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This special section brings together behavioral, computational, mathematical, and neuroimaging ap-
proaches to understand the processes underlying category learning. Over the past decade, there has been
growing convergence in research on categorization, with computational–mathematical models influenc-
ing the interpretation of brain imaging and neuropsychological data, and with cognitive neuroscience
findings influencing the development and refinement of models. Classic debates between single-system
and multiple-memory-system theories have become more nuanced and focused. Multiple brain areas and
cognitive processes contribute to categorization, but theories differ markedly in whether and when those
neurocognitive components are recruited for different aspects of categorization. The articles in this
special section approach this issue from several diverse angles.
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The ability to classify objects into categories is a fundamental
attribute of human cognition that is arguably “basic to all of our
intellectual activities” (Estes, 1994, p. 4). Categorization enables
people to create and use a manageable number of labels for the
7,000,000 shades of color that their visual systems can discrimi-
nate, thereby facilitating communication (“Can you hand me the
blue ladle?”). People can learn from experience that red berries are
poisonous and wisely choose not to eat a new berry regardless of
whether it has a dull burgundy hue on a cloudy day or a shiny pink
sheen on a sunny day. People can predict that an unfamiliar dog
will sooner or later bark, and people can purchase a new hammer
and put it to use even though that particular brand of hammer has
not been seen before. Without categorization, there would be no
cognition.

Accordingly, significant empirical and theoretical attention has
focused on categorization during the last few decades. This broad
effort has yielded two principal accomplishments: First, the field
has seen the development of highly sophisticated computational
models (e.g., Anderson, 1991; Ashby, 1992; Erickson & Kruschke,
1998; Kruschke, 1992, 2006; Lamberts, 2000; Love, Medin, &
Gureckis, 2004; Nosofsky, 1984; Nosofsky, Palmeri, & McKinley,
1994; Nosofsky & Palmeri, 1997; Sanborn, Griffiths, & Navarro,
2010), with impressive power to explain people’s classification
responses at the level of individual test items (e.g., Yang &
Lewandowsky, 2004) or as a function of learning (e.g., Johansen &
Palmeri, 2002; Palmeri, 1997, 1999). Relatively few areas of
inquiry in human cognition have the theoretical maturity of cate-
gorization research. Although the many competing models and
their diverse theoretical assumptions are not readily summarized, a
common theme is that they leave the underlying brain structure
unspecified: Most operate at a cognitive level of explanation and
are mute with respect to the presumed neural underpinnings.
Moreover, with some exceptions (e.g., Erickson & Kruschke,
1998; Palmeri, 1997), most rely on a single system of unitary
category representations—that is, regardless of which particular
set of objects people have to classify, many models assume that
they are uniformly represented, for example, by exemplars (e.g.,
Nosofsky, 1984) or as samples from a distribution of evidence
(Sanborn et al., 2010).

The second principal success of research in categorization has
arisen from work in cognitive neuroscience that has focused on
identifying the multiple memory systems that are purportedly
underlying human categorization behavior (e.g., Ashby, Alfonso-
Reese, Turken, & Waldron, 1998; Ashby & Maddox, 2005; Ashby
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& O’Brien, 2005; Poldrack & Foerde, 2008). Research along this
taxonomic approach (Lewandowsky & Coltheart, 2012) has been
extremely productive and has provided elegant accounts of numer-
ous behavioral dissociations, such as the selective interference that
is observed between secondary tasks and category-learning prob-
lems that are seen to involve an explicit memory system but not an
implicit memory system (e.g., Minda, Desroches, & Church, 2008;
Waldron & Ashby, 2001; Zeithamova & Maddox, 2006, 2007).
The taxonomic approach has also been particularly successful at
accounting for the selective impairment of some tasks—but not
others—that are observed in patients with amnesia (e.g., Knowl-
ton, 1999). Finally, the multiple-systems view is supported by
convergent evidence from neuroimaging (Poldrack & Foerde,
2008), leading some theoreticians to conclude that “the single-
system approach . . . fails to successfully explain a large body of
data from neuropsychological, neuroimaging, and animal neuro-
science studies” (Poldrack & Foerde, 2008, p. 203).

After an initial phase that saw little cross-linkage between these
two streams of research, there has been a growing trend toward
integration over the past decade. Models have been proposed that
explicitly link category representations and processes with under-
lying brain structures and mechanisms (e.g., Ashby, Paul, & Mad-
dox, 2011), functional brain imaging data have been interpreted
directly using cognitive models (e.g., Davis, Love, & Preston,
2012a; Nosofsky, Little, & James, 2012), and combinations of
empirical data and models have been used to reexamine the inter-
pretation of dissociations involving people with amnesia (e.g.,
Nosofsky & Zaki, 1998; Palmeri & Flanery, 2002; Zaki, 2004;
Zaki, Nosofsky, Jessup, & Unverzagt, 2003). This special section
represents an opportunity to seek further coordination between
these two main streams of research in categorization, identify
opportunities for synergy, and define empirical constraints on both
modes of theorizing.

One strong theme in this ongoing conversation involves empir-
ical reexaminations of proposed dissociations between multiple
memory systems. Dunn, Newell, and Kalish (2012, this issue)
address the effects of feedback delay on category learning: Ac-
cording to the multiple-systems view, even a relatively short delay
between the categorization response and presentation of feedback
should impair learning by the implicit system because it relies on
reward-mediated learning in the caudate nucleus. For learning to
occur, the pattern of activation associated with the response must
be maintained until the occurrence of a dopamine-mediated reward
signal; because such activation can only be sustained for a few
seconds, any delay in feedback should disrupt implicit—but not
explicit—learning (Maddox, Ashby, & Bohil, 2003). Although this
outcome has been obtained (Maddox et al., 2003), Dunn et al.
show that the effects of feedback delay are contingent on the
nature of the mask that is present during the response–feedback
interval. Their article provides a brief tutorial on state-trace anal-
ysis (Bamber, 1979) and uses this tool to uncover when and
whether single or multiple latent variables underlie different forms
of category learning under different mask conditions. Their results
challenge the multiple-systems view, which attributes feedback-
delay effects exclusively to the passage of time, and the conse-
quent disruption of neurobiological processes in the tail of the
caudate nucleus, which therefore cannot account for the elimina-
tion of the selective effect of feedback delay on the basis of
variables the theory considers to be irrelevant.

Similarly, Lewandowsky, Yang, Newell, and Kalish (2012,
this issue) reexamine the role of working memory in classifi-
cation learning. According to the multiple-systems view, work-
ing memory is required only for tasks that engage the explicit
memory system but not for tasks that engage the implicit or
procedural system. This is because the product of learning from
the latter system is typically unavailable to awareness or may be
impossible to verbalize (Ashby et al., 1998; Knowlton, Squire,
& Gluck, 1994; Minda & Miles, 2010), and therefore “working
memory is not required . . . because the response is linked
automatically with the feedback” (Filoteo, Lauritzen, & Mad-
dox, 2010, p. 415). Contrary to this expectation, Lewandowsky
et al. (2012) show in two individual-differences studies that
people’s working memory capacity predicts performance across
a broad range of category-learning tasks, including several tasks
that are acknowledged to tap the implicit system. Their results
are consonant with a growing number of reports that working
memory is uniformly related to all types of category-learning
tasks (Craig & Lewandowsky, 2012; Lewandowsky, 2011;
Sewell & Lewandowsky, in press), but they present a further
challenge to the multiple-systems view.

Nosofsky, Denton, Zaki, Murphy-Knudsen, and Unverzagt
(2012, this issue) shine further empirical light on predictions of the
multiple-systems view in two studies involving patients with mild
cognitive impairment or early Alzheimer’s disease. Contrary to the
suggestion that patients should rely on implicit prototype extrac-
tion, Nosofsky et al. found that the majority of subjects relied
either on long-term memories for exceedingly few features (with
discrete-feature stimuli) or on working memory at the time of test
(with dot-pattern stimuli) to extract the category structure. Their
data challenge the case made in favor of a separate memory system
devoted to implicit prototype extraction.

Davis, Love, and Preston (2012, this issue) provide a fresh
perspective on the roles of multiple brain areas in category learn-
ing. Rather than correlate modulation of brain activity in fMRI
with experimental conditions, stimuli, or responses—by far, the
modal approach—they instead used what is known as model-based
fMRI analysis (see also Davis et al., 2012a; Nosofsky et al., 2012).
They first fitted the rational model of categorization (Anderson,
1991; Sanborn et al., 2010) to observed category learning data.
From this single-system category learning model, they extracted
two key model measures that varied for individual stimuli across
trials of learning: recognition strength, which indexes the degree to
which a stimulus is likely, and entropy, which indexes the extent
to which the model is uncertain about which cluster a stimulus
belongs to. Activity in both the posterior hippocampus and the tail
of the caudate nucleus of the basal ganglia modulated with recog-
nition strength, whereas activity in both the anterior hippocampus
and ventral striatum of the basal ganglia modulated with entropy.
This finding is contrary to a common assertion that the hippocam-
pus and basal ganglia are associated with different memory sys-
tems used for different kinds of category learning conditions. As
Davis et al. (2012b) note, “the model-based perspective . . . sug-
gests that assuming that cognitive processes can be neatly sepa-
rated between conditions is potentially misguided” (p. 834).

Finally, Folstein, Gauthier, and Palmeri (2012, this issue) are
interested in the role that another brain area, visual cortex, might
play in category learning. Their work represents an ongoing effort
to connect theories, models, and data from the categorization
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literature with those from the object recognition literature (Palmeri
& Gauthier, 2004; Palmeri, Wong, & Gauthier, 2004). According
to some theories of object recognition, object representations in
visual cortex are not systematically influenced by the way those
objects have been categorized (e.g., Riesenhuber & Poggio, 1999),
with fMRI modulation according to learned category appearing in
frontal areas but not in visual areas (e.g., Jiang et al., 2007). By
contrast, Folstein et al. (2012) appeal to the theories of categori-
zation that place significant emphasis on the role of selective
attention (e.g., Kruschke, 1992; Nosofsky, 1984) or perceptual
stretching (e.g., Goldstone, 1994) of object dimensions relevant to
learned categories (see Gauthier & Palmeri, 2002). Many experi-
ments studying object categorization use morphing techniques to
create continuous spaces of complex objects. Folstein et al. (2012)
show that the details of how those morphspaces are created matter
a lot. When morphspaces are created by factorially combining
morphlines (Goldstone & Steyvers, 2001), perceptual stretching
along category-relevant object dimensions is observed. By con-
trast, when morphspaces are created by blending different mor-
phparents together (Jiang et al., 2007), no perceptual stretching is
observed. In a companion piece, Folstein, Palmeri, and Gauthier
(in press) show that when an experiment is designed to reveal
behavioral evidence for perceptual stretching using a factorial
morphspace, neural evidence for perceptual stretching as a result
of category learning is observed in visual cortex.

In closing, the distinction between single-system and multiple-
system theories of categorization has helped to establish two broad
theoretical alternatives, but the terminology may have obscured
key theoretical distinctions. There has never been any question that
multiple brain areas are involved in categorization (e.g., see Nosof-
sky & Zaki, 1998; Palmeri & Flanery, 2002). The questions are
how and when these multiple brain areas are involved in different
aspects of categorization and whether and when those brain areas
are involved in other aspects of cognition, such as recognition or
other forms of memory. Are these brain areas associated with
different kinds of categorization tasks (e.g., rule-based categoriza-
tion, information-integration categorization, or perceptual catego-
rization) and are these distinct from brain areas associated with
other aspects of cognition (e.g., recognition, identification)? Or are
those distinct brain areas associated with different component
processes used to categorize (e.g., working memory, long-term
memory, selective attention, decision making)? The main research
question therefore need not be whether there is a single or multiple
systems but whether the respective theories correctly predict and
explain which processes are engaged for the tasks under consid-
eration.

The articles in this special section have started to sketch out a
path toward answering those questions. We anticipate even further
integration of behavioral studies, computational modeling, and
cognitive neuroscience findings in the future that will further the
understanding of the complexities of categorization.
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