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I. Introduction 

Our ability to acquire causal knowledge is central for our survival. Causal 
knowledge allows us to predict future events and to plan actions to achieve 
goals. The importance of causal knowledge is the reason why this topic has 
attracted many philosophers and psychologists in the past. Philosophical 
analyses tend to focus on the ontological characteristics of causality, whereas 
psychological theories are primarily interested in the processes of acquiring 
and representing causal knowledge. Despite this apparent division of labor, 
the two approaches are strongly connected. For example, David Hume, 
one of the forefathers of modern views on causality, claimed that everything 
we possibly know about the causal texture in the world is based on associa- 
tions between perceived events (Hume, 1739/1978; 1748/1977). This view 
has proven extremely influential. It still dominates modern psychological 
thinking on causality. However, many of Hume’s insights, which have been 
preserved in modern philosophical analyses, have actually been lost in 
current psychological theories that tried to reconcile Hume’s view with 
modern psychological learning theories. 

11. The Associative View 

A. HUME’S HERITAGE 
David Hume has influenced modern thinking about causality more than 
other philosophers (see Mackie, 1974). Hume may be viewed as the fore- 
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father of modern psychological theories that try to reduce causal knowl- 
edge to associative links (see Shanks, 1993; Shanks & Dickinson, 1987; 
Wasserman, 1990; Young, 1995). Hume postulated three types of associa- 
tions: (1) resemblance; (2) spatiotemporal contiguity; and (3) cause-effect 
relations. Thus, he clearly differentiated between associations that are 
based on spatiotemporally contiguous single events, and those based on 
cause and effect. Causal associations are accompanied by the impression 
of a “necessary connexion.” One of Hume’s main interests was the 
question of what this impression is based on. The traditional answer 
that forms the background of Hume’s theory postulated that causal 
impressions are based on the observation of causal powers that are 
transmitted from causes to effects. By contrast, Hume, being an Empiricist, 
assumed that all our reasoning is based on the observation of singular 
separated events. This ontological framework made it impossible for him 
to find anything like causal processes or powers. Instead he concluded 
that the impression of a necessary connection between causes and effects 
is actually a cognitive illusion based on an associative relation (i.e., 
“habit,” “custom”) that is caused by repeated observations of paired 
events. According to Hume (1739/1978), causal impressions are formed 
when the following three constraints are met: 

(1) The cause and effect must be contiguous in space and time. 
(2) The cause must be prior to the effect. 
(3) There must be a constant union betwixt the cause and effect. “Tis chiefly this 

quality, that constitutes the relation.” (p. 173) 

Hume, particularly in his later work (Hume, 1748/1977), did not deny 
that causal powers may exist in the world. However, he insisted that we 
are unable to observe causal powers directly. Our causal impressions are 
based on the strength of associative links. Like his modern successors (see 
Wasserman, 1993), Hume thought that the importance of causal knowledge 
for our survival is the reason why causal impressions are based on low- 
level mechanical processes rather than higher order reasoning: 

It is more comfortable to the ordinary wisdom of nature to secure so necessary an act 
of mind, by some instinct or mechanical tendency, which may be infallible in its opera- 
tions, may discover itself at the first appearance of life and thought, and may be indepen- 
dent of all the laboured deductions of the understanding. (Hume, 174811977. p. 37) 

B. FROM STIMULUS-RESPONSE LEARNING TO CAUSAL INDUCTION 
Even though Hume’s philosophy may be viewed as a predecessor of modern 
learning theories, the adoption of Hume’s theory of causal induction is a 



Causal Induction 49 

relatively late achievement, and did not occur without costs. The traditional, 
behavioristically oriented learning theories viewed learning as the acquisi- 
tion of associative links between stimuli and response (e.g., Pavlov, 1927). 
or behavior and outcomes (e.g., Thorndike, 1911). In the past 20 years, a 
new cognitive view of associative learning emerged that bears much more 
resemblance to Hume’s view than to traditional reflex-oriented theories. 
This approach can be traced back to Tolman and Brunswik’s (1935) work 
in which they argued that the primary goal of learning is the discovery 
of the causal texture of the world. Mackintosh (1983) summarizes the 
modern view: 

The suggestion, then, is that as a result of conditioning animals acquire knowledge 
about their environment which maps the relationship between events occurring in that 
environment. The function of conditioning, it has been suggested, is precisely to enable 
animals to discover the causal structure of their world. . . . (p. 11) 

According to this view, Pavlov’s dogs learned to predict food on the 
basis of the tone cue, rather than simply strengthening a reflex between 
the cue and the salivating response. However, in the process of translating 
Hume’s causes and effects into the behaviorist language of stimuli and 
responses, some of Hume’s insights were lost. Most notably, Hume’s con- 
ceptual distinction between causes and effects that is reflected in his tempo- 
ral priority assumption was dropped when the cue-outcome terminology of 
early reflex psychology was preserved. Unlike Hume, modern psychological 
theories of associative learning typically describe learning as the acquisition 
of associative links between cues and outcomes rather than causes and 
effects.’ Most saliently, associative theories still use the terms “conditioned 
stimuli” (CS) and “unconditioned stimuli” (US) when describing human 
and animal causal learning. 

The reduction of causes and effects to cues and outcomes is motivated 
by the behaviorist background assumptions of psychological associationism. 
The organism is conceived of as responding to the actual stimuli regardless 
of what type of events these stimuli actually represent. Cues play a double 
causal role. On one hand, they represent events in the outside world. These 
events may be causes or effects. On the other hand cues cause responses, 
sometimes via the representation of intermediate steps. The associative 

In order to clarify the difference between causal-model theory and associative theories, 
a generic paradigmatic case of associative learning theory is discussed here. This chapter 
focuses on associative theories of human causal induction, not on associative learning in 
general. In this area, the Rescorla-Wagner theory currently dominates (Rescorla & Wagner, 
1972), and will therefore primarily be discussed. However, some alternative associative theories 
that have been proposed in the context of human causal induction will also be discussed briefly. 
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links between cues and outcomes reflect the strength of this internal causal 
effectiveness of cues. Typically the strength of associative weights is con- 
ceived of as representing the organism’s assessment of the strength of causal 
relations between causes and effects. However, whether or not the internal 
causal relation between cues and outcomes reflects causal relations between 
actual causes and effects rather than other types of event relations is simply 
a matter of coincidence. 

This reductionism to a nonrepresentational theory of learning (see 
also Gallistel, 1990) about causal relations is already apparent in Tol- 
man and Brunswik’s (1935) theory. Object perception, for example, is 
described as based on the causal relation between the distal stimulus, the 
object, and the proximal stimulus, the cue. The cue is the effect of the 
object. However, this causal relationship is lost when the authors switch 
from the description of the outside world to their psychological theory of 
object perception. This process is described as involving a process of cue 
integration irrespective of the causal role of the events corresponding to 
the cues. 

Sometimes it has been implicitly assumed that cues (CS) typically code 
causes and outcomes (US) code effects (e.g., Van Hamme, Kao, & Wasser- 
man, 1993; Esmoris-Arranz, Miller, & Matute, 1995), so that “CS” is just 
a shorthand for “cause,” and “US” for “effect.” However, this correspon- 
dence holds only for learning situations in which the organism is presented 
with causes as the learning input, when it generates a prediction parallel 
to the unfolding of the causal processes in the world, and then compares 
its prediction with the observed effects. Not all learning is stimulus bound in 
this sense. Learning situations may be constructed in which the information 
processing system responds to effect cues, and tries to figure out the causes 
of these effects (e.g., Waldmann & Holyoak, 1992). In this situation the 
internal causes of the response, the cues, correspond to effects in the outside 
world. Thus, the causal relations expressed by the associative links that 
trigger the response do not reflect the causal relations of the corresponding 
events in the world. 

In summary, associative learning theories view causal induction as a data- 
driven process in which causes and effects are represented as cues and 
outcomes. Learning involves the acquisition of associative links between 
cues and outcomes. The primary role of these links is the elicitation of 
outcome representations. These links may reflect causal relations between 
causes and effects in situations in which cues actually represent causes. 
However, this correspondence is not a consequence of associative weights 
actually representing causal relations; it is rather a fortuitous coincidence 
of a restricted set of learning situations. 
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III. Causal-Model Theory 

The majority of theories of causal induction focus on bottom-up processes 
of knowledge acquisition (e.g., Anderson, 1990; Cheng, 1993; Shanks & 
Dickinson, 1987). Typically the potential impact of domain-specific knowl- 
edge on the learning process is acknowledged but it is argued that learning 
can be studied separately from knowledge influencing the learning process. 
Associative theories, for example, may accommodate knowledge influences 
by assuming that in some learning situations the learning process starts 
with associative weights that have been transferred from previous learning 
occasions (see Alloy & Tabachnik, 1984; Choi, McDaniel, & Busemeyer, 
1993). Similarly, the probabilistic contrast theory (Cheng, 1993; see also 
Cheng, Park, Yarlas, & Holyoak, this volume, Ch. 8) focuses on data-driven 
processes that generate causal knowledge as the output of the processing 
of statistical contingency information. The acquired knowledge may then 
be the basis of further learning. Thus, both research paradigms assume that 
causal knowledge is primarily acquired by means of bottom-up processes. 
This knowledge may then later affect learning, but bottom-up acquisition 
of causal knowledge and top-down influences are viewed as two processes 
that can be studied separately and independent of each other. 

By contrast, causal-model theory (Waldmann & Holyoak, 1992; Wald- 
mann, Holyoak, & Fratianne, 1995) assumes that the acquisition of causal 
knowledge is characterized by an interaction of data-driven and knowledge- 
driven processes (see also Wisniewski & Medin, 1994, for a similar view). 
This view is compatible with many findings that demonstrate the impact 
of domaimspec@ knowledge on learning (see Murphy & Medin, 1985). 
However, causal-model theory pursues the more ambitious goal of demon- 
strating that knowledge also influences learning in situations in which no 
prior domain-specific knowledge is available. It is assumed that in these 
situations more abstract kinds of knowledge are activated. Causal-model 
theory generally claims that causal induction is guided by knowledge. Causal 
models provide the basis for the interpretation of the learning input. The 
“tight coupling” (Wisniewski & Medin, 1994) between the learning input 
and top-down interpretations is the reason why knowledge and learning 
cannot be studied separately. The assumption of a necessary interaction 
between experience and abstract knowledge in the process of knowledge 
acquisition can be traced back to Kant’s (1781/1950) philosophy. Kant 
postulated in his criticism of Empiricist philosophies that knowledge is 
possible only when the sensory input is interpreted by a priori categories 
of knowledge. Even though causal-model theory does not subscribe to 
Kant’s particular view on causality (see Mackie’s, 1974, critical review), its 
general tenet that the learning input interacts with interpretative processes 
is in the spirit of Kant’s epistemology. 

, 
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Causal models provide the basis for the flexible interpretation of the 
learning input. Unlike in associative theories, the learning cues can be 
assigned flexibly to represent causes or effects in the causal representation of 
the learning situation. Causal-model theory postulates that causal induction 
attempts to arrive at adequate representations of the world regardless of the 
order in which information about the constituents of these representations is 
acquired. 

A. CAUSAL DIRECTIONALITY 
One of the most important examples of abstract causal knowledge that 
may affect the processing of the learning input is knowledge about causal 
directionality. We know that the causal arrow is directed from causes to 
their effects and not the other way around. This fundamental property of 
causal relations is of the utmost pragmatic importance as it provides the 
basis for our ability to reach goals. Effects can be achieved by manipulating 
causes but causes cannot be accomplished by manipulating their effects. 
Thus, it is extremely important to be able to distinguish between causes 
and effects. 

Accounting for causal asymmetry presents a problem for many philosoph- 
ical theories of causality. Bromberger (1966) criticized Hempel’s (1965) 
seminal theory of deductive-nomological explanation using the example of 
a flagpole: We can explain the length of a shadow cast by a flagpole by 
premises that include a statement about the length of the flagpole, the 
elevation of the sun, and the laws of the propagation of light. But, equally, 
we can derive the height of the flagpole from the length of the shadow, 
the elevation of the sun, and the laws of the propagation of light. Both are 
perfect examples of deductive-nomological explanations. Therefore, this 
scheme does not account for the fundamental property of causal asymmetry. 
Similarly, theories characterizing causes as necessary and/or sufficient con- 
ditions of their effects fail in this regard, since it is equally true that effects 
are necessary and/or sufficient conditions of their causes (Mackie, 1974; 
von Wright, 1971). 

Probabilistic theories of causality represent a more recent approach 
(Eells, 1991; Salmon, 1971; Suppes, 1970). Roughly, it has been proposed 
that causes alter the probabilities of their effects. This idea has been adopted 
by psychologists who propose that causal induction involves the acquisition 
of knowledge about contingencies between causes and effects (Cheng & 
Novick, 1992; Cheng et al., this volume, Ch. 8 Jenkins & Ward, 1965; Pearl, 
this volume, Ch. 10; Wasserman, Chatlosh, & Neunaber, 1983). Formally, 
an (unconditional) contingency (Ap) can be defined as the difference be- 
tween the conditional probability of a target effect E given the presence 
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of a potential causal factor C and its probability given the absence of the 
factor (-C), that is, 

This formula allows for the representation of positive, excitatory causes 
(Ap > 0) and negative, inhibitory causes (Ap < 0). Contingencies per se 
also do not account for causal asymmetry. The problem arises from the 
fact that statistical correlations are symmetric. When a cause raises the 
probability of its effect, the reverse is typically also true, namely that the 
effect raises the probability of its cause. 

Finally, associative accounts also fail to reflect the priority of causes. 
In most theories, associative weights are directed from cues to outcomes 
regardless of whether the cues represent causes or effects (see Waldmann & 
Holyoak, 1992). 

In order to account for causal directionality, philosophical theories have 
typically followed Hume’s lead and have included additional assumptions 
in their definitions of causality. Like Hume, many theorists added a criterion 
of temporal precedence as a basic characteristic of causal relations: causes 
temporally precede their effects (see Eells, 1991; Suppes, 1970). Psycholo- 
gists who postulate that causal induction involves learning about statistical 
contingencies have also embraced this additional background assumption 
(Cheng & Novick, 1992; Einhorn & Hogarth, 1986). 

Another frequently discussed criterion of causal directionality empha- 
sizes the fact that the active manipulation of causes produces their effects 
but not the other way around (see Mackie, 1974; von Wright, 1971). Our 
ability to actively intervene in the processes taking place in the world allows 
us to impose a causal structure on the pattern of observed event covaria- 
tions. The importance of our actions for our understanding of causality has 
also been elaborated by Piaget (1930). 

A statistical method to distinguish between causes and effects has been 
proposed by the philosopher Reichenbach (1956, see also Pearl, 1988, this 
volume, Ch. 10; Salmon, 1984). In situations with multiple causes and 
multiple effects a typical statistical pattern emerges. Multiple correlated 
effects are rendered conditionally independent once their common cause 
is held fixed, but multiple causes cannot be rendered conditionally indepen- 
dent by holding fixed their common effect. A famous example involves a 
group of actors who suffer from a stomach disease after having dined 
together. Even though there is a small chance that this is a coincidence, 
the more plausible hypothesis is that food poisoning is the common cause 
of their illnesses. Conditional on the common cause of food poisoning, the 
individual illnesses are independent. As Reichenbach points out in his 
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principle of the common cause, coincidences, may be explained by a common 
cause but not by a common effect. According to Reichenbach, this typical 
statistical pattern is a characteristic feature of the physical world. Philosoph- 
ical theories that model causality as the transmission of energy (Fair, 1979), 
conserved quantities (Dowe, 1992), or information (Salmon, 1984) derive 
this feature from the fundamental physical fact that the paths of multiple 
causes converging on a common effect meet, whereas multiple effects 
emerging from a common cause are reached on independent paths. 

Finally, it has been proposed that causal directionality is based on the 
coherence of a postulated new causal relation with our general world knowl- 
edge (Kitcher, 1989). Postulating the flagpole as the cause of the shadow 
rather than the reverse certainly fits better with our prior knowledge about 
characteristics of physical objects. 

Background assumptions about differences between causes and effects 
have often been implicitly invoked in psychological experiments even 
though they have rarely been explicitly acknowledged. The experiments of 
Wasserman and his colleagues may suffice as one example (see Wasserman, 
1990). In a typical set of experiments, Wasserman et al. (1983) presented 
the participants in their experiments with the task of periodically pressing 
a key and subsequently observing the state of a light. Wassserman et al. 
found that the ratings of the causal effectiveness of the key pressing corres- 
ponded surprisingly well with the objective contingencies. This is a task 
in which no specific knowledge about the event relations was available. 
However, abstract knowledge may have helped to assign causal roles to 
the events so that the proper cause-effect contingencies could be computed. 
First, the causes (key pressing) occurred temporally prior to the effects 
(temporal priority criterion). The participants were requested to actively 
manipulate these causes by pressing keys (intervention criterion). The rating 
instructions suggested the causal roles of the events (instruction-based 
assignment), and, finally, interpreting key presses as causes and lights as 
effects is certainly more consistent with our world knowledge than other 
assumptions (coherence criterion). This is an example of how several of 
the criteria of causal directionality may converge. 

Causal-model theory is based on the assumption that causal induction 
cannot solely be based on the processing of statistical information. Addi- 
tional top-down assumptions, for example, about causal directionality, have 
to guide the processing of the learning input. In the next sections, a number 
of empirical studies are reported that show how abstract knowledge inter- 
acts with the processing of the learning input. The next section presents 
experiments that investigated the ease of acquiring different category struc- 
tures; it is shown that prior assumptions about patterns of causal directional- 
ity influence the learning of otherwise identical learning inputs. Section 
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IIIC focuses on one of the most important assumptions of current associa- 
tive learning theories. The majority of these theories postulate cue competi- 
tion. Experiments are presented that show that cue competition in fact 
interacts with the causal role of the cues. These results are a further demon- 
stration of the impact of assumptions about causal directionality. In Section 
IIID a different example of the interaction between knowledge and learning 
is presented. It is shown that the way statistical contingencies between a 
putative cause and an effect are computed is influenced by background 
assumptions about the causal relevance of additional, potential cofactors 
This background knowledge has to be in place at the outset of the induction 
process in order to guide the acquisition of new knowledge. Section IIIE 
discusses the place of causal-model theory within the debate between 
theorists that view causal induction as based on the processing of statistical 
covariations and theorists who focus instead on causal mechanisms. A 
reconciliation between these two apparently different stances is offered. 
Section IIIF, finally, shows that not only prior assumptions about the causal 
role of the learning cues but also the order in which the learning input is 
presented may affect the causal representation of a learning situation. 

B. CAUSAL MODELS AND THE LEARNING 
OF CATEGORY STRUCTURES 

In order to test causal-model theory against associationist theories of cate- 
gorization, Waldmann et al. (1995) designed a learning task in which partici- 
pants received identical cues and had to learn identical outcomes, while 
the causal roles of the cues were varied. Standard associationist theories of 
categorization that model learning as the acquisition of associative weights 
between cues and outcomes would treat these tasks identically regardless 
of the causal status of the cues and the outcomes (e.g., Gluck & Bower, 
1988a; Shanks, 1991; Shanks & Lopez, in press). By contrast, causal-model 
theory claims that participants should be sensitive to the causal roles of 
the cues and the outcomes, and to the different structural implications of 
the causal models that are used to interpret the learning input (see also 
Eddy, 1982; Tversky & Kahneman, 1980). 

Figure 1 depicts the two causal models that were used in the experiments 
of Waldmann et al. (1995). Both models consist of four elements but the 
causal directions connecting these elements entail distinct covariational 
patterns. Figure 1A shows a common-cause structure in which a common 
cause simultaneously produces three effects. Figure 1B shows a common- 
effect structure in which three causes independently produce a single effect. 
A key difference between these two structures is that common-cause struc- 
tures imply a spurious correlation among their effects. Even though the 
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A B 
Common Cause Common Effect 

Fig. 1. Common-cause structure (A) with multiple independent effects (EI,Ez,E3) versus 
common-effect structure (B) with independent causes (Cl,C2,C3). Only the common-cause 
structure formally implies a spurious correlation (dotted curves) among effects. From Wald- 
mann et al. (1995). Copyright Q 1995 by the American Psychological Association. Reprinted 
with permission. 

effects do not affect each other, they tend to covary as the status of the 
common cause varies. In contrast, a common-effect structure does nor imply 
a correlation among its causes. It is possible that several causes may interact, 
but in such cases the underlying causal model has to be augmented to 
account for these interactions. The need to modify the causal model by 
adding explicit configural features would be expected to increase the diffi- 
culty of learning (Dawes, 1988). In general, causal-model theory predicts 
that learning difficulty should be dependent on the fit between the structural 
implications of the causal models activated during learning and the structure 
of the learning input. 

Figure 2 displays an example of the learning materials of Experiment 4 
of Waldmann et al. (1995). The cards showed stones in the middle sur- 
rounded by three colored iron compounds. The task was to judge whether 
the stone in the middle of the dish was a magnet or not. 

All participants saw the same pictures with the stones and the iron 
compounds. However, we used two different instructions, which manipu- 
lated the direction of the causal arrow connecting stones and compounds. 
In the common-cause context, participants were told that scientists had 
discovered that some of these stones are either strong or weak magnets. 
In order to find out more about these stones, the scientists put the stones 
in dishes along with iron compounds. They found out that stones that are 
magnetic change the orientation of some of the iron compounds placed in 
the dish. Strong magnets turn the magnetized compounds so that their ends 
point to the stone, weak magnets turn the magnetized compounds so that 
their sides face the stone. If the stones are not magnetic, the iron compounds 
just stay in a random orientation. The participants’ task was to learn to 
judge whether a stone was a magnet or not, basing their decisions on the 
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Fig. 2. Example of the learning material from Waldmann et al.'s (1995) Experiment 4. A 
potential magnet surrounded by iron compounds (compounds were blue, red, and green in 
the original set of learning items). From Waldmann et al. (1995). Copyright 0 1995 by the 
American Psychological Association. Reprinted with permission. 

orientation of the surrounding compounds. No prior information was given 
about which of the different compounds were actually affected by the 
magnets. Participants were presented with individual cases one after the 
other, they had to decide whether they believed the stone displayed on the 
index card represented a magnet or not, and subsequently were informed 
whether they were correct or not. Thus, no feedback about whether the 
magnet was strong or weak was provided. 

In the common-effect conditions, the same material was used but in the 
initial instructions the direction of the causal connections between stones 
and compounds was reversed. In these conditions participants were told 
that scientists had discovered that some of the iron compounds emit strong 
or weak magnetic waves that may magnetize the stones and turn them into 
strong or weak magnets. The intensity of the magnetic waves was based 
on the orientation of these compounds: compounds pointing to the stone 
emit strong magnetic waves, whereas compounds facing the stones emit 
weak magnetic waves. Again, the participants' task was to learn to judge 
whether a stone was a magnet or not by using information about the 
orientation of the compounds surrounding the stone. Except for the differ- 
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ent initial instructions the learning procedure was identical across the two 
causal conditions. 

In both causal situations the same entities are causally linked, only the 
direction of the causal arrow differs. In the common-cause instruction 
participants were confronted with a varying common cause, a strong or a 
weak magnet. This variation suggests that the affected compounds point 
to the stone when the cause is strong, and that their sides face the stone when 
it is weak. Thus, the common-cause model with a cause varying between a 
strong and a weak state should sensitize participants to a within-category 
correlation between the orientations of the affected compounds. These 
compounds should all be expected to either point to the stone (indicating 
a strong magnet) or face the stone (indicating a weak magnet). By contrast, 
the common-effect model with a varying effect does not structurally imply 
a within-category correlation between the causes. Here, it is more natural 
to assume three independent causes converging on a joint effect. We ex- 
pected that the common-effect instruction should sensitize participants to 
category structures that exhibit independent cue-to-category correlations. 

To test these predictions, we presented participants with either a category 
structure that embodies cue-to-category correlations, or a structure that 
contains a within-category correlation. Causal-model theory predicts that 
participants in the common-cause conditions should be biased to expect 
a within-category correlation, whereas participants in the common-effect 
conditions should find cue-to-category correlations more natural. Learning 
the within-category correlation after having received the common-effect 
instruction amounts to learning about a disordinal interaction among 
causes, which should be particularly hard to grasp. By contrast, the structure 
with cue-to-category correlations embodies a situation with three linear 
main effects within this causal condition. 

More specifically, half of the participants received a linearly separable 
arrangement, which exhibits cue-to-category correlations. In this category 
structure, compounds pointing to the stones were more typical for the 
positive set (“yes”), and compounds parallel to the stones were more typical 
for the negative set (“no”). The other condition represented a non-linearly 
separable category structure in which the position of the individual com- 
pounds was not correlated with the categories. The only way to distinguish 
the two sets was by noticing the within-category correlation between two 
of the compounds. In the positive set, these two dimensions were perfectly 
positively correlated (ie., both compounds either pointed to the stone or 
were positioned parallel to the stone); in the negative set they were nega- 
tively correlated (i.e., one of the two compounds pointed to the stone, the 
other compound was parallel to the stone). The non-linearly separable 
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structure corresponded to an Exclusive-Or (XOR) structure with an addi- 
tional irrelevant feature. 

Figure 3 displays the results of Experiment 4 (Waldmann et al., 1995). 
The mean number of errors until participants reached the learning criterion 
was used as an indicator of learning difficulty. Within the common-cause 
condition the non-linearly separable structure with the within-category 
correlation was easier to learn than the linearly separable structure with 
the cue-to-category correlations, whereas the opposite was true within the 
common-effect conditions. The interaction between causal condition and 
category structure proved highly reliable. The results support the view that 
participants are sensitive to the underlying causal structure of the task 
domain. Since across the two causal conditions participants saw identical 
cues and had to learn to associate them with identical outcomes, these 
results cannot be explained by standard associationist theories that would 
generally assign the learning cues (compounds) to the input level and the 
outcomes (magnets) to the output level of an associationist network. 

1. 

A further problem for associationist theories such as the Rescorla-Wagner 
theory is the fact that the non-linearly separable structure proved learnable. 
It is a well-known fact that this theory is restricted to linearly separable 

Configural Cues and the Learning of Causal Categories 

Fig. 3. Mean errors obtained in the linearly separable (LS) and the non-linearly separable 
(NLS) common-cause and common-effect conditions (Experiment 4 from Waldmann et al.. 
1995). The NLS conditions embody a within-category correlation, the LS conditions embody 
cue-to-category correlations. 
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tasks (Minsky & Papert, 1969). As a consequence, more complex theories 
have been suggested in which configural cues (Gluck & Bower, 1988b; 
Rescorla, 1973) or hidden layers (Kruschke, 1992; Rumelhart, Hinton, & 
Williams, 1986) are added to code interactions. However, even though 
these theories predict that nonlinear tasks are learnable they still do not 
account for the fact that the participants proved sensitive to the causal 
status of the cues. All these theories have in common that they try to 
associate cues with outcomes regardless of the causal structure connecting 
these events. 

The configural-cue model in which cues coding conjunctions of elements 
are added to the input layer of an associationist network along with the 
elemental cues has an additional problem: the number of cues grows expo- 
nentially with the number of elemental input cues. Gluck and Bower (1988b) 
therefore suggested restricting configural cues to pairwise conjunctions. An 
obvious drawback of this restriction is that such a network is unable to 
handle problems for which the correct decision requires learning an interac- 
tion among three (or more) cues. Note that networks with hidden layers 
will also not necessarily learn all higher order interactions. If the number 
of hidden units is too small, the network might be able to learn a two-way 
interaction but not some higher order interaction (see Kruschke, 1992). 
One problem with many such learning networks, therefore, is that the 
complexity of the learning problem has to be anticipated in advance in 
order to pick the appropriate size of the network. 

Waldmann and Holyoak (1990) expected that within a common-cause 
context with a varying cause a three-way correlation should be learned 
fairly easily because it falls out of a linear model with a common cause 
independently affecting three effects. In contrast, in a common-effect con- 
text with a varying effect a three-way interaction of three causes should 
be particularly difficult to grasp. 

Waldmann and Holyoak (1990, Experiment 3) conducted an experiment 
in which participants received four cues that were characterized either as 
causes of a common effect or as effects of a common cause. Three of these 
cues were perfectly correlated within the positive set to which participants 
had to learn to respond with “yes.” The experiment yielded two major 
results. First, the three-way interaction was clearly learnable, which refutes 
Gluck and Bower’s (1988b) restrictive assumption on configural cues. Sec- 
ond, despite the fact that learning cues, response, and learning feedback 
were equated across the two causal conditions, a clear learning advantage 
for the common-cause condition was obtained (errors: M = 43.1 vs M 
= 76.0). Again, participants proved sensitive to the different structural 
implications derived from differential patterns of causal directionality. 
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C. CAUSAL MODELS AND ASYMMETRIES OF CUE COMPETITION 

Since Kamin (1969) discovered the phenomenon of blocking in animal 
learning, cue competition has been a basic phenomenon that all associative 
learning theories are trying to capture. In the classic blocking paradigm, 
animals are first (Phase 1) trained to associate an initial conditioned stimulus 
CS1 with an unconditioned stimulus US. In Phase 2 of the learning proce- 
dure, a second cue CS;! is redundantly paired with the initial cue CS,. 
Kamin’s crucial finding was that, in spite of being perfectly correlated with 
the outcome, the later redundant cue CS2 did not seem to acquire any 
associative strength as compared to a control group, which did not receive 
any Phase 1 training. 

Rescorla and Wagner’s theory (1972) views blocking as the result of a 
failure to acquire associative strength. According to this rule learning is 
error driven. In blocking experiments, animals learn to predict the outcome 
using the initially acquired predictive cue CS,. Since this cue still allows 
perfect predictions in Phase 2, no further learning occurs. In particular, the 
associative weight of CS2 stays at its initial value of zero. 

Waldmann and Holyoak (1992) modified the blocking paradigm in order 
to test causal-model theory against the Rescorla-Wagner and similar theo- 
ries. As pointed out by Reichenbach (1956), one crucial characteristic of 
causal relations in the physical world is the fact that multiple independent 
causes of a common effect potentially interact, whereas multiple indepen- 
dent effects of a common cause are conditionally independent. Waldmann 
and Holyoak asked whether our learning is sensitive to this fundamental 
physical feature. 

In a set of experiments, Waldmann and Holyoak (1992) employed a two- 
phase blocking design. In Phase 1 a predictive cue (P cue) was established 
as the sole deterministic predictor of an outcome (along with other nonpre- 
dictive cues). In Phase 2 this P cue was paired with a second, redundant 
predictor (R cue) as predictive of the outcome. The P and the R cues 
either always occurred together or were both absent. Two conditions were 
compared in which the causal status of the cues was manipulated by means 
of different initial instructions. Otherwise the two conditions presented 
exactly the same learning experiences. Thus, the interaction of blocking 
with the manipulation of the causal assumptions about the learning cues 
could be tested by comparing the results of these two groups. In the predict- 
ive learning conditions the cues were characterized as potential causes of 
a common effect. In Experiments 1 and 2 (Waldmann & Holyoak, 1992), 
for example, the cues were descriptions of the appearance of fictitious 
persons (e.g., “pale skin, stiff posture, normal perspiration”), and in the 
predictive condition these cues were described as potential causes of an 
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emotional response of observers of these persons. The crucial dependent 
measure in this condition was ratings of whether each of the cues repre- 
sented an independent cause of the effect. 

The Rescorla-Wagner rule predicts complete blocking of the R cue 
because it is redundantly paired with the P cue that was already established 
as perfectly predictive in Phase 1. A number of previous studies have 
demonstrated blocking with this kind of learning task (e.g., G. B. Chapman, 
1991; G. B. Chapman & Robbins, 1990; Shanks, 1985). 

Causal-model theory makes a similar prediction. Following recent devel- 
opments of statistical relevance theory, Waldmann and Holyoak (1992) 
proposed that in situations with multiple causes converging on a common 
effect, conditional contingencies should be computed (see Cartwright, 1983; 
Cheng, 1993; Cheng & Novick, 1992; Eells, 1991; Melz, Chenz, Holyoak, & 
Waldmann, 1993; Salmon, 1980 Spellman, this volume, Ch. 5) .  Conditional 
contingencies (ApKi) assess the contingencies between two events C and E 
conditional upon alternative causal factors Ki being kept constant, that is, as 

An isolated period denotes an “and,” and each Ki a choice between the 
presence or the absence of the factor. The computation of conditional 
contingencies is necessary to distinguish between true causal and spurious 
correlations. For example, suppose we want to test the hypothesis that 
smoking (C) causes lung cancer (E). Furthermore, we assume that smoking 
is correlated with alcohol consumption, which may also be a cause of lung 
cancer. In order to test the hypothesis, we should assess the conditional 
contingencies between smoking and lung cancer in the subpopulation of 
alcoholics (K,) and people who do not drink alcohol (-Kl). If we then 
discover that smoking equally leads to lung cancer in both subpopulations, 
we may conclude that smoking is an independent cause of this disease. 

A typical feature of the blocking design is the fact that conditional 
contingencies between the R cue and the effect cannot be computed in the 
absence of the P cue that has been established as an individual cause in 
Phase 1. The R cue is never presented alone without the P cue. Thus, 
causal-model theory predicts that the participants of the learning experi- 
ment should be uncertain as to whether the R cue represents a genuine 
cause or not. However, in contrast to the predictions of the Rescorla- 
Wagner theory, blocking is expected to be partial: Rather than concluding 
that the R cue is not a cause, participants should be uncertain, since they 
are simply not given crucial information, which is necessary to arrive at a 
definite assessment of the causal status of the R cue. The results of the 
experiments showed indeed that blocking was partial, as the ratings for the 
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R cue were substantially lower than those for the P cue, but higher than 
those for other cues that were uncorrelated with the effect (see also G. B. 
Chapman & Robbins, 1990). 

In a second condition, the diagnostic learning condition, the very same 
cues of the predictive conditions were redefined as potential effects of a 
common cause. The participants were told that the persons’ features repre- 
sent potential effects of a new disease caused by a virus. Thus, in this 
condition the participants were confronted with a common-cause situation. 

Causal-model theory claims that the participants honor the cause-effect 
direction regardless of the order of presentation of the components of the 
common-cause model. Since there is only one cause in common-cause 
situations, the conditional contingency rule (Eq. 2) reduces to unconditional 
contingencies (Eq. 1) between the single cause and the effects. Because 
both the P cue and the R cue are deterministic effects of the common cause 
(the virus), no blocking was predicted in the diagnostic condition. In the 
diagnostic condition of Experiment 1 (Waldmann & Holyoak, 1992) the 
participants were asked to rate the degree to which they thought each of 
the cues represented an independent effect of the cause. As predicted, no 
cue competition was found in this condition. 

It is interesting to note that the Rescorla-Wagner theory also has a built- 
in asymmetry between cues and outcomes (see Van Hamme et al., 1993). 
According to this learning rule, cues compete for the prediction of a com- 
mon outcome but different outcomes of a single cue do not compete. Thus, 
the Rescorla-Wagner rule also predicts competition among causes but not 
among effects when the learning situation is set up the right way: when the 
causes are presented temporally prior to the effects, the Rescorla-Wagner 
theory reflects the real-world asymmetry between causes and effects. The 
asymmetry of cues and outcomes has been firmly established in a number of 
experiments with animals and humans that have demonstrated competition 
among causes (or cues) but not effects (or outcomes) (Baker & Mazmanian, 
1989; Baker, Murphy, & VallCe-Tourangeau, this volume, Ch. 1; Matute, 
Arcediano, & Miller, 1996, Experiments 1, 2; Van Hamme et al., 1993). 
All these studies have in common that the causes were presented either 
prior to or simultaneous with the effects so that the Rescorla-Wagner rule 
happens to yield the correct predictions. 

The Rescorla-Wagner rule, however, makes the wrong predictions when 
in the learning situation the cues represent effects and the outcomes causes. 
In these situations this theory predicts competition among the effects but 
not among the causes, a pattern contrary to that of physical causal relations 
in the real world. In order to test causal-model theory against standard 
associationist theories that model learning as the association between cues 
and outcomes, Waldmann and Holyoak (1992) used a diagnostic learning 
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situation in which the effects were presented first (as cues) and the feedback 
about the outcome (the causes of the effects) was given after the partici- 
pants’ diagnostic response. Since the cues and the outcomes were identical 
in both the predictive and the diagnostic conditions, standard associationist 
theories predict equal amounts of cue competition in both conditions. 

Waldmann and Holyoak’s (1992) finding that no cue competition oc- 
curred in the diagnostic condition provoked a number of critical responses. 
Van Hamme et al. (1993) argued that the Rescorla-Wagner rule actually 
predicts the right pattern when cues are mapped to causes and outcomes 
to effects. This suggestion, however, faces the problem that it is unclear 
how the participants of the experiments mastered the diagnostic learning 
situation in which the effects were presented prior to the causes. It is not 
clear how an associative network in which the causes represent the input 
and the effects the output could generate a diagnostic response on the basis 
of effect cues as the input for their decisions. 

Shanks and Lopez (in press) therefore proposed a more complex theory 
for diagnostic learning. They argued that the participants may run two 
associative networks in parallel, one that is directed from causes to effects, 
and one that is directed from effects to causes. The latter network is then 
responsible for diagnostic learning and the diagnostic inferences from ef- 
fects to causes. Since in Experiment 1 of Waldmann and Holyoak (1992) 
participants were requested to give cause-effect ratings in the diagnostic 
learning conditions, this model appears to explain the observed absence of 
cue competition. 

This theory, however, runs into problems when Experiment 3 of Wald- 
mann and Holyoak (1992) is considered. In this experiment not only the 
cues and outcomes were held constant; in addition, the test question was 
identical in both the predictive and the diagnostic learning conditions. Thus, 
differences in the ratings can be attributed only to the different causal 
models underlying cues and outcomes. In both learning conditions the 
participants were asked to rate how “predictive” each individual cue is for 
the outcome. Therefore, in the diagnostic condition the participants were 
requested to give a diagnostic effect-cause rating. Since in rhis condition 
the learning as well as the test question is directed along the effect-to-cause 
direction, the theory of Shanks and Lopez (in press), along with standard 
associationist theories, predicts cue competition in the diagnostic condition. 

Causal-model theory (Waldmann & Holyoak, 1992) predicts that the 
participants form causal models in the cause-effect direction but are able 
to access these representations in both the predictive cause-effect and 
the diagnostic effect-cause direction. Normatively this implies that the 
diagnostic inferences should be sensitive to whether a specific effect is 
caused by only one or by several competing causes. For example, a symp- 
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tom, such as fever, may be a deterministic effect of a disease. It may 
nevertheless be a bad diagnostic cue, simply because there are many alterna- 
tive causes of this symptom. Thus, ratings of whether fever is an effect of 
the disease should be high, whereas low ratings should be expected when the 
test question requests an assessment of how predictive it is for the disease. 

Waldmann and Holyoak’s (1992) Experiments 2 and 3 present a pattern 
consistent with this prediction. No cue competition was observed in the 
diagnostic condition with learning materials in which no alternative causes 
of the state of the effects were given (signal buttons of an alarm; Experiment 
3). This finding refutes standard associative theories, including Shanks and 
Lopez’s suggestion. However, reduced ratings for the R cue were obtained 
when the R cue represented a symptom (“underweight”) with many alterna- 
tive potential causes. Since in Experiment 1 the participants were able to 
learn that this symptom is an effect of the new disease, the lowering of the 
ratings with the diagnostic test question in Experiment 2 seems to reflect 
participants’ sensitivity to the difference between predictive (cause-effect) 
and diagnostic (effect-cause) inferences. 

1. 

As additional evidence for the assumptions of causal-model theory, Wald- 
mann (1996) designed an experiment (N = 56) that directly addresses the 
question of whether participants are sensitive to the fact that the predictive- 
ness of effect cues is dependent on the presence of alternative causes. A 
number of critics have pointed out that Waldmann and Holyoak (1992) 
provided only indirect evidence for this sensitivity since the conclusions 
were based on a cross-experiment comparison. The more recent experiment 
may also serve to clarify a misunderstanding. Shanks and Lopez (in press) 
assert that Waldmann and Holyoak (1992) claim that cue competition in 
diagnostic learning is dependent on whether the cues are concrete or ab- 
stract. What we actually claimed was that people will be sensitive to whether 
an effect is caused by one or several causes, regardless of whether the effect 
is concrete or abstract. The more recent experiment used fairly abstract 
materials and demonstrated sensitivity to the structure of the underlying 
causal model with identical types of material. Finally, an additional goal 
of this experiment was to replicate the finding of the absence of a blocking 
effect in a diagnostic learning task with diagnostic test questions with more 
abstract kinds of learning materials. Matute et al. (1996, Footnote l), for 
example, doubt the validity of the results of Waldmann and Holyoak’s 
(1992) Experiment 3. 

In the learning phases in all conditions, participants received information 
about the presence or absence of different substances in animals’ blood, 

Competition among Causes in Predictive and 
Diagnostic Learning 
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M 
Fig. 4. The two learning phases of the two diagnostic learning conditions, unambiguous 

(A) and ambiguous (B) cue conditions. The cues (substances) represent potential effects of 
the causes (diseases) to be diagnosed. 

and then they had to judge whether the animal had contracted one of two 
new blood diseases or not. After each decision feedback was given. The 
substances were all abstractly numbered and not further characterized (e.g., 
“Substance 1: Yes; Substance 2: No”). 

Figure 4 displays the causal structure of the learning domain presented 
in the diagnostic conditions. In these conditions, the substances were charac- 
terized as effects of the diseases. Participants were told that new blood 
diseases had been discovered that produce new types of substances in 
the blood. In both conditions, the unambiguous and the ambiguous cue 
condition, participants learned in Phase 1 that substance 1 is caused by 
disease 1, and substance 2 is caused by disease 2. In Phase 2, however, the 
two conditions differed. In the unambiguous cue condition (A), substance 
3 is paired only with substance 1. Participants learned that disease 1 causes 
substance 1 as well as substance 3. 

One of the crucial test questions asked the participants to rate how 
predictive substance 3 is for disease 1. The participants were told that they 
should imagine being confronted with new animals, and having received 
information about the presence of only one substance. Their task was to 
rate how well knowledge about the presence of the respective substance 
would enable them to predict the existence of the diseases. Associative 
learning theories, such as the Rescorla-Wagner theory, predict blocking 
in the unambiguous cue condition (also Shanks & Lopez, in press). The 
effects are mapped to the input level as the learning and the test questions 
are directed from effects to causes. Causal-model theory predicts absence 
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of blocking because the symptom is an effect of the disease and because 
there are no alternative competing explanations. 

In the ambiguous cue condition (B), substance 3 is caused by either 
disease 1 or disease 2. Again, associative theories, including Shanks and 
Lopez’s (in press) proposal, predict complete blocking of the redundant 
cue. Causal-model theory predicts that participants should be sensitive to 
the fact that there are multiple explanations for the presence of substance 
3. Therefore they should lower their diagnostic ratings in this condition. 

The participants rated the predictive cues, substance 1 and 2, high both 
after Phase 1 as well as after Phase 2. Figure 5 displays the results of Phase 
2. The most important result involves the redundant cue in the diagnostic 
conditions (Fig. 5A). In the unambiguous cue condition, the redundant cue 

A 
loo 1 

P Cue R Cue 

B 

loo 1 

P Cue R Cue 

Unambiguous Cue Ambiguous Cue 

Fig. 5. Mean “predictiveness” ratings from the diagnostic (A) and predictive (B) learning 
conditions in Phase 2. 
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yielded high ratings. As in earlier experiments, no sign of blocking can be 
seen here. As a matter of fact, all participants gave identical ratings to the 
predictive and the redundant cue in this condition. This finding refutes 
standard associative learning theories. In the ambiguous cue condition the 
ratings are clearly lowered. The participants were apparently sensitive to 
the fact that there are competing theories explaining the presence of the 
redundant effect cue. These two results jointly support causal-model 
theory.* 

As a further test of participants’ sensitivity to causal directionality, a 
predictive version of the tank was also investigated. The structure was 
identical to the one outlined in Fig. 4 except for the fact that the direction 
of the causal arrows was reversed. In the predictive conditions the substances 
were redefined as potential causes of the new blood diseases. Participants 
in these conditions were told that some food items appear to contain 
substances that may cause new blood diseases. The same learning exemplars 
were used as in the diagnostic conditions. The participants received informa- 
tion about the presence or absence of the substances, and then had to judge 
whether the animal had contracted one of the two diseases or not. Thus, 
in Phase 1, participants learned that substance 1 causes disease 1, and 
substance 2 causes disease 2. In Phase 2, substance 3 was redundantly paired 
only with substance 1 to produce disease 1 (unambiguous cue condition), 
or, in the ambiguous cue condition, it was paired with either substance 1 
to produce disease 1 or substance 2 to produce disease 2. 

Assuming that Phase 1 training was asymptotic, associative learning theo- 
ries generally predict complete blocking of the redundant cue in both 
conditions. Causal-model theory also predicts a reduction of the ratings 
for the redundant cue. However, blocking should be only partial in the 
unambiguous cue condition. Participants simply do not receive sufficient 
information to assess the causal status of the redundant cue. Therefore, 
they should be merely uncertain about whether it is a cause, not certain 
that it is not a cause. In the ambiguous cue condition, they also receive 
incomplete information. However, unlike in the unambiguous cue condi- 
tion, participants see that each disease can also be absent in the presence 
of the redundant cue. Therefore, in the ambiguous cue condition, they 

Van Hamme et al.’s (1993) claim that the Rescorla-Wagner rule explains Waldmann and 
Holyoak’s (1992) results has sometimes been interpreted as the implicit suggestion to generally 
map causes to the cue level and effects to the output level even when effects are presented 
first (see, e.g., Matute et al., 1996). It should be noted, however, that this account is also 
refuted by the results of the experiment, as it would not explain why ratings for the redun- 
dant cue were reduced in the ambiguous-cue condition. In both the unambiguous and the 
ambiguous-cue condition the cause-to-effect contingency of the redundant cue was maximal 
(Ap = 1) so that no differences should be expected. 
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should be more certain that it is not a cause than in the unambiguous 
cue condition. 

Figure 5 (B) displays the means of the Phase 2 ratings in the predictive 
conditions. For both the ambiguous and the unambiguous cue condition, 
the redundant cue (R cue) yielded significantly lower ratings than the 
predictive cue (P cue), which can be interpreted as evidence for blocking 
in the predictive context. However, blocking was only partial as predicted 
by causal-model theory. The predicted difference between the ambiguous 
and unambiguous cue condition was also ~ b t a i n e d . ~  

2. 

Causal-model theory has sometimes been paraphrased as predicting compe- 
tition among causes but not among effects (Matute et al., 1996). This 
summarization is incomplete. Waldmann and Holyoak (1992) predicted 
cue competition in blocking situations when the cues represented potential 
independent causes of a common effect, and the absence of cue competition 
when the cues represented potential independent effects ofa common cause. 
Of course, other causal models are possible and may yield different results. 
For example, a blocking task could be set up in which the R cue represents 
a cause of the P cue, which in turn is linked to the effect. This situation 
instantiates a causal chain, and no blocking of the R cue should be expected. 
Williams, Sagness, and McPhee (1994) have demonstrated that different 
types of pretraining may indeed influence whether participants view cues 
as independent or connected (see also Williams, this volume, Ch. 3). 

To account for causal chains, the conditional contingency rule (Eq. 2) 
has to be modified (see Cartwright, 1989; Eells, 1991). Potential cofactors 
(K) should be kept constant only when they are nor causal intermediates 
between the target cause and the target effect. Causal intermediates also 
screen off the relation between the primary cause and the effect so that 

Associative theories may explain a difference between the ambiguous and the unambiguous 
cue conditions as a consequence of preasymptotic training of the P cue in Phase 1. However, 
it is unlikely that this account is correct. First, it does not explain the complete absence of 
blocking in the diagnostic condition. Furthermore, participants had to learn to associate only 
three simple patterns (either substance 1 or 2 present, or both substances absent) with three 
responses. This is an extremely easy task and was typically mastered within a couple of trials. 
Then this account would predict an increase of the ratings of the P cue with increasing training 
which was not observed (see also Waldmann & Holyoak, 1992). Finally, Waldmann (1996) 
presents an additional experiment with predictive learning instructions in which the amount 
of Phase 1 training was varied between either two or ten presentations of each learning 
exemplar. The Rescorla-Wagner theory predicts an increase of the size of the blocking effect 
and a decrease of the difference between the ratings of the ambiguous and the unambiguous 
redundant cue proportional to the amount of Phase 1 training. Causal-model theory predicts 
no difference. The results clearly supported causal-model theory. 

The Role of the Structure of the Causal Model 
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holding them fixed would misrepresent the true causal relations. This is a 
further example of how prior causal knowledge affects how the statistical 
relations of the learning input should be processed. 

3. Evidence for Effect Competition? 

Lack of control over the underlying causal structure may lead to apparent 
refutations of causal-model theory. Shanks and Lopez (in press) present 
one experiment in which they claim to have found evidence for effect 
competition (see also Shanks, Lopez, Darby, & Dickinson, this volume, 
Ch. 7). Shanks and Lopez (in press, Experiment 3) compared two condi- 
tions. The “noncontingent” condition presented the following causal struc- 
ture: cause 1 + AB, cause 1 + B, no cause + C. In the “contingent” 
condition a different learning structure was used: cause 2 + DE, cause 2 
+ F, no cause + E. The letters A to F represent effects. These patterns 
were trained in the diagnostic direction in which the effect cues were 
presented first. 

Standard associative theories that map these effect cues on the input 
layer predict effect competition. Despite being presented an equal number 
of times along with the target causes (i.e., diseases), effect A from the 
noncontingent condition should be rated lower than effect D from the 
contingent condition. In both conditions, the unconditional contingencies 
between the cause and the target effect were kept constant so that prima 
facie causal-model theory predicts no difference. Shanks and Lopez discov- 
ered a small difference in association ratings between the two conditions, 
which was interpreted as evidence against causal-model theory. 

One problem with this experiment is that the instructions and the cues 
(symptoms labeled with letters) did not clearly specify the underlying causal 
model so that it is unclear how the learning input was actually interpreted 
(see also Waldmann & Holyoak, in press, for a more detailed critique of 
this study). In this regard, the experiment is similar to previous studies, 
which, however, never claimed to study causal induction (G. B. Chapman, 
1991; Gluck & Bower, 1988a; Shanks, 1991). As pointed out by Waldmann 
and Holyoak (1992; Footnote l) ,  not all symptoms of a disease are effects. 
They may be causes (e.g., puncture wounds indicating blood poisoning), 
intermediate causes of a causal chain, or part of a complex causal network 
representing a syndrome. 

A second problem is that the learning input points to different underlying 
causal models. Assuming that the symptoms were actually interpreted as 
effects as intended by Shanks and Lopez (in press), the noncontingent 
structure is an instantiation of a simple common-cause model (see Fig. 
1A) in which cause 1 deterministically produces symptom B, and weakly 
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produces symptom A. By contrast, the contingent structure is incompatible 
with a simple common-cause model. This structure exhibits a situation in 
which a single cause has disjunctive effects. The disease (i.e., cause 2) 
causes either the symptom complex DE, or the symptom F, but no other 
combinations of D, E, and Fare ever observed. As a consequence, the initial 
model would have to be modified to account for the peculiar interaction of 
the effects. Waldmann et al. (1995) predict greater learning difficulty for 
the condition with the mismatch between the initially plausible common- 
cause model and the learning input, which was indeed obtained by Shanks 
and Lopez (see Waldmann & Holyoak, in press). 

Very little is known about the revision processes activated when the 
initial causal model is incompatible with the learning input (but see Ahn & 
Mooney, 1995; Waldmann et al., 1995). It is readily apparent, however, 
that the Rescorla-Wagner model, originally not having been intended to 
model complex causal induction tasks, lacks the flexibility to reconfigure 
itself in light of evidence incompatible with the implicit causal structure of 
the learning model. 

Esmoris-Arranz et al. (1995) present a study in which they tried to 
demonstrate effect competition in an animal learning experiment (see also 
Miller & Matute, this volume, Ch. 4). Assuming that the rats who partici- 
pated in the experiments actually interpreted the CS as causes and the US 
as effects, Esmoris-Arranz et al. compared two causal structures. In the 
experimental condition, the rats learned that a cause A produces an effect 
S in Phase 1, and in Phase 2 this cause A produces effect S along with a 
second effect X. In the control condition Phase 2 was identical, but A and 
S were unpaired during Phase 1. In the test phase rats were presented with 
the single cues S and X. The most important result involves test cue X that 
has been paired with A an equal amount of times in the two conditions. 
Responding to test cue X indicated lower associative weights in the experi- 
mental condition than in the control condition. This finding was interpreted 
by Esmoris-Arranz et al. as evidence for cue competition among the effects 
S and X. 

Again this is a peculiar causal situation when taken at face value. In the 
experimental condition cause A consistently causes effect S, but it changes 
its causal power from not producing X during Phase 1 to deterministically 
producing X in Phase 2. In the control condition, cause A changes from 
being ineffective to being a deterministic cause of both S and X in Phase 
2. It is unclear whether a cause like the one presented in the experimental 
condition exists in the physical world. 

However, even when the unrealistic nature of the presented causal situa- 
tion is ignored, the results of this experiment do not present unambiguous 
evidence for effect competition against contingency accounts. K. J. Holyoak 
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(personal communication) offers a contingency analysis that is consistent 
with the assumptions of causal-model theory. This analysis assumes that 
test cue X is implicitly coded as the complex event X and not-S, as the 
cues S and X have been consistently paired in Phase 2 of the training phase. 
Thus, in the test situation the rats in the two conditions are actually trying 
to infer how likely this complex new event (X and not-S) is caused by the 
unobserved cause A. Although the contingency of A and X is constant 
across the two conditions, the likelihood that A is producing the absence 
of S (not-S) seems higher in the control than in the experimental condition. 
In the control condition, A is paired with the absence of S during Phase 
1, whereas A and the absence of S are never combined in the experimental 
condition. Hence the complex cue X and n o t 4  is less likely to have been 
caused by A in the experimental than in the control condition, which is in 
line with the results of the experiment. 

Matute et al. (1996) present a different set of experiments in which they 
tried to provide evidence for effect competition with human participants. 
They argued (in contrast to the Rescorla-Wagner and many other associa- 
tive learning theories) that cue competition is a function of the test question 
that probes the knowledge base, and not a characteristic of the learning 
rule. In their Experiment 3 they found that the participants tended to rate 
the relationship of a cause and a specific effect lower when this effect was 
paired with a stronger as opposed to a weaker second effect (but see 
Baker & Mazmanian, 1989). The contingency between the cause and the 
target effect was kept constant across the two conditions. Therefore, this 
experiment appears to provide prima facie evidence for effect competition. 

However, this finding crucially depended on the test question. When the 
participants were asked whether the target effect was an effect of the cause 
or whether the cause produced this effect, then no effect competition was 
found (Experiment 2). However, when the test question asked how “indica- 
tive” the effect was, then participants tended to give an assessment of the 
diagnostic validity of the target effect relative to the strength of the other 
collateral effect. It certainly is reasonable that in some circumstances a 
relative assessment of the diagnostic validity of an effect will be given (as 
when a physician is about to decide which diagnostic test to conduct). 
According to causal-model theory, this finding is a further demonstration 
that the participants are able to flexibly access their knowledge base. People 
are apparently not only able to access causal knowledge in the predictive 
and the diagnostic directions, they are also able to compare different causal 
strengths. An associative learning theory could also account for these data 
when the assumption is added that in some test situations the responses 
are based on a choice rule that compares the different associative weights 
obtained during learning. 
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Matute et al.’s equivocation of cause and effect competition blurs one of 
the most fundamental differences between causes and effects, the distinction 
between spurious causes and collateral effects. Whether or not a cause is 
real or spurious may be of the utmost pragmatic importance. It would make 
little sense to tamper with a barometer when the goal is to influence the 
weather. By contrast, a redundant, albeit weak effect can be produced 
regardless of whether there are alternative, maybe stronger effects. The 
pattern of results Matute et al. (1996) present is consistent with the notion 
that participants are indeed sensitive to this crucial distinction between 
spurious or interacting causes and collateral, mutually supporting effects 
(also Baker & Mazmanian, 1989; Rescorla, 1991,1993,1995; Van Hamme 
et al., 1993; Waldmann & Holyoak, 1992). When the participants were 
requested to assess causal relations, they always proved sensitive to poten- 
tial competitions among causes but never compared collateral effects, or 
causes with effects. They were sensitive to the fundamental difference 
between converging causes and diverging effects. For Matute et al. this 
pattern of results is simply a result of the semantics of the test question, 
but this explanation begs the question of why participants understand the 
causal test questions the way they do. 

D. CAUSAL MODELS AND THE ASSESSMENT OF CONTINGENCIES 
Causal directionality is only one aspect of abstract prior causal knowledge 
influencing the interpretation of the learning input. A further problem of 
purely bottom-up theories of causality is a consequence of the fact that 
contingencies between two events may be affected by other causal factors. 
One solution for this problem, the conditional contingency approach, has 
already been mentioned. According to this theory, contingencies should 
not be computed over the universal set of events but over subsets of events. 
However, Cartwright (1983) points out that this method yields correct 
results only when the subsets are properly selected (see also Cheng, 1993). 
Conditionalizing on the wrong variables may lead to erroneous contingency 
estimates. An instance of this problem is known in the philosophical and 
statistical literature as Simpson’s paradox (see Cartwright, 1983; Eells, 1991; 
Pearl, this volume, Ch. 10; Simpson, 1951). 

Simpson’s paradox describes the fact that a given contingency between 
two events that holds in a given population can disappear or even be 
reversed in all subpopulations, when the population is partitioned in certain 
ways. Waldmann and Hagmayer (1995) present an experiment that demon- 
strates Simpson’s paradox (see also Spellman, this volume, Ch. 5). Partici- 
pants were told that importers of tropical fruit are trying to improve the 
quality of the fruit by irradiating them. However, so far it is unknown 
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whether the irradiation has a positive, a negative, or no effect on the quality 
of the fruit. Participants’ task in this experiment was to assess the strength 
of the causal relation between the irradiation of tropical fruit and the quality 
of fruit using a rating scale ranging from - 10 to +lo. To assess the efficacy 
of irradiation, participants received information about the quality of sam- 
ples of fruit that either had or had not been irradiated. The participants 
were handed a list, which contained information about 80 samples of fruit. 
Each sample was represented on one line, and for each sample participants 
could see whether or not the sample had been irradiated (“yes” or “no”), 
and whether the quality of this sample was “good” or “bad.” In one of 
the conditions, the condition with the causally relevant variable, participants 
were told that there are two types of fruit, Taringes and Mamones. Addition- 
ally it was pointed out that it was expected that irradiation affects these 
two types of fruit differently. Furthermore, information was added to the 
list that indicated that one of the two pages showed Taringes, and the other 
page Mamones. 

Table I displays how the cases were distributed. The table displays the 
proportion of fruit that were of good quality after they were irradiated, 
and the proportion of fruit that were of good quality without being irradi- 
ated. For example, within subgroup A (e.g., Mamones) 36 fruit samples 
were presented that were irradiated. Forty-four percent of these samples 
(i.e., 16 out of 36) had good quality after irradiation. As can be seen in 
Table I, the arrangement of the cases resulted in a reversal of the sign 
of the contingencies within as opposed to across the grouping variable. 
Disregarding the grouping variable yields a positive contingency between 
irradiation and quality of fruit. By contrast, the contingency within each 
of the subgroups is negative. For half of the participants, the mapping 
between irradiation and quality of fruit was switched so that these partici- 
pants saw a symmetric situation with a negative overall contingency, and 
positive contingencies within the subgroups. The sign of their ratings was 
reversed in order to make the two subgroups comparable, 

TABLE I 
CONTINGENCIES AND RELATIVE 
FREQUENCIES OF FRUIT WITH 

GOOD QUALITY 

A B Total 

Irradiation 16136 (A) 014 (.OD) 16140 (.40) 
No irradiation 314 (.75) 5/36 (.14) 8/40 (.20) 

Contingency -.31 -.14 + .20 
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Even though the task for all participants was to assess the overall efficacy 
of irradiation, it was expected that participants in the condition with the 
causally relevant grouping variable would assess the causal impact of irradi- 
ation separately for each subgroup (Mamones and Taringes), and disregard 
the total distribution of the cases. Since the contingencies within each 
subgroup are negative, participants should get the overall impression that 
irradiation lowers the quality of fruit. 

This example may lead to the methodological suggestion that it is always 
a good idea to partition into subsets of events, and compute conditional 
contingencies in which potential cofactors are kept constant. However, this 
strategy may also lead to false assessments. The reason why the analysis 
should be based on the fruit level in the condition with two fruit types is 
that the fruits are causally relevant for the effect under investigation. If, by 
contrast, it had been shown that the contingencies reverse when the fruits 
were partitioned on the basis of their position on the test list, this would 
not count as evidence for a negative causal influence of irradiation. In 
this situation, one should disregard the groupings, and, based on the total 
distribution, conclude that irradiation raises the quality of fruit. Only parti- 
tions by causally relevant variables are relevant for evaluating causal laws 
(Cartwright, 1983). If causally irrelevant variables also mattered, almost 
any contingency could be obtained by choosing the right partition of the 
event space. 

In order to test whether participants are sensitive to this crucial distinction 
between causally relevant and causally irrelevant partitioning variables, a 
second condition with a causally irrelevant variable was included in which 
participants were told that, due to the large number of tests, the samples 
of fruit were assigned to different investigators, A and B. Otherwise this 
condition presented the same learning input, the same assignment of the 
cases to the two groups, and the same rating instructions as the condition 
with the causally relevant grouping variable. It was expected that partici- 
pants in the condition with the causally irrelevant variable would ignore 
the groups and rely on the total proportions. Thus, they should arrive at 
the conclusion that irradiation raises the quality of fruit. Their ratings should 
indeed be similar to the ones obtained in an additional control condition 
in which no grouping information was provided. 

Table I1 shows that participants indeed were sensitive to the distinction 
between causally relevant and causally irrelevant grouping variables. The 
ratings in the control condition without a grouping category and in the 
condition with the irrelevant grouping variable were positive, and statisti- 
cally indistinguishable from each other. Thus, participants in these two 
conditions believed that irradiation raises the quality of fruit. This finding 
indicates that the participants based their assessments on the total distribu- 
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TABLE I1 
MEAN RATINGS OF THE CAUSAL 

RELATION BETWEEN IRRADIATION AND 
QUALITY OF FRUIT 

Relevant Irrelevant Control 

-4.33 5.17 4.75 

tion of cases, while disregarding subgroups. By contrast, participants in the 
condition with the causally relevant grouping variable thought that the 
cause prevents the effect. These participants concluded that irradiation 
lowers the quality of fruit. Thus, despite the fact that participants in the 
three conditions received identical learning inputs and identical rating in- 
structions, their assumptions about the causal relevance of an additional 
grouping variable dramatically influenced their assessment of the relation 
between a putative cause and an effect. 

This example clearly demonstrates that causal induction is crucially de- 
pendent on prior causal knowledge. New causal relations may be induced 
using contingency estimates based on the analysis of the structure of the 
learning input. However, the contingencies only reflect causal relations 
when the observations are partitioned on the basis of causally relevant 
rather than irrelevant variables. The causal relevance of these partitioning 
variables has to be established prior to the new induction task. Thus, 
Simpson’s paradox exemplifies the basic assumption of causal-model theory 
that the processing of the learning input is based on prior assumptions 
about general properties of the causal situation. 

Simpson’s paradox is an interesting example of how specific knowledge 
interacts with abstract causal strategies. It is true that knowledge about the 
causal relevance of the partitioning variable is domain specific (e.g., the 
fact that type of fruit is causally relevant). However, unlike in previous 
research on transfer of specific knowledge (e.g., L. J. Chapman & Chapman, 
1967, 1969; Pazzani, 1991), this type of knowledge does not directly bias 
estimates about the strength of the causal relation between the target 
cause and the target effect. In order to obtain the correct results, abstract 
knowledge has to be activated that conditional contingencies based on 
causally relevant subgroups should be computed. Interestingly, the dramatic 
reversals obtained in situations exemplifying Simpson’s paradox are not 
due to selective processing of individual cases or knowledge-driven distor- 
tions of the contingency estimates. They rather are a natural consequence 
of unbiased processing of differentially grouped cases. 
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E. CAUSAL MODELS AND CAUSAL MECHANISMS 
The main focus of this article is on the comparison between associative 
theories of causal induction and causal-model theory. However, since 
Hume’s critical assessment of causal power theories, one of the main debates 
within the field of causal processing relates to the question of whether 
causal induction is based on the observation of statistical relations or on 
the observation of causal mechanisms or continuous causal processes (see 
Ahn, Kalish, Medin, & Gelman, 1995; Cheng, 1993; Salmon, 1984). 

According to causal-model theory, these two positions need not be exclu- 
sive. Causal-model theory claims that, in general, statistical input informa- 
tion and prior assumptions about causal processes interact. According to 
this view, assumptions about causal mechanisms may guide the way the 
statistical input is processed. Often the mechanisms connecting a cause and 
an effect are unknown or only partly known. In addition, causal processes 
cannot be observed directly but have to be inferred on the basis of prior 
theoretical assumptions and the structure of the observational input (see 
Cartwright, 1989; Cheng, 1993; Cheng et al., this volume, Ch. 8). Thus, 
even though causality may not be reducible to mere covariational patterns, 
statistical relations are a potent way to measure causal processes. Knowl- 
edge about causal directionality is one important example of a physical 
feature that may crucially influence the way the learning input is interpreted 
(Waldmann & Holyoak, 1992; Waldmann et al., 1995). However, more 
domain-specific knowledge about causal processes may also play a role. 

Waldmann (1991) used a learning paradigm analogous to cue compound- 
ing tasks from animal learning paradigms. In one of the experiments (A’ = 

96) the participants learned, for example, that drinking a blue liquid causes 
a heart rate of +3 in animals. Subsequently, the participants learned that 
drinking a yellow liquid causes a heart rate of +7. The crucial test question 
was what would happen when both liquids were mixed and drunk alto- 
gether. 

In animal learning experiments on cue compounding a typical finding is 
that two separately trained cues are additively integrated when presented 
in a compound (Couvillon & Bitterman, 1982; Kehoe & Graham, 1988; 
Weiss, 1972). This finding fits with the additivity bias inherent in many 
associative learning theories (including the Rescorla-Wagner theory). 

The participants in the experiment, however, proved sensitive to an 
additional hint that characterized the causal mechanisms that mediate be- 
tween causes and effect. In one condition, it was mentioned that the heart 
rate is affected by the taste of the liquids, whereas the other condition 
characterized the liquids as drugs that could have different strengths. Taste 
is an example of an intensive physical quantity, whereas the strength of a 
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drug represents an extensive quantity. Intensive quantities are dependent 
on proportions and therefore do not necessarily vary with the absolute 
amount of the substance, whereas extensive quantities vary with amount 
(see also Reed & Evans, 1987; Wiser & Carey, 1983). Despite the fact that 
no further domain-related information was given (e.g., about the particular 
kind of taste), the participants activated general integration rules that were 
sensitive to this fundamental physical distinction. Generally, significantly 
more participants computed a weighted average of the two causal influences 
in the taste condition than in the strength condition. Only in the strength 
condition did an adding-type integration turn out to be the dominant rule. 

This finding is only one example of how physical knowledge affects the 
way the learning input is treated. This knowledge may be more concrete 
than knowledge about causal directionality, but it nevertheless is fairly 
abstract, as the participants were provided with information about only the 
general physical characteristics of the causes (intensive vs extensive quan- 
tities). 

Another example of knowledge-driven processing is prior assumptions 
about the typical temporal lag between causes and effects. When causes 
produce their effects with a lag, a naive contingency learning mechanism 
may never be able to detect the contingency between the distant events. 
There may also be cases in which a cause produces a dynamic pattern (see 
Eells, 1991). For example, a drug may be harmful in the short run but cure 
a disease in the long run. 

Gallistel (1990) has pointed out a related problem with associative contin- 
gency learning mechanisms. Frequently these theories postulate a trial 
clock, which determines when a trial starts and when it ends. It can be 
shown, however, that depending on the size of the trial window, almost 
every contingency estimate may ensue. A small trial window may, for 
example, divide a specific CS into three events and represent the following 
brief temporal lag as the subsequent event (US). This example shows 
that prior assumptions about what constitutes a potential cause and what 
constitutes an effect are crucial for obtaining appropriate statistical evi- 
dence. 

F. CAUSAL MODELS AND THE ROLE OF LEARNING ORDER 

The major goal of the experiments on causal directionality was to demon- 
strate that the participants of the experiments use their abstract knowledge 
about the asymmetry of causes and effects when interpreting the learning 
input. In order to test causal-model theory against associative accounts the 
experiments kept cues and outcomes constant. This strategy led to a design 
in which common-effect models were presented in a learning order that 
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corresponds to predictive reasoning (from causes to effects), whereas the 
common-cause models were presented in the diagnostic order (from effects 
to causes). The results clearly show that the participants honored the cause- 
effect direction regardless of the order in which the constituents of the 
causal models were presented. 

However, it is unlikely that learning order generally has no impact on 
the mental models that are constructed during learning. The competence 
participants exhibit in simple causal situations may well break down when 
confronted with more complex situations. For example, the difficulty of 
predictive and diagnostic learning probably differs. Bindra, Clarke, and 
Shultz (1980) have presented experiments that show that children have 
greater difficulties with diagnostic as compared to predictive inferences. 
Diagnostic inferences typically involve a retrospective updating or modifi- 
cation of an already-formed mental model. This may be more difficult to 
accomplish than successively augmenting a causal representation parallel 
or isomorphic to the unfolding of the causal structure in the observed real 
world, as happens in predictive learning. 

In order to investigate whether learning order affects the kind of informa- 
tion that is acquired, Ulf-D. Reips and I conducted a number of experiments 
in which the participants learned about fictitious diseases (Waldmann & 
Reips, 1996). A prototypical example of the causal building blocks used in 
these experiments is depicted in Figure 4 (Phase 2 of the ambiguous cue 
condition) in which an M-structure with two diseases and three symptoms 
is shown. Each disease deterministically causes two symptoms. One of these 
symptoms is ambiguous, as it is caused by either disease. The other symptom 
is unique. It is produced by only one of the diseases. 

Unlike in the previous reported experiments in which the direction of 
the causal arrow was varied across conditions, the causal structures were 
kept constant across the learning conditions in this set of studies. Thus, in 
all conditions the symptoms represented effects and the diseases causes. 

Two basic learning conditions were compared. The participants acquired 
the information about the diseases either in the predictive direction, or in 
the diagnostic direction. In the predictive learning condition the participants 
were presented with information about the disease of a patient, and they 
had to learn to predict what (two) symptoms this patient probably would 
exhibit. Each patient was affected by only one of the diseases. In the 
diagnostic learning condition, the participants received information about 
the (two) symptoms of each patient first, and had to learn to diagnose the 
patient’s disease. The crucial question was whether these two modes of 
acquiring knowledge about identical causal structures would lead to differ- 
ent representations. Besides its theoretical relevance, this question is also 
practically significant. Medical knowledge, for example, is typically pre- 
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sented in textbooks in the predictive direction regardless of the fact that 
later this knowledge frequently has to be used in the diagnostic direction. 

In one set of experiments we varied the base rates of the diseases. One 
of the diseases of the M-structure was presented three times as often as 
the other (see also Medin & Edelson, 1988). The participants were trained 
in either the predictive or the diagnostic direction and then all participants 
were asked questions about the diagnostic validity of each individual symp- 
tom. The most important question involved the ambiguous symptom. Since 
it is caused by either disease, it would be appropriate to choose the more 
frequent disease when only information about the presence of this symptom 
is available. 

We predicted that base rate appreciation should be higher after diagnostic 
than after predictive training. According to contingency theories, predictive 
learning involves estimating the probability of the effects conditional on 
the presence and on the absence of the causes. As long as the relevant 
conditional probabilities are kept constant this estimate is indpendent of 
whether the causes are frequent or rare (see also Cheng & Novick, 1991). 
Thus, it was expected that these frequencies should be disregarded in 
predictive learning. Causal-model theory additionally predicts the asymme- 
try of learning conditions as a consequence of knowledge about causal 
directionality. Causes are events that are often actively set in order to 
achieve effects. For example, when planning psychological experiments it 
is recommended to establish equal cell sizes. Thus, the observed frequency 
of the causes is often not representative of the natural frequency of these 
events in the world, and should therefore not be accepted at face value 
(see also Gigerenzer, Hell, & Blank, 1988). Even though the cover stories 
used in our experiments emphasize that participants are going to see unse- 
lected samples of patients, there may be a tendency to later disregard this 
information. This tendency may be stronger when the learning task is 
complex so that it becomes more difficult to keep in mind additional infor- 
mation that is relevant only for the transfer task. By contrast, diagnostic 
inferences are based on the observation of effects that cannot be directly 
manipulated. Thus, the frequency of the causes responsible for the observed 
effects is generally more representative. Furthermore, diagnostic learning 
involves the appreciation of base rates. Since the participants in the diagnos- 
tic training condition received direct feedback about the disease causing 
the observed symptoms, the importance of the use of base rates may be 
experienced more directly (see also Gluck & Bower, 1988a; Griffin & 
Tversky, 1992; Holyoak & Spellman, 1993; Klayman & Brown, 1993; 
Koehler, in press; Medin & Edelson, 1988). 

In one of the experiments (N = 32), six diseases and nine symptoms (three 
M-structures) were presented either in the predictive or in the diagnostic 
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learning direction. Within each M-structure one disease was presented three 
times as often as the other. After the learning phase, the participants were 
told that they should assume that they were confronted with new patients, 
and that they knew about the presence of only one of the symptoms of 
these patients. Their task was to rate the probability of the diseases on a 
scale from 0 (“very unlikely”) to 100 (“very likely”). The most important 
results involve the ratings of the ambiguous symptoms. Figure 6A displays 
the mean ratings of the probability that the frequent and the rare diseases 
were present (collapsed over the three ambiguous symptoms). The results 
exhibit an interaction. After diagnostic training, the participants proved 
sensitive to the different base rates of the diseases. They gave higher ratings 
to the more frequent diseases than to the rare diseases. Base rates were, 
however, neglected after predictive training. There were no significant 

A 

Diagnostic Learning Predictive Learning 

B 

Diagnostic Learning Predictive Learning 

Fig. 6. Mean ratings of the probabilities of the rare and the frequent diseases conditional 
on the ambiguous symptom after the complex (A; three M-structures) and the simple (B; 
one M-structure) learning tasks. 
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differences between the ratings in this training condition. This neglect was 
not the result of a failure to encode frequencies, as the participants in 
both conditions turned out to be fairly good at remembering the different 
frequencies of the disease. Thus, the learning order seemed to affect the 
tendency to use base rates rather than the encoding. 

In a second experiment, a situation with only one M-structure (two 
diseases, three symptoms) was presented (N = 24). As can be seen in 
Figure 6B, this reduction in complexity led to base rate appreciation after 
both learning situations. Thus, the results in the first experiment were not 
caused by a general deficit of participants’ competence. It rather reflected 
a performance factor. The competence could be exhibited only in relatively 
simple learning situations. When the complexity of the learning structure 
was increased, additional, performance factors came into play, which led 
to a tendency to neglect base rate information after predictive training. 
The pattern of results exemplified in these two experiments has been repli- 
cated in a number of additional experiments. These findings clearly show 
that, at least with more complex causal situations, learning order may affect 
the way mental models are formed and accessed. 

IV. Conclusion 

The comparison between causal-model theory and associative accounts of 
causal induction highlighted a number of important differences between 
these two approaches. Causal-model theory postulates a rigorous separation 
between the learning input and mental representations. This characteristic 
allows for the flexible assignment of the learning input to elements of the 
resulting mental models. By contrast, most associative learning theories 
(e.g., the Rescorla-Wagner theory) work in the tradition of stimulus- 
response theories in which learning cues play the double causal role of 
representing events and eliciting responses. It has been shown that this 
inflexibility may lead to clear misrepresentations of objective causal rela- 
tions. Most saliently, associative theories that code the learning cues as CS 
and the outcomes as US are unable to capture the structural characteristics 
of diagnostic learning situations in which effects are presented as cues. The 
Rescorla-Wagner theory correctly captures the asymmetry between causes 
and effects only when the learning situation is fortuitously presented in a 
way that corresponds to the implicit structural characteristics of this theory. 

A second major tenet of causal-model theory postulates the necessity of 
an interaction between top-down assumptions and the processing of the 
learning input. Here, causal-model theory represents a reconciliation be- 
tween theories focusing on statistical covariation learning and theories 
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focusing on causal, mechanical processes. Causal-model theory is consistent 
with Cartwright’s (1989) philosophical analyses of causality. Cartwright 
views causes as entities that embody an intrinsic dispositional capacity to 
produce effects. For example, smoking has the capacity to produce lung 
cancer. Due to additional causal factors, this capacity may not materialize 
in all contexts but it may still manifest itself in probabilistic relationships. 
Thus, covariation is one of the most potent ways to measure causal capaci- 
ties. Like other measuring instruments it needs to be read properly. Covaria- 
tion does not directly define causality. In this article a number of studies 
have been presented that demonstrated how identical learning inputs may 
be processed differently depending on participants’ background assump- 
tions about the causal processes to be observed. 

Causal directionality is one of the most important features of causal 
relations that determine the way statistical relations are interpreted. It is 
a physical fact that multiple causes of a common effect potentially interact, 
whereas multiple effects of a common cause are rendered conditionally 
independent when the common cause is held constant (Reichenbach, 1956). 
Knowing that causes enable us to produce effects, and that redundant 
causes as opposed to redundant effects may be spurious, is highly relevant 
for planning our actions. Associative theories imply that participants are 
unaware of these fundamental distinctions. However, a number of studies 
have been presented in this chapter that show that participants are indeed 
sensitive to causal directionality and the asymmetry of causes and effects 
(see also Waldmann & Holyoak, 1990, 1992; Waldmann et al., 1995). 

Assumptions about causal directionality are only one example of how 
prior knowledge may guide the induction process. Taking into account 
alternative causal factors is another important method of measuring causal 
capacities. In many situations, simple unconditional contingencies do not 
correctly reflect the underlying causal relations. When alternative causal 
factors are present, conditional contingencies should be computed that hold 
these factors constant (Cartwright, 1989; Cheng, 1993; Cheng & Novick, 
1992; Melz et al., 1993). However, even this recommendation leads to 
correct results only when the right background conditions hold. A cofactor 
should be taken into account only when it is expected to be causally relevant 
(Waldmann & Hagmayer, 1995). Furthermore, causal factors should not 
be used as conditioning variables when they constitute intermediates in a 
causal chain linking the target cause and the target effect (Cartwright, 
1989), or when they represent collateral side effects (Eells, 1991). In these 
cases, holding the cofactors fixed distorts the statistical relations between 
the target cause and the target effect, and prevents the causal factor from 
displaying its causal significance in the form of the relevant conditional 
probabilities. These are examples of how prior assumptions about the causal 
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model underlying the observed events may dramatically alter the way statis- 
tical information should be processed. Other examples of effects of prior 
knowledge include assumptions about the integration of causal influences 
(Waldmann, 1991), about the temporal lag between causes and effects 
(Anderson, 1990), about the mathematical function relating continuous 
causes and effects (Zelazo & Shultz, 1989), and about the segmentation of 
the event stream into potential causes and effects (Gallistel, 1990). Without 
prior knowledge that is already available at the outset of the induction 
process new causal knowledge cannot properly be acquired. 
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