaded node). See text for details. 
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“do-calculus” [2]. To distinguish between merely observed 
states of variables and the same state generated by interven-
tions, Pearl introduced the do-operator, do (•). Whereas the 
probability P(A | B) refers to the probability of A given that B 
was passively observed to be present, the expression P(A | do 
B) denotes the probability of A conditional on an external 
intervention that fixes the state of B to being present. 

 The characteristic feature of such perfect interventions is 
that they render the target variable independent of its actual 
causes (its Markovian parents). For example, if we arbitrarily 
change the reading of a thermometer, our action renders its 
state independent of its usual cause, temperature.  Graphi-
cally, this implication can be represented by removing all 
arrows pointing towards the variable intervened upon, a pro-
cedure Pearl [2] called graph surgery; the resulting subgraph 
is a called a “manipulated graph” [3]. Fig. (1) (lower row) 
shows the implications of an intervention that fixes the state 
of variable B to a certain value (i.e., “do B”). As a conse-
quence, all arrows pointing towards B are removed.  

 Given the original and the manipulated graph, we can 
formally express the difference between observations and 
interventions and model the different causal inferences ac-
cordingly. For example, consider the common cause model 
shown in Fig. (1) (left hand side). In this model, the prob-
ability of C given an observation of B, P(C | B), is computed 
by P(A | B) · P(C | A), where P(A | B) is computed according 
to Bayes’s theorem, P(A | B) = P(B | A) · P(A) / P(B). By 
taking into account the difference between observations and 
interventions, we can also compute the probability of C con-
ditional on an intervention that generates B, that is, the inter-
ventional probability P(C | do B). The crucial difference be-
tween the two inferences is that we must take into account 
that under an interventional scenario the state of B provides 
no diagnostic evidence for its actual cause, event A, which 
therefore remains at its base rate (i.e., P(A | do B) = P(A | do 
¬B) = P(A)). Consequently, the probability of C conditional 
on an intervention in B is given by P(A) · P(C | A). Crucially, 
we can use parameter values estimated from observational, 
non-experimental data to make inferences regarding the  
outcomes of novel interventions whose outcomes have not 
been observed yet.  

THE PSYCHOLOGY OF REASONING ABOUT 

CAUSAL INTERVENTIONS: DOING AFTER SEEING 

 In psychology, the difference between inferences based 
on observations or interventions has been used to challenge 
accounts that try to reduce human causal reasoning to a form 
of logical reasoning [21] or associative learning [22].  
Sloman and Lagnado [7] used verbal descriptions of causal 
scenarios to contrast logical with causal reasoning. Their 
findings showed that people are capable of differentiating 
between observational and interventional inferences and  
arrived at different conclusions in the two scenarios.  

 Waldmann and Hagmayer [6] went one step further by 
providing their participants with observational learning data 
that could be used to infer the parameters of causal models. 
In their studies, participants were first presented with graphi-
cal representations of the structure of different causal mod-
els. Subsequently, learners received a data sample consisting 
of a list of cases that they could use to estimate the models’ 
parameters (i.e., causal strengths and base rates of causes). 

To test participants’ competency to differentiate between 
observational and interventional inferences they were then 
asked to imagine an event to be present versus to imagine 
that the same event was generated by means of an external 
intervention. Based on these suppositions participants were 
asked to make inferences regarding the state of other vari-
ables in the network. The results of the experiments revealed 
that peoples’ inferences were not only very sensitive to the 
implications of the underlying causal structure, but also that 
participants could provide fairly accurate estimates of the 
interventional probabilities, which differed from their esti-
mates of the observational probabilities.

 1   

 Meder and colleagues [4] extended this paradigm by us-
ing a trial-by-trial learning procedure. In this study, partici-
pants were initially presented with a causal structure contain-
ing two alternative causal pathways leading from the initial 
event to the final effect (the confounder model shown in Fig. 
(1), right hand side). Subsequently, they passively observed 
different states of the causal network. After observing the 
autonomous operation of the causal system, participants 
were requested to assess the implications of observations of 
and interventions in one of the intermediate variables (event 
B in Fig. (1), right hand side). The results showed that par-
ticipants made different predictions for the two scenarios 
and, in particular, took into account the confounding alterna-
tive pathway by which the initial event A could generate the 
final effect D. 

 Overall, these studies demonstrated that people are capa-
ble of deriving interventional predictions from passive ob-
servations of causal systems, which refutes the assumption 
that predictions of the consequences of interventional actions 
require a prior phase of instrumental learning. Since in these 
studies the learning data were not directly manipulated, 
Meder et al. [5] conducted two further studies to directly 
assess participants’ sensitivity to the parameter values of a 
given causal model. Using again a trial-by-trial learning 
paradigm, the results showed that people’s inferences about 
the consequences of interventions were highly sensitive to 
the models’ parameters, both with respect to causal strength 
estimates and base rate information.  

LEARNING CAUSAL STRUCTURE FROM INTER-

VENTIONS 

 The difference between observations and interventions 
has also motivated research on structure induction. From a 
normative point of view, interventions are important because 
they enable us to differentiate models which are otherwise 
Markov equivalent, that is, causal structures that entail the 
same set of conditional dependency and independency rela-
tions [23]. For instance, both a causal chain A B C and a 
common-cause model A B C entail that all three events 
are correlated, and they also belong to the same Markov 
class since A and C are independent conditional on B. How-
ever, by means of intervention we can dissociate the two 
structures (e.g., generating B has different implications in the 

                                                
1 Note that the intervention calculus does not distinguish between inferences based on 

actual observations or interventions and inferences based on hypothetical observations 

or interventions. From a formal perspective, the crucial point is what we know (or  

what we assume to know) about the states of the variables in the network. Whether 

people actually reason identically about actual and hypothetical scenarios might be an 

interesting question for future research. 
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two causal models). It has been proven that for a graph com-
prising N variables, N-1 interventions suffice to uniquely 
identify the underlying causal structure [24].   

 Recent work in psychology has examined empirically 
whether learners are capable of using the outcomes of inter-
ventions to infer causal structure and to differentiate between 
competing causal models [23, 25-27]. For example, Lagnado 
and Sloman [27] compared the efficiency of learning simple 
causal structures based on observations versus interventions. 
Their results showed that learners were more successful  
in identifying the causal model when they could actively 
intervene on the system than when they could only observe 
different states of the causal network. However, their  
findings also indicated that the capacity to infer causal  
structure is not only determined by differences regarding the 
informativeness of observational and interventional data, but 
that the advantage of learning through interventions also 
results from the temporal cues that accompany interventions. 
According to their temporal cue heuristic [27, 28] people 
exploit the temporal precedence of their actions and the  
resulting outcomes.  

 Similarly, Steyvers et al. [23] demonstrated that learners 
perform better when given the opportunity to actively inter-
vene on a causal system than when only passively observing 
the autonomous operation of the system. Their experiments 
also show that participants’ intervention choices were sensi-
tive to the informativeness of possible interventions, that is, 
how well the potential outcomes could discriminate between 
alternative structure hypotheses. However, these studies also 
revealed limitations in structure learning from interventions. 
Many participants had problems to infer the correct model, 
even when given the opportunity to actively intervene on the 
causal system.  

 Taken together, these studies indicate that learning from 
interventions substantially improves structure induction, al-
though the Steyvers et al. studies show that there seem to be 
boundary conditions. Consistent with this idea, the studies of 
Lagnado and Sloman [27, 28] indicate that interventional 
learning might be particularly effective when it is accompa-
nied by information about the temporal order of events. In 
this case, the observed temporal ordering of events can be 
attributed to the variable generated by means of intervention, 
thereby dissolving potential confounds. These findings sup-
port the view that humans may exploit a number of different 
“cues to causality” [29-31], such as temporal information or 
prior knowledge, which aid the discovery of causal structure  
by establishing categories of causes and effects and by  
constraining the set of candidate models. 

MODELING IMPERFECT INTERVENTIONS 

 So far we have focused on the simplest types of interven-
tions, namely actions that deterministically fix the state of a 
single variable in the causal system. Although some real-
world interventions (e.g., gene knockouts) correspond to 
such “perfect” interventions, such actions are not the only 
possible or informative kind of intervention. Rather, inter-
ventions can be “imperfect” in a number of ways. First, an 
intervention may be imperfect in the sense that it does not fix 
the value of a variable, but only exerts a probabilistic influ-
ence on the target. For instance, medical treatments usually 
do not screen off the target variable from its usual causes 

(e.g., when taking an antihypertensive drug, the patient’s 
blood pressure is still influenced by other factors, such as her 
diet or genetic make-up). Such probabilistic interventions 
have been called “weak” [18], “parametric” [19], or “de-
pendent” [20] interventions. Second, interventions may have 
the causal power to influence the state of the target variable, 
but do not always succeed in doing so (e.g., when an at-
tempted gene knockout fails or a drug does not influence a 
patient’s condition). Such interventions have been termed 
unreliable interventions [32]. Finally, we do not always 
know a priori the targets and effects of an intervention. For 
example, the process of drug development comprises the 
identification and characterization of candidate compounds 
as well as the assessment of their causal (i.e., pharmacologi-
cal) effects. Such actions have been called uncertain inter-
ventions [32]. Note that these three dimensions (strong vs. 
weak, reliable vs. unreliable, and certain vs. uncertain) are 
orthogonal to each other.  

 Because many interventions appear to be imperfect, it is 
useful to choose a more general modeling framework in 
which interventions are explicitly represented as exogenous 
cause variables [3, 8, 20, 32]. An intervention on a domain 
variable Xi is then modeled by adding an exogenous cause 
variable Ii with two states (on/off) and a single arrow con-
necting it with the variable targeted by the intervention. Fig.  
(2) shows some causal models augmented with intervention 
nodes. 

 The state of such a (binary) intervention variable indi-

cates whether an intervention has been attempted or not. 

When the intervention node Ii is off (i.e., no intervention is 
attempted), the passive observational distribution over the 

graph’s variables obtains. Thus,  

P(Xi | I i = off ) = P(Xi | pa (Xi ),I i = off , I i = off )          (2) 

where pa(Xi) are the Markovian parents of domain variable 

Xi in the considered graph; Ii is the intervention node that 

affects Xi, and 
offIi=  

are the “normal” parameters (e.g., ob-

served conditional probabilities) that obtain from the 

autonomous operation of the causal system. By contrast, 

when the intervention node is active (i.e., Ii = on) the state of 

the target variable is causally influenced by the intervention 

node. Thus, in the factored joint probability distribution the 

influence of the intervention on domain variable Xi is in-

cluded:  

P(Xi | I i = on) = P(Xi | pa (Xi ),I i = on, I i = on )          
(3) 

where pa(Xi) are the Markovian parents of Xi, Ii is the inter-

vention node that affects domain variable Xi, and 
onI

i
=

 is 

the set of parameters specifying the influence of intervention 

Ii on its target Xi.  

 This general notation can be used to formalize different 

types of interventions. The key to modeling different kinds 

of interventions is to precisely specify what happens when 

the intervention node is active, that is, we need to specify 

onI
i
= . Table 1 outlines how a perfect intervention on E  

in the single link model shown in Fig. (2) (left-hand side) 

can be modeled: when the intervention node is off, the  
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normal (observational) parameter set I E = off obtains (left  

column), whereas switching on the intervention node results 

in the (interventional) parameter set I E = on , which entails 

that E is present regardless of the state of its actual cause C 

(middle column of Table 1). Note that modeling perfect in-

terventions this way has the same implications as graph sur-

gery, that is, P(C | E, IE) = P(C) [33].  

 By using exogenous cause variables we can also model 

weak interventions, which causally affect the target variable, 

but do not screen off the variable from its usual causes.  

In this case, 
onI

i
=

 encodes the joint causal influence of the 

intervention and the target’s Markovian parents. The right-

most column of Table 1 shows an example of an intervention 

that only changes the conditional probability distribution of 

the variable intervened on, variable E, but does not render it 

independent of its actual cause C (i.e., P(E | C, IE) > 

P(E | ¬C, IE)).  

 The major challenge for making quantitative predictions 

regarding the outcomes of such weak interventions is that we 

must precisely specify how the distribution of the variable 

acted upon changes conditional upon the intervention and 

the variable’s other causes. If the value of the intervened 

variable is simply a linear, additive function of its parents, 

then the impact of the intervention could be an additional 

linear factor (e.g., drinking vodka does not render being 

drunk independent of drinking beer and wine, but seems to 

add to the disaster). In case of binary variables it is necessary 

to specify how multiple causes interact to generate a com-

mon effect. If we assume that the causes act independently 

on the effect, we can use a noisy-OR parameterization [2, 10, 

34] to derive the probability distribution of the target vari-

able conditional on the intervention and its additional causes. 

Further options include referring to expert opinion to esti-

mate the causal influences of the intervention or to use em-
pirical data to derive parameter estimates. 

 Using intervention variables also enables us to model 

unreliable interventions, that is, interventions that succeed 

with probability r and fail with probability 1-r. This prob-

ability can be interpreted as referring to the strength of the 

causal arrow connecting intervention node Ii with domain 

variable Xi. Note that this issue is orthogonal to the question 

of whether an intervention has the power to deterministically 

fix the state of the target variable. For example, we can 

model unreliable strong interventions, such as gene knock-

outs that succeed or fail on a case by case basis. The same 

logic applies to unreliable weak interventions. For instance, 

in a clinical study it may happen that not all patients comply 

with the assigned treatment, that is, only some of them take 

the assigned drug (with probability r). However, even when 

a patient does take the drug, the target variable (e.g., blood 

pressure) is not rendered independent of its other causes. If 

we know the value of r we can derive the distribution of Xi 

for scenarios comprising unreliable interventions. In this 

case, the resulting target distribution of Xi can be represented 

by a mixture model in which the two distributions are 

weighted by ri, the probability that intervention Ii succeeds 

(see [32] for a detailed analysis): 

Table 1. Example of a Conditional Probability Table (CPD) for an Effect Node E Targeted by no Intervention, a “Strong” Inter- 

vention, and a “Weak” Intervention (cf. Fig. 2a). See Text for Details  

 No Intervention 

( I E = off )  
“Strong” Intervention 

( I E = on )  

“Weak” Intervention 

( I E = on )  

 C present C absent C present C absent C present C absent 

E present P = 0.5 P = 0.0 P = 1.0 P = 1.0 P = 0.75 P = 0.5 

E absent P = 0.5 P = 1.0 P = 0.0 P = 0.0 P = 0.25 P = 0.5 

 

 

 

 

 

Fig. (2). Causal models augmented with intervention variables. A, B, C, and E represent domain variables; IA, IB, IC, and IE denote inter- 

vention variables.  
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 Finally, we can model uncertain interventions, that is, 

interventions for which it is unclear which variables of the 

causal network are actually affected by a chosen action. Ea-

ton and Murphy [32] give the example of drug target discov-

ery in which the goal is to identify which genes change their 

mRNA expression level as a result of adding a drug. A major 

challenge in such a situation is that several genes may 

change subsequent to such an intervention, either because the 

drug affects multiple genes at the same time, or because the 

observed changes result from indirect causal consequences 

of the intervention (e.g., the drug affects gene A which, in 

turn, affects gene B).  

 To model such a situation Eaton and Murphy [32] used 
causal graphs augmented with intervention nodes, where the 
causal effects of the interventions were a priori unknown. 
Their algorithms then tried to simultaneously identify the 
targets of the performed intervention (i.e., to learn the con-
nections between the intervention nodes and the domain 
variables) and to recover the causal dependencies that hold 
between the domain variables. Both synthetic and real-world 
data (a biochemical signaling network and leukemia data) 
were examined. The results showed that the algorithms were 
remarkably successful in learning the causal network that 
generated the data, even when the targets of the interventions 
were not specified in advance.  

THE PSYCHOLOGY OF REASONING WITH  

IMPERFECT INTERVENTIONS 

 Whereas a number of studies have examined how people 
reason about perfect interventions, not much is known about 
peoples’ capacity to learn about and reason with imperfect 
interventions. However, a recent set of studies has examined 
causal reasoning in situations with uncertain and unreliable 
interventions [35; see also 36, 37]. In these studies partici-
pants were confronted with causal scenarios in which the 
causal effects of the available interventions and the structure 
of the causal system acted upon were unknown prior to 
learning. In addition, the interventions were not perfectly 
reliable, that is, the available courses of actions had the 
power to fix the state of the variable intervened upon, but 
they only succeeded with a certain probability. The results of 
these studies showed that people were capable of learning 
which domain variables were affected by different interven-
tions and they could also make inferences about the structure 
of the causal system acted upon.  For example, they suc-
ceeded in learning whether an intervention targeted only a 
single domain variable, which in turn generated another do-
main variable, or whether the intervention directly affected 
the two variables. 

SUMMARY PART 1 

 There are important differences between inferences based 
on merely observed states of variables and the same states 
generated by means of external interventions. Formal 
frameworks based on causal model theory capture this  
distinction and provide an intervention calculus that enables 
us to derive interventional predictions from observational 

data. In particular, augmenting causal models with nodes that 
explicitly represent interventions offers a modeling approach 
that can account for different types of interventions. 

 Regarding human causal cognition, it has been demon-
strated that people differentiate between events whose states 
have been observed (seeing) and events whose states have 
been generated by means of external interventions (doing). 
While learners diagnostically infer the presence of an event’s 
causes from observations, they understand that generating 
the very same event by means of an intervention renders it 
independent of its normal causes, so that the event temporar-
ily loses its diagnostic value. Moreover, people are capable 
of inferring the consequences of interventions they have 
never taken before from mere observations of the causal sys-
tem (“doing after seeing”). Finally, learners can acquire 
knowledge about the structure and parameters of a causal 
system from a combination of observations and interven-
tions, and they can also learn about causal systems from the 
outcomes of unreliable interventions. Causal Bayes nets al-
low for modeling these capacities, which go beyond the 
scope of models of instrumental learning [22] and logical 
reasoning [21].  

PART 2: HEURISTIC AND COMPLEX MODELS FOR 

MAKING INTERVENTIONAL DECISIONS 

 In the previous section we have examined different nor-
mative approaches for deriving interventional predictions 
from observational learning data. We now extend this dis-
cussion and focus on different decision strategies an agent 
could use to choose among alternative points of interventions 
when the generative causal network underlying the observed 
data is unknown. Consider a local politician who wants to 
reduce the crime rate in her community. There are several 
variables that are potentially causally relevant: Unemploy-
ment, social work projects, police presence, and many more. 
Given the limited financial resources of her community, the 
politician intends to spend the money on the most effective 
intervention. Since it is not possible to run controlled ex-
periments, she has to rely on observational data.  

 A simplified and abstract version of such a decision mak-
ing scenario is depicted in Fig. (3a). In this scenario, there 
are two potential points of intervention, C1 and C2, and a 
goal event E which the agent cannot influence directly, but 
whose probability of occurrence she wants to maximize by 
means of intervention. In addition, there is another variable 
H, which is observed but not under the potential control of 
the agent (i.e., cannot be intervened upon). Furthermore we 
assume that we have a sample of observational data D 
indicating that all four variables are positively correlated 
with each other (dashed lines in Fig. 3a).  

 The general problem faced by the agent is that, in princi-
ple, several causal structures are compatible with the  
observed data.  However, the alternative causal structures 
have different implications for the consequences of potential 
interventions. Figs (3b-3d) show some possible causal  
networks that may underlie the observed data. According  
to Fig (3b), both C1 and C2 exert a causal influence on E, 
with the observed correlation between C1 and C2 resulting 
from their common cause, H. Under this scenario, generating 
either C1 or C2 by means of intervention will raise the prob-
ability of effect E, with the effectiveness of the intervention 
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determined by the causal model’s parameters. Fig (3c) de-
picts a different causal scenario. Again the two cause events 
covary due to their common cause H, but only C1 is causally 
related to the effect event E. As a consequence, only inter-
vening in C1 will raise the probability of E. In this situation 
the observed statistical association between C2 and E is a 
non-causal, merely covariational relation arising from the 
fact that C1 tends to co-occur with C2 (due to their common 
cause, H). Finally, Fig (3d) depicts a causal model in which 
only an intervention in C2 may generate E. In this causal 
scenario, event C1 is an effect, not a cause of E. This struc-
ture, too, implies that C1 covaries with the other three vari-
ables. However, due to the asymmetry of causal relations 
intervening in C1 will not influence E. 

 Given some observational data D and the goal of generat-
ing E by intervening on either C1 or C2, how would a causal 
Bayes net approach tackle this inference problem? Briefly, 
such an approach would proceed as follows (we will later 
provide a detailed analysis). The first step would be to infer 
the generative causal structure that underlies the data. In  
a second step, the data can be used to estimate the graph’s 
parameters (e.g., conditional and marginal probabilities). 
Finally, given the causal model and its parameters one can 
use an intervention calculus to derive the consequences of 
the available courses of actions. By comparing the resulting 
interventional distributions, an agent can choose the optimal 
point of intervention, that is, perform the action do (Ci) that 
maximizes the probability of the desired effect E. 

 Such a Bayesian approach provides the benchmark for 
rational causal inference. It operates by using all available 
data to infer the underlying causal structure and the optimal 
intervention. However, as a psychological model such an 
approach might place unrealistic demands on human infor-
mation processing capacities, because it assumes that people 
have the capacity to consider multiple potential causal mod-

els that may underlie the data. We therefore contrast the 
Bayesian approach with a heuristic model, which differs 
substantially in terms of informational demands and compu-
tational complexity.  

THE INTERVENTION-FINDER HEURISTIC 

 Our heuristic approach addresses the same decision prob-
lem, that is, it aims to identify an intervention which maxi-
mizes the probability that a particular effect event will occur. 
We therefore call this model the Intervention-Finder heuris-
tic. In contrast to the Bayesian approach, this heuristic uses 
only a small amount of causal and statistical information to 
determine the best intervention point. This heuristic might 
help a boundedly rational agent when information is scarce, 
time pressure is high, or computational resources are limited 
[38-40].  

 While the heuristic, too, does operate on causal model 
representations, it requires only little computational effort 
regarding parameter estimation. Briefly, the proposed inter-
ventional heuristic consists of the following steps. First, 
given a set of observed variables a “skeletal” causal model is 
formed, which seeks to identify potential causes of the de-
sired effect, but makes no specific assumptions about the 
precise causal structure and its parameters. The variables are 
classified relative to the desired effect variable E (i.e., 
whether they are potential causes or further effects of E), but 
no distinction is made regarding whether an event is a direct 
or indirect cause of the effect. Based on this elemental event 
classification, the heuristic uses the conditional probability 
P(Effect | Cause) as a proxy for deciding where to intervene.  
More specifically, the decision rule is that given n causes 
C1, …, Cn and the associated conditional probabilities 
P(E | Ci), the cause Ci for which P(E | Ci) = max is selected 
as the point of intervention. Thus, instead of trying to reveal 
the exact causal model that generated the data and using an 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Example of a causal decision problem. Dashed lines indicate observed correlations, arrows causal relations. a) Observed correla-

tions, b) - d) Alternative causal structures that may underlie the observed correlations. 
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intervention calculus to compute interventional probabilities, 
the heuristic approach considers only a small amount of in-
formation and a simple decision rule to make an intervention 
choice.  

 The proposed approach is a causal heuristic in the sense 

that it takes into account a characteristic feature of our envi-

ronment, namely the directionality of causal relations. Con-
sider a causal scenario consisting of three variables X, Y, and 

Z and assume the goal of the agent is to generate variable Y 

by means of an intervention. Further, assume that the true 
generating model is a causal chain of the form X Y Z. A 

purely statistical account may suggest to omit the first step of 

the heuristic and only compute the conditional probabilities 
P(Y | X) and P(Y | Z), regardless of the events’ causal roles 

relative to the desired effect Y. In this case, it may happen 

that P(Y | Z) is larger than P(Y | X). For example, when Y is 
the only cause of Z it holds that P(Y | Z) = 1, since Z only 

occurs when X is present. Without consideration of the  

event types this strategy would suggest to intervene on  
variable Z to maximize the probability of Y occurring. By 

contrast, the first step of the heuristic assigns event types of 

cause and effect to the variables (relative to the effect the 
agent wants to generate), thereby eliminating Z as potential 

intervention point. Thus, the first step of the heuristic seeks 

to eliminate all causal descendants of the effect the agent 
wants to generate from the causal model on which the  

heuristic operates. It is this first step of causal induction that 

makes the model a causal heuristic, as opposed to a purely 
statistical approach.  

 In line with previous work [29-31] we assume that organ-

isms exploit various cues in their environment to establish an 
initial causal model representation. These cues include tem-

poral order, prior experiences, covariation information, and 

knowledge acquired through social learning. These cues may 
be fallible (i.e., the experienced temporal order may not cor-

respond to the actual causal order), redundant (i.e., multiple 

cues may suggest a similar causal structure), or inconsistent 
(i.e., different cues may point to different causal models). 

However, taken together such cues provide crucial support 

for causal learning and reasoning. For example, the previ-
ously mentioned studies by Lagnado and Sloman [27, 28] 

demonstrated that learners relied on cues such as temporal 

ordering of events to induce an initial causal model. Partici-
pants then tested this initial model against the incoming  

covariational data or revised causal structure by using further 

cues, such as learning from interventions.   

 Of course, such a heuristic approach will not always lead 

to the correct decision, but neither will a Bayesian approach. 
We will show that using only categories of cause and effect 

may yield remarkably accurate predictions across a wide 

range of causal situations, without incurring the costs of ex-
tensive computations.  

Common-Effect Models with Independent Causes 

 We first consider common-effect models in which the 
cause events C1,…,Cn occur independently of each other. 
Consider a simple common-effect model of the form 
C1 E C2. In this case, the Intervention-Finder heuristic 
always identifies the optimal intervention, that is, the cause 
for which P(E | do Ci) = max. The reason is simple: when the 

alternative cause events occur independently of each other, 
the observed probability for each cause, which is used as a 
proxy by the heuristic, reflects the strength of the interven-
tional probability. Thus, the highest observational probability 
will necessarily point to the most effective intervention.  

Common-Effect Models with Correlated Causes 

 In common-effect models with independent causes the 
Intervention-Finder heuristic necessarily identifies the best 
point of intervention. However, the situation is different 
when the cause events Ci do not occur independently of each 
other, but are correlated [4, 5]. Consider again Fig. (3b), in 
which C1 and C2 are linked by a common cause event H. In 
this case observational and interventional probabilities differ, 
that is, P(E | C1) > P(E | do C1) and P(E | C2) > P(E | do C2). 
Given that the Intervention-Finder heuristic ignores the dis-
tinction between observational and interventional probabili-
ties: is there any reason as to why the heuristic should work 
in this scenario?  

 Indeed there is. Even when it holds for each cause Ci that 
P(E | Ci)  P(E | do Ci), the observational probabilities 
P(E | Ci) might still provide an appropriate decision criterion 
as long as the ranking order of the two types of probabilities 
correspond. Assume the data available to the agent entails 
that P(E | C1) > P(E | C2) . Obviously, as long as 
P(E | do C1) > P(E | do C2), too, using the observed prob-
abilities P(E | Ci) will be a useful proxy for making an inter-
ventional decision. In fact, not the whole ranking order must 
match, but it is only required that the cause event that has the 
highest observed probability P(E | Ci) also has the highest 
rank in the order of the interventional probabilities. The 
critical issue is then to determine the conditions under which 
the rank orders of observational and interventional probabili-
ties do and do not correspond. 

SIMULATION STUDY 1: FINDING THE BEST  

INTERVENTION WITH CORRELATED CAUSES 

 Since correlated causes entail normative differences be-
tween observational and interventional probabilities, we 
chose this scenario as an interesting test case to evaluate the 
performance of the Intervention-Finder heuristic. We ran a 
number of computer simulations implementing a variety of 
common effect models with correlated cause variables serv-
ing as potential interventions points. In particular, we were 
interested in investigating how well the proposed heuristic 
would perform in comparison to a Bayesian approach that 
first seeks to infer the underlying causal structure and its 
parameters. In addition, we implemented another heuristic 
strategy, which seeks to derive interventional decisions from 
a symmetric measure of statistical association, correlation 
(see below). Briefly, our simulation procedure was as fol-
lows: 1) construct a causal model with correlated causes, 2) 
choose a random set of parameters for this causal model, 3) 
generate some data D from the model, 4) use the generated 
data sample as input to the Bayesian and the heuristic ap-
proach, and 5) assess the models’ accuracy by comparing 
their intervention choices to the optimal intervention derived 
from the true causal model. 

 We examined different network topologies comprising n 
correlated cause events linked to a common effect E. The 
number of (potential) cause events Ci was varied between 
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two and six. The correlation between these cause variables 
resulted from a common cause node H that generated these 
events (cf. Fig. 4), thereby ensuring a normative difference 
between observational and interventional probabilities. For 
each scenario containing n cause variables Ci we constructed 
a model space by permutating the causal links between the 
cause nodes Ci and the effect node E. To illustrate, consider 
a network topology with three potential causes C1, C2, and 
C3. Excluding a scenario in which none of the potential 
causes generates E, the model space consists of seven graphs 
(Fig. 4). Note that all seven causal models imply that the 
cause events (C1, C2, and C3) are correlated with the effect. 
However, the structures entail different sets of effective 
points of interventions. For example, whereas the leftmost 
model entails that intervening on any of the cause variables 
will raise the probability of the effect (with the effectiveness 
of the interventions determined by the model’s parameters) 
the rightmost model implies that only an intervention in C3 
provides an effective action.  

 The same procedure was used to construct the model 

spaces for network topologies containing more than three 
cause variables. The rationale behind this procedure was that 

categories of cause and effect are assumed to be known to 

the agent. To allow for a fair comparison of the different 
approaches, this restricted set of models was also used as the 

search space for the Bayesian model. In fact, without con-

straining the search space the Bayesian approach soon be-
comes intractable, since the number of possible graphs is 

super-exponential in the number of nodes. For example, 

without any constraints there are 7.8  10
11

 possible graphs 
that can be constructed from eight nodes (i.e., a model com-

prising six intervention points Ci, their common cause H, and 

the effect node E), whereas the restricted model space con-
tains only 63 models.  

 For the simulations, first one of the causal structures 
from the model space was randomly selected. Next, a ran-

dom set of parameters (i.e., conditional and marginal prob-

abilities) was generated. These parameters included the base 
rate of the common cause H, the links between H and the 

cause variables Ci, and the causal dependencies between the 

cause variables and the effect E. Each parameter could take 
any value in the range (0, 1). The joint influence of the cause 

variables Ci on effect E was computed in accordance with a 

noisy-OR parameterization [34]; the probability of the effect 
in the absence of all cause variables Ci was fixed to zero. By 

forward sampling, the causal model was then used to gener-

ate some data D (i.e., m cases with each instance consisting 
of a complete configuration of the variables’ states). These 

data served as input to the different decision strategies.  

To evaluate model performance, the true generative causal 
model served as a benchmark. Thus, we applied the do-

calculus to the true causal model in order to derive the distri-

bution of the interventional probabilities for all cause events 

Ci, and later examined whether the choices suggested by the 
different strategies corresponded to the optimal intervention 

derived from the true causal model. 

 We also systematically varied the size of the generated 

data sample. The goal was to assess the interplay between 

model complexity (i.e., number of nodes in the network) and 
sample size regarding model performance. For example, the 

first step of the Bayes nets approach is to identify the pres-

ence and strengths of the links between the potential inter-
vention points Ci and the effect node E. Identifying the cor-

rect structure increases the chances to identify the optimal 

point of intervention, but the success of this step often de-
pends on how much data are available [41]. We systemati-

cally varied the size of the data sample between 10 and 100 

in steps of 10, and between 100 and 1,000 in steps of 100. 
For each type of causal model and sample size we ran 5,000 

simulation trials. Hence, in total we ran 5 (number of causes 

Ci = two to six)  19 (different sample sizes)  5,000 (num-
ber of simulations) = 475,000 simulation rounds.  

Implementing the Decision Strategies 

 For the simulation study we used the Bayes Net Toolbox 

(BNT) for Matlab [42]; in addition we used the BNT Struc-

ture Learning Package [12]. This software was used for gen-
erating data from the true causal networks and to implement 

the Bayesian approach. To derive interventional probabili-

ties, we implemented Pearl’s do-calculus [2]. (All Matlab 
code is available upon request). In the simulations we com-

pared the performance of the Bayesian inference model with 

the Intervention-Finder heuristic. In addition, we included a 
model that uses the bivariate correlations between each of 

the cause variables and the effect as a proxy for deciding 

where to intervene. This model was included to test the im-
portance of using appropriate statistical indices in causal 

decision making: since the goal of the agent is to choose the 

intervention that maximizes the interventional probability 
P(E | do Ci), we consider the observed conditional probabil-

ity P(E | C) as a natural decision proxy an agent may use. 

Another option would be to use a symmetrical measure of 
covariation, such as correlation. Using such an index, how-

ever, may be problematic since it does not reflect the asym-

metry of cause-effect relations (see below for details). To 
evaluate the importance of using an appropriate statistical 

index, we pitted these two decision proxies against each 

other. Generally, to ensure that the computational goals of 
the models were comparable all approaches started with ini-

tial knowledge about categories of causes and effects. For all 

models, the task was to decide on which of the cause vari-
ables Ci one should intervene in order to maximize the prob-

 

 

 

Fig. (4). Common-effect models with three potential cause events C1, C2, and C3. Due to the common cause H all three cause events are sta-

tistically correlated with the effect E, although not all of them are causally related to E. 
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ability of effect E occurring. However, the inferential proc-

ess by which this decision was made differed between the 

approaches.  

 The Bayesian approach was implemented as follows. 
First, we defined a search space consisting of the restricted 
model space from which the true causal model had been cho-
sen. This procedure not only ensured that the Bayesian ap-
proach remained tractable, but also guaranteed that both the 
Bayesian and the heuristic approach started from the same 
set of assumptions about the types of the involved events. 
For example, for the simulations concerning three possible 
causes C1, C2, and C3 the search space included the seven 
graphs shown in Fig. (4). We used a uniform prior over the 
graphs (i.e., all causal structures had an equal a priori prob-
ability). The next step was to use Bayesian inference to 
compute which causal model was most likely to have gener-
ated the observed data. To do so, we computed the graphs’ 
marginal likelihoods, which reflect the probability of the 
data given a particular causal structure, marginalized over all 
possible parameter values for this graph [9, 13]. Using a  
uniform model prior allowed us to use the marginal likeli-
hood as a scoring function to select the most likely causal 
model. The selected model was then parameterized by deriv-
ing maximum likelihood estimates (MLE) from the data. 
Finally, we applied the do-calculus to the induced causal 
model to determine for each potential cause Ci the corre-
sponding interventional probability P(E | do Ci). The cause 
variable for which P(E | do Ci) = max was then chosen as 
intervention point.  

 The Intervention-Finder heuristic, too, started from an 
initial set of categories of cause and effect. Thus, E repre-

sented the desired effect variable and the remaining variables 

Ci were considered as potential intervention points. How-
ever, in contrast to the Bayesian approach the heuristic did 

not seek to identify the existence and strengths of the causal 

relations between these variables. Instead, the heuristic 
model simply derived all observational probabilities P(E | Ci) 

from the data sample and used the rank order of the observa-

tional probabilities as criterion for deciding where to inter-
vene in the causal network. For example, for the network 

class with three cause events C1, C2, and C3, the correspond-

ing three probabilities P(E | C1), P(E | C2), and P(E | C3) 
were computed. Then the cause variable for which 

P(E | Ci) = max was selected as point of intervention. 

 Finally, we implemented another variant of the heuristic 
model, which bases its decision on a symmetric measure of 

statistical association, namely the bivariate correlations be-

tween the cause variables and the effect. For each cause Ci 
the -correlation was computed, given by 
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where n denotes the number of cases for the specified com-
bination of cause Ci and effect E in the data sample. As a 
decision rule, the correlational model selected the cause vari-
able which had the highest correlation with the effect. Note 
that the computed proxy, correlation, takes into account all 
four cells of a 2 2 contingency table, whereas the condi-
tional probability P(E|Ci) used by the Intervention-Finder 
heuristic is derived from only two cells (i.e., nC,E and nC, ¬E). 
Nevertheless, we expected the correlational approach to  
perform worse since this decision criterion ignores the 
asymmetry of causal relations. For example, consider  
the two data sets shown in Table 2. In both data sets the  
correlation between cause and effect is identical (i.e.,  

C, E = 0.48). However, the conditional probability P(E | C) 
strongly differs across the two samples: whereas in the  
first data set (left-hand side) P(E | C) = 0.99, in the second 
data set (right-hand side) P(E | C) = 0.4. As a consequence, 
an agent making interventional decisions based on such a 
symmetric measure of covariation may arrive at a different 
conclusion than an agent using a proxy that reflects causal 
directionality.  

Simulation Study 1: Results 

We first analyzed the performance of the Bayesian approach 
regarding the induction of the causal model from which the 
data were generated. Fig. (5) shows that the model recovery 
rate was a function of sample size and network complexity 
[41, 43]. The Bayesian approach was better able to recover the 
generating causal graph with more data and simpler models.  

 Next we examined how accurate the different strategies 
performed in terms of deciding where to intervene in the 
network. We analyzed the proportion of correct decisions 
(relative to the true causal model) and the relative error, that 
is, the mean difference in the probability of the effect that 
would result from the best intervention derived from the true 
causal model and the probability of the effect given the cho-
sen intervention. As can be seen from Fig. (6), the Bayesian 
approach performed best, with the percentage of correct in-
tervention choices and size of error being a function of 
model complexity and sample size. The larger the data sam-
ple, the more likely the intervention choice corresponded to 
the decision derived from the true causal model. Conversely, 
the number of erroneous decisions increased with model 
complexity, and more data were required to achieve similar 
levels of performance compared to simpler network topolo-
gies.  These findings also illustrate that inferring the exact 
causal structure is not a necessary prerequisite for making 
the correct intervention decision. Consider the most complex 
network class, which contains six potential intervention 
points (i.e., Ci = 6). As Fig. (5) shows, for a data sample con-
taining 1,000 cases, the probability of inferring the true gen-
erating model from the 63 possible graphs of the search 
space was about 50%. However, a comparison with Fig. (6) 

Table 2. Two Data sets with Identical Correlations between a Cause C and an Effect E ( C, E =0 .48) but Different Conditional 

Probabilities of Effect given Cause, P(E | C) (0.99 and 0.4, respectively) 

 E ¬E  E ¬E 

  C 99 1   C 40 60 

¬C 60 40 ¬C 1 99 
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shows that the number of correct intervention decisions was 
clearly higher, namely about 80%. The reason for this diver-
gence is that stronger causal links within the network are 
more likely to be recovered than weaker causal relations, 
particularly when only limited data are available. Thus, the 
inferred model is likely to contain the strongest causal links, 
which often suffices to choose the most effective point of 
intervention. Therefore, even a partially incorrect model may 
allow for a correct decision. Taken together, the findings 
indicate that the Bayesian approach was very successful in 
deriving interventional decisions from observational learning 
data.  

 The most interesting results concern the performance of 
the Intervention-Finder heuristic. Given the computational 
parsimony of the heuristic, the main question was how the 
model would compare to the more powerful Bayesian ap-
proach. The results of the simulations indicate that the heu-
ristic was remarkably accurate in deciding where to inter-
vene in the causal network (cf. Fig. 6). Although the heuris-
tic model does not require as extensive computations as the 
Bayesian approach, its performance came close to the much 
more powerful Bayesian account. Thus, operating on a skele-
tal causal model assuming all variables to be potential causes 
and using a rather simple statistic as proxy for making an 
interventional decision provided a good trade-off between 
computational simplicity and accuracy. Finally, the analyses 
show that using a symmetric measure of statistical associa-
tion, correlation, provided a poor decision criterion for 
causal decision making. This approach performed worst, 
both in terms of the number of correct decisions and size of 
error. Thus, using an appropriate decision proxy is important 
for making good decisions. 

SIMULATION STUDY 2: WHY AND WHEN DOES 

THE INTERVENTION-FINDER HEURISTIC WORK? 

 The previous simulations have shown that the Interven-
tion-Finder heuristic achieved a good performance in scenar-

ios involving correlated cause variables. To understand when 
and why the heuristic works, we ran a systematic simulation 
involving the confounder model shown in Fig. (3b), which 
contains two correlated cause events, C1 and C2. Since this 
model contains only few causal relations it was possible to 
systematically vary the strength of all causal links in the 
network:  the base rate of the common cause H, the probabil-
ity with which H caused C1 and C2, respectively, as well as 
the two causal links connecting C1 and C2 with their com-
mon effect E. As before, P(E | C1, C2) was derived from a 
noisy-OR gate and P(E | ¬C1, ¬C2) was set to zero.  We var-
ied the strength of the five causal connections between 0.1 
and 1.0 in steps of 0.1, resulting in 10

5 
= 100,000 simulation 

rounds.  For each parameter combination we generated a 
data sample of 1,000 cases, which served as input to the heu-
ristic model.  

 Across all simulations, the heuristic identified the best 

point of intervention in 87% of the cases. This result pro-

vides further evidence that the heuristic performs quite well 

across a wide range of parameter combinations. Since the 

difference between observational and interventional prob-

abilities depends on how strongly the cause variables corre-

late, we next analyzed the heuristic’s performance in relation 

to the size of the correlation between C1 and C2. We com-

puted the correlation between the two cause variables in each 

simulation and pooled them in intervals of 0.1. Fig. (7a) 

shows that the performance of the heuristic crucially depends 

on how strongly the two cause variables covary: while the 

model makes very accurate predictions when the cause  

variables are only weakly correlated, performance decreases 

as a function of the size of the correlation. As can be seen 

from Fig. (7b), the size of the error, too, depends on the  

correlation between the cause variables. The higher the  

correlation, the larger the discrepancy between the interven-

tion decision derived from the true causal model and the  

intervention chosen by the heuristic.  

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Model recovery rates of the Bayesian approach as a function of model complexity and sample size. Ci denotes the number of  

potential intervention points in the network 
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 To understand the very good overall performance of the 
heuristic approach it is important to consider the distribution 
of correlations between the two cause variables across the 
parameter space. Fig. (7c) shows that the distribution is 
highly skewed: whereas many parameter combinations entail 
that C1 and C2 are rather weakly correlated, high correlations 
occur only rarely. In other words, the particular situations in 
which the heuristic is prone to errors did not occur very of-
ten, whereas situations in which the causal heuristic per-
formed well were frequent in our simulation domain. (Note, 
however, that this only holds for a uniform distribution over 
the parameter values; see the General Discussion). Taken 
together, these analyses indicate that the size of the correla-

tion between the cause variables provides an important 
boundary condition for the accuracy of the Intervention-
Finder heuristic. 

SIMULATION STUDY 3: FINDING THE BEST  
INTERVENTION WITH NOISY DATA 

 In a further set of simulations we examined the robust-
ness of the different approaches when inferences have to be 
drawn from noisy data. These simulations mimic situations 
in which an agent must make inductive inferences from 
noisy data, which is often the case in real world domains. 
For instance, in the medical domain doctors often have to 
base their intervention decision regarding treatments on 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Simulation results for different network topologies. Dashed lines indicate causal links that were varied (present vs. absent) during 

the simulations. 
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noisy data resulting from the imperfect reliability of medical 
tests.  

 We adopted the same simulation method as in the first 
study, but this time we introduced different levels of noise to 
the data sample.  Noise was introduced by flipping the state 
of each variable (present vs. absent) in each data case m with 
probability . For example, when a variable was present in an 
instance m, its state was changed to absent with probability 

, whereas the variable remained in its actual state with pro- 
bability 1- . This was done independently for each variable 
in each instance of the sample data D. To simulate different 
levels of noise, we varied  from 0.1 to 0.5 in steps of 0.1 
(i.e., we examined five different levels of noise). The noisy 
data then served as input to the different decision models. 

 Fig. (8) shows the results of these simulations.  Not sur-
prisingly, model performance decreased as a function of 
noise and model complexity. In fact, with the highest level of 
noise (i.e.,  = 0.5) the accuracy of all three models dropped 
to chance level. However, particularly interesting is the find-
ing that the performance of the heuristic matched the Baye-
sian approach, particularly for small levels of noise (e.g.,  = 
0.1). Given that the Bayesian model always outperformed 
the heuristic in the previous simulations this is clearly a very 
interesting result. In line with previous research on heuristic 
models [39, 40], these findings suggest that a heuristic model 
of causal decision making may have the capacity to be more 
robust than computationally more complex models. In the 
present study, the increased performance of the heuristic 
model is mostly due to an impaired model recovery rate of 
the Bayesian approach.  

EXTENSIONS TO OTHER CAUSAL SCENARIOS 

 So far we only have analyzed the Intervention-Finder 
heuristic in a restricted set of causal scenarios. Thus, further 
analyses are needed to explore other scenarios. As a first step 
in this direction, we have examined common-effect models 
with conjunctive or disjunctive interactions between the 
cause variables, and causal models containing direct and 
indirect causes of the desired effect.  

Conjunctive Interactions 

 Interestingly, the heuristic’s accuracy in common-effect 
models with independent causes does not seem to depend on 
the assumption that there is no conjunctive interaction be-

tween the candidate causes (see [44] for a general analysis of 
interactive causal power). Consider a common-effect model 
C1 E C2, with two independently occurring causes C1 and 
C2. Imagine C1 occurs with base rate P(C1) = 0.8, C2 occurs 
with P(C2) = 0.1, and the desired effect E occurs only when 
both causes are present (i.e., an AND conjunction). Which of 
the two variables should an agent intervene upon to maxi-
mize the probability of the effect? Intuitively, it is better to 
generate the less frequent cause variable C2, since C1 has a 
high probability of occurring anyway, which is a necessary 
precondition for the occurrence of the effect.  

 In such a scenario the heuristic will infer the correct point 
of intervention (i.e., the less frequent cause variable) because 
the base rate of the different causes also affects the observed 
conditional probabilities P(E | Ci). Formally, the two condi-
tional probabilities are given by  

P(E | C1) = P(C2) · P(E | C1, C2) + P(¬C2) · P(E | C1, ¬C2)      (5) 

and 

P(E | C2) = P(C1) · P(E | C1, C2) + P(¬C1) · P(E | ¬C1, C2)      (6) 

When both C1 and C2 are necessary to produce the effect, the 
second term of these equations reduces to zero (since 
P(E | C1, ¬C2) = P(E | ¬C1, C2) = 0), while the first term 
reduces to the base rate of the alternative cause (since 
P(E | C1, C2) = 1). As a consequence, the conditional prob-
ability of a cause variable is equal to the base rate of the al-
ternative cause, that is, P(E | C1) = P(C2) = 0.1 and 
P(E | C2) = P(C1) = 0.8. Thus, the heuristic will always select 
the optimal point of intervention, namely the cause variable 
that is less frequent (here: C2).  

Disjunctive Interactions 

 Now consider a common-effect model in which the two 
causes have the same base rates as before (i.e., P(C1) = 0.8 
and P(C2) = 0.1), but are connected by an exclusive-OR 
(XOR) interaction (i.e., E only occurs when either C1 or C2 
are present, but not when both causes are present). In this 
case, it is best to generate the more frequent event, since the 
presence of the other case would inhibit the occurrence of 
the effect. Although the situation is exactly opposite to a 
conjunctive interaction, the heuristic will again select the 
correct point of intervention. Consider again Equations (5) 
and (6). In case of a XOR, the first term of both equations 
reduces to zero, since P(E | C1, C2) = 0. The second term 

 

 

 

 

 

 

 

Fig. (7). Results of the systematic evaluation for a causal network containing two correlated points of intervention, C1 and C2, affecting a 

single effect E. 
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equals the probability that the alternative cause will not 
occur (i.e., 1-P(C2) in Equation (5) and 1-P(C1) in Equation 
6), since P(E | C1, ¬C2) = P(E | ¬C1, C2) = 1. The resulting 
two conditional probabilities are P(E | C1) = 0.9 and 
P(E | C2) = 0.2, therefore the heuristic would correctly sug-
gest to intervene in C1, which is the more frequent event. 
Thus, although conjunctive and disjunctive interactions re-
quire diametrically opposed decisions, the heuristic will suc-
ceed in both cases. 

Direct vs. Indirect Causes 

Another interesting scenario concerns a causal model con-
taining direct and indirect causes. Assume the true generat-
ing model is a causal chain of the form C1 C2 E. Intui-
tively, intervening on a variable’s direct cause will tend to be 
more effective, since interventions on indirect causes are 

more error prone, as they require the generation of interme-
diate events to produce the desired effect. Interestingly, the 
heuristic will almost always select the direct cause (here: 
C2), as point of intervention. The reason is that in probabilis-
tic causal chains the influence of any indirect cause on E is 
attenuated as a function of causal path length. Using 
P(E | Ci) as a proxy will select the effect’s direct cause to 
intervene upon, since usually the conditional probability 
P(E | Ci) is higher for a direct cause than for an indirect 
cause. The limiting case are deterministic causal chains, 
since then P(E | C1) = P(E | C2) = 1. Yet, although in this 
situation an agent using the heuristic must resort to randomly 
choosing between the two causes, this actually does not mat-
ter since in both cases the effect will be generated with a 
probability of one.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). Model performance for different levels of noise, model complexity, and sample size. 
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 However, there are also situations in which it is better to 

intervene in indirect causes. This is the case when the indi-

rect cause generates multiple direct causes, such as in the 

confounder model shown in Fig. (3b), in which H generates 

two direct causes, C1 and C2. However, since P(E | H) in-

cludes the joint influence of both C1 and C2 this conditional 

probability will be larger than the conditional probabilities 

P(E | C1) and P(E | C2). Hence, the Intervention-Finder heu-

ristic will correctly select the indirect cause H as the most 

effective point of intervention. 

GENERAL DISCUSSION 

 The goals of this paper were twofold. First, we reviewed 

alternative approaches for formally representing interven-

tions in causal networks and modeling probabilistic reason-

ing about observations (seeing) and interventions (doing). 

This issue has recently received considerable attention in 

research on causal cognition given that not all theories  

of causal reasoning are capable of differentiating between 

these types of inferences. We reviewed a number of studies 

showing that people are capable of making interventional 

predictions based on observational data [4-7], and can learn  

causal structures based on mixtures of observations and  

interventions [23, 25-28]. In addition there is some recent 

evidence that people engage in causal reasoning in decision 

making and conceive of choices as interventions when they 

decide on actions [45]. A limitation of previous research is 

that it has neglected interventions which do not deterministi-

cally fix the state of a variable. Interventions may be unreli-

able, interact with other causes in the system, or it may be 

unclear which variable(s) an intervention actually targets. 

We discussed these cases in the context of alternative  

methods of modeling interventions. However, so far little is 

known about how people reason about different kinds of 

interventions, and future research needs to examine these 

issues in more detail (but see [35-37]). 

 The second part of the paper was concerned with how an 

agent may make an interventional decision when the struc-

ture of the causal system acted upon is unknown and only a 

sample of observational data is available. One solution to 

this problem is offered by causal Bayes net approaches, 

which seek to infer causal structures and parameter estimates 

from data, and use an intervention calculus to determine the 

most effective intervention. This approach was contrasted 

with a heuristic model, which operates on skeletal causal 

model representations that merely distinguish categories of 

cause and effect. Instead of deriving all parameters of a 

causal model the heuristic uses the conditional probability 

P(Effect | Cause) as a proxy for deciding which of the cause 

variables in the network should be targeted by an interven-

tion. We tested the accuracy of this heuristic in a number of 

computer simulations. The results showed that the Bayesian 

model achieved a better performance than the heuristic 

model, but at considerably more computational costs. How-

ever, the picture was different when inferences had to be 

drawn from noisy data. In this case, the performance of the 

heuristic model matched the Bayesian approach. Thus,  

particularly in a noisy environment computational simplicity 

may pay off.  

DIRECTIONS FOR FUTURE RESEARCH 

 The present results indicate that the Intervention-Finder 

heuristic is a promising candidate for a strategy that a 

boundedly rational agent may pursue when engaging in 

causal decision making. We see two main issues that should 

be addressed in future research. One important question  

concerns the empirical validity of the heuristic, both in the 

laboratory and in real-world situations. Previous research has 

provided strong evidence that people take into account 

causal knowledge when making probabilistic inferences  

and when engaging in decision making [35-37, 45], but the 

particular decision problem examined in the present paper 

has not been examined empirically yet. One important line of 

research will be to investigate how people exploit different 

cues to causality in order to establish a skeletal causal model, 

which provides the representational basis for the subsequent 

steps of the Intervention-Finder heuristic. For example,  

previous research in the context of structure induction has 

shown that learners use temporal cues to establish initial 

hypotheses about causal structure [27, 28]. Other studies 

show that during causal learning people may start with a 

skeletal model only containing information about potential 

causes and potential effects and then use covariation infor-

mation to restrict the class of possible causal models  

[46, 47].   

 These findings also point to another interesting question, 

namely the interplay between different cues to causality. For 

example, [27, 28] demonstrated that temporal cues can over-

ride covariational data in structure induction. Conversely, 

when learners already had a specific causal model in mind 

when being presented with covariation information, they 

tended to ignore temporal information and map the learning 

input onto the existing model [46, 47]. We plan to systemati-

cally examine these questions in future studies on interven-

tion choice. A natural first step will be to investigate causal 

scenarios similar to the ones examined here, in which 

knowledge of the basic event types (i.e., categories of cause 

and effect) exists prior to presenting covariational data. Fur-

ther steps will be to examine how other cues, such as tempo-

ral order, are used to establish skeletal causal structures and 

to pit different cues to causality against each other. 

 The second issue concerns the ecological validity of the 

heuristic, that is, an analysis of the fit between the heuristic 

and the informational structure of the task environment  

[39, 40]. Our simulation studies have shown that the heuris-

tic is particularly successful when the cause variables are  

independent or only weakly correlated. The analyses also  

revealed a highly skewed distribution of the size of the  

correlations (i.e., weak correlations occurred more frequently 

than strong correlations), but these results were obtained  

from a uniform distribution over the causal model’s parame- 

ter values. Recent research has argued that it may be more 

reasonable to assume that causal relations tend to be sparse 

and strong [15]. Whether this assumption is only a learning 

bias or a feature of reality needs to be explored.  

CONCLUSIONS 

 In a nutshell, the two parts of this paper lead to two key 
messages. First, causal knowledge is essential for making 
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interventional decisions based on observational data; consid-
ering merely statistical relations does not allow us to deter-
mine the most effective intervention. Second, skeletal causal 
knowledge in combination with a statistical indicator is often 
sufficient to make good decisions. The analyses showed that 
it is crucial to separate out potential causes and effects of the 
variable the agent wants to generate. But, often no further in-
depth analysis of causal structure and its parameters may be 
necessary for causal decision making. These two points sug-
gest that in addition to rational modeling it is interesting to 
search for heuristics people may employ when dealing with 
the complex causal systems in their environment. In line 
with other authors [48] we consider rational and heuristic 
models as being complementary, rather than contradictory. 
The Intervention-Finder heuristic proposed here is a promis-
ing candidate for complementing rational models of causal 
decision making. 
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