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Abstract 

Causal reasoning belongs to our most central cognitive competencies. Causal knowledge 

is used as the basis of predictions and diagnoses, categorization, action planning, decision 

making and problem solving. Whereas philosophers have analyzed causal reasoning for 

many centuries, psychologist have for a long time preferred to view causal reasoning and 

learning as special cases of domain-general competencies, such as logical reasoning or 

associative learning. The present chapter gives an overview of recent research about 

causal reasoning. It discusses competing theories, and contrasts domain-general accounts 

with theories that model causal reasoning and learning as attempts to make inferences 

about stable hidden causal processes. 

Introduction
1
  

 Causal reasoning belongs to one of our most central cognitive competencies, which 

enable us to adapt to our world. Causal knowledge allows us to predict future events, or 

diagnose the causes for observed facts. We plan actions and solve problems using 

knowledge about cause-effect relations. Without our ability to discover and empirically 

test causal theories, we would not have made progress in various empirical sciences, such 

as physics, medicine, biology, or psychology, and would not have been able to invent 

various technologies that changed our lives. Yet causal reasoning has been curiously 

absent from mainstream cognitive psychology for many decades. The situation has 
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dramatically changed in the past two decades with more and more research devoted to 

causal reasoning and causal learning.  

 The goal of the present chapter is to present an overview of various theoretical 

paradigms studying causal reasoning. Whereas cognitive psychology has for a long time 

neglected this topic, causality and causal reasoning has remained one of the central 

themes of philosophy throughout its history. In fact, psychological theories of causal 

reasoning have been greatly inspired by philosophical accounts. So far there is no 

dominant overarching theory of causality or causal reasoning that would serve as an 

organizational foundation for presenting research on different reasoning tasks (e.g., 

prediction, diagnosis, inductive reasoning, decision making). We have therefore decided 

to structure the research according to the postulated concept of causality, which, at this 

stage of research, seemed more natural than organizing the chapter around different types 

of reasoning tasks.  

Causal Reasoning without Causation: Associationist, Logical, and Probabilistic 

Theories 

One of the reasons for the neglect of causality in cognitive psychology may have 

been the widespread skepticism about the reality of causation in philosophy and science. 

An outspoken proponent of this critical view, Bertrand Russell, stated: ―The law of 

causation,… is a relic of a bygone age, surviving, like the monarchy, only because it is 

erroneously supposed to do no harm‖ (1912/1992, p. 193). This skepticism has in the 

meantime been questioned because a closer look at how scientists actually reason has 

revealed that causal constructs are central for scientific discovery (see Cartwright, 1999; 

Pearl, 2000). Nevertheless, many psychological theories have tried to explain causal 

reasoning with theories that do not contain references to specifically causal concepts. 

The following three sections will present three classes of theories which try to 

reduce causal reasoning to domain-general non-causal reasoning. Although some of these 



theories acknowledge the difference between causes and effects, which can be viewed as 

a first step in the direction of a causal theory, the postulated reasoning and learning 

mechanisms merely capture covariation information or logical relations without 

expressing causal notions. 

(1) Associative Theories 

Skepticism about the usefulness of the concept of causality can in psychology be 

traced back to the critical analyses of the philosopher David Hume (e.g., Hume, 

1748/1977). Hume reflected about situations in which he observed causes and effects, 

and did not detect any empirical features that might correspond to evidence for hidden 

causal powers, which necessitate effects. What he found instead was spatiotemporally 

ordered successions of events. So, why do we believe in causation? His answer was that 

our impression of causation was merely an illusion derived from observed associations 

between event pairs. Contemporary learning theorists have adopted Hume‘s empiricist 

approach to causal learning. Associations derived from spatiotemporally connected 

events, such as through Pavlovian and instrumental conditioning, serve in these theories 

as the basis for causal predictions (e.g., Allan, 1993; Shanks & Dickinson, 1987; see 

López & Shanks, 2008, for a recent overview). Although associative theories claim to 

model causal reasoning, there is actually no place for causation in these theories, 

regardless of the variant. All associative theories divide learning events in two classes, 

cues and outcomes, which are distinguished on the basis of temporal order. Cues 

represent events that are experienced first in a learning context, and which trigger internal 

representations of outcomes based on the strength of the associations, which reflect the 

degree of covariation between the learning events.  

Associative theories serve as an interesting contrast to causal reasoning. Many 

reasoning tasks can be successfully solved on the basis of associations, and do not require 

causal knowledge that goes beyond covariations. Covariation information can often be 



used to make successful predictions and diagnoses, and can be employed for action 

planning and decision making. Moreover, covariation information used in modern 

associative theories is often quite sophisticated. For example, the popular Rescorla-

Wagner (1972) model computes associative weights for multiple cues of a single 

outcome which are (under specific conditions) formally equivalent to partial regression 

weights in multiple regression analysis. Thus associative weights do not simply reflect 

simple unconditional covariations, they take into account the predictive contribution of 

competing cues (i.e., cue competition).  

An example of cue competition, which has also been adopted in research on 

causal reasoning, is the blocking paradigm  in which in a first learning phase a particular 

cause A is paired with an effect (e.g., Beckers, De Houwer, Pineño, & Miller, 2005;  De 

Houwer & Beckers, 2003; Chapman & Robbins, 1990; Shanks, 1985; Sobel, Tenenbaum, 

& Gopnik, 2004; Waldmann & Holyoak, 1992). In a second phase, A is redundantly 

paired with a novel cause, B, and the compound of causes A and B are now followed by 

the effect. Although both A and B individually covary with the effect, participants view 

A as a cause but tend to be uncertain about whether B is a cause. This can be interpreted 

as evidence for cue competition. Once A is known to be a cause, B does not add anything 

to the predictability of the effect event. Blocking in causal reasoning is just one example 

of how associative theories proved useful as models of causal reasoning. Numerous other 

empirical findings (e.g., acquisition curves; trial order effects; sensitivity to contingency) 

also seem to support the view that causal reasoning does not need the concept of 

causation, and can be reduced to a sophisticated form of covariation learning and 

associative reasoning. 

Despite the success of associative theories, numerous studies in the past two 

decades have shown that humans are sensitive to aspects of causation that cannot be 

reduced to covariation information. The first demonstration in which causal and 



associative theories were directly pitted against each other comes from Waldmann and 

Holyoak‘s work on causal model theory who have shown that learners distinguish 

between cues that represent causes of outcomes (i.e., predictive learning), and cues that 

represent effects of outcomes (i.e., diagnostic learning), which indicates that they are 

sensitive to the directionality of the causal arrow. For example, Waldmann and Holyoak 

(1992) showed that blocking only occurs when the cues represent causes but not effects 

(see also Waldmann, 2000, 2001; Booth & Buehner, 2007; López, Cobos, & Caño, 2005, 

for more recent converging evidence). Causal directionality is an aspect of causation that 

cannot be reduced to covariation but is an integral component of causal model theory (see 

section on Reasoning with Causal Models, for more details). 

Other demonstrations of the irreducibility of causation to covariation include the 

distinction between causal and non-causal (i.e., spurious) covariations (Cheng, 1997; 

Waldmann & Hagmayer, 2005), the distinction between covariation and causal power 

(Cheng, 1997), or the capacity of humans to derive differential predictions for 

hypothetical observations and interventions from identical covariation information 

(Gopnik, Glymour, Sobel, Schulz, Kushnir, & Danks, 2004; Sloman & Lagnado, 2005; 

Waldmann & Hagmayer, 2005). All these findings, which will be discussed later in 

greater detail, demonstrate how humans go beyond the information given, and infer 

causal properties on the basis of covariational learning input (see also Buehner & Cheng, 

2005; Gopnik & Schulz, 2007; Waldmann, Hagmayer, & Blaisdell, 2006, for overviews).   

(2) Logical Theories 

A second class of theories that attempts to reduce causal reasoning to a domain-

general theory are logical theories which model causal reasoning as a special case of 

deductive reasoning. Modeling causal reasoning in terms of propositional logic has 

proven problematic. From ―If Cause A then Effect B‖ and ―Cause A‖ we cannot infer 

Effect B (―modus ponens‖) in many real world cases because there may be additional 



disablers of Effect B, or Cause A may be probabilistic, and therefore neither necessary 

nor sufficient (Cummins, 1995; Markovits & Potvin, 2001; Neys, Shaeken & Ydewalle, 

2002, 2003; Quinn & Markovits, 1998). For the same reasons we cannot infer from the 

absence of Effect B to the absence of Cause A (―modus tollens‖).  

Moreover, conditionals do not distinguish between causes and effect, and therefore 

can equally express ―(1) If Cause A then Effect‖, and ―(2) If Effect then Cause B‖, the 

latter type of rule being used often in diagnostic expert systems. However, the 

insensitivity of logical rules to causal directionality creates problems. For example, these 

two premises invite the transitive inference from Cause A to Effect, and then from Effect 

to Cause B, which is clearly an invalid inference since two causes of the same effect 

typically compete (Pearl, 1988). Although some of these problems may be solved if 

additional premises are added from background knowledge (Cummins, 1995), it can be 

doubted that this route fixes the underlying problem of neglecting causality (see Pearl, 

1988, 2000). 

A prominent example of a logical theory of causal reasoning is Goldvarg and 

Johnson-Laird‘s (2001) mental model theory of causation. The focus of this theory is 

reasoning with causal propositions. According to mental model theory people represent 

propositions by constructing mental models in which each model represents a possible 

state of affairs consistent with the premises. To distinguish between causes and effects, a 

temporal priority assumption is added according to which causes precede effects in time. 

For example, the full representation of proposition ―A causes B‖ assumes three models in 

which (1) A precedes and co-occurs with B (i.e., a b), (2) the absence of A co-occurs with 

the absence of B (i.e., ~a ~b), and (3) the absence of A co-occurs with the presence of B 

(i.e., ~a b). The third possibility describes possible cases in which the effect is caused by 

some other factor.  



Mental model theory assumes that people represent causality as deterministic. ―A 

causes B‖ excludes as the only case the co-occurrence of A and non-B, thus assuming 

that A is sufficient (but not necessary) for its effect. According to the theory, ―A causes 

B‖ can be distinguished from ―A enables B‖ by modifying the third model (i.e., a ~b). 

Thus, enablers are necessary but not sufficient. Finally, preventing is modeled as causing 

the absence of the effect. 

People often reason with reduced representations which only contain what is 

mentioned in the proposition (e.g., ―A causes B‖), which in the example would be the 

first model (a b). The other models are either neglected or there is a mental footnote 

referring to them. This assumption predicts that people often represent causal relations as 

the co-occurrence of two events and forget about other cases consistent with the causal 

claim.  

Mental model theory is strictly Humean by reducing causality to temporal priority, 

co-occurrence, and determinism. Notably ―A causes B‖ is represented by mental model 

theory the same way as ―If A then B‖. Thus, the theory clearly attempts to reduce 

causation to non-causal domain-general representations, and therefore shares many of the 

problems of other non-causal theories. For example, the theory cannot differentiate 

between causal and non-causal relations in which temporal priority holds. For example, 

barometer readings precede and co-occur with states of the weather but are clearly not 

causally related. Moreover, the theory does not distinguish between causes that are 

observed and causes that are generated by means of interventions (see Sloman & 

Lagnado, 2005). A further shortcoming of the theory is that the relationship between 

deterministic relations and probabilistic data is not worked out.  

(3) Probabilistic Theories 

Whereas associative theories update associative strength based on trial-by-trial 

learning, probabilistic theories pick up covariation information from frequency data, 



which can be presented in various formats. Probabilistic theories typically assume that 

there are causes and effects, and that covariations need to be assessed in the cause-effect 

direction. Thus, they also represent a step in the direction of causal theories. However, 

they are still limited as a causal theory. The distinction between causes and effects is 

assumed, not an intrinsic part of a causal theory; the principal goal of research is to 

investigate which covariation metric people use to assess the strength of cause-effect 

relations. Thus again, causal relations are largely reduced to statistical covariations 

between causes and effects. 

This research was pioneered by Kelley (1973) who postulated that people compute 

intuitive ANOVA analyses to make causal inferences. His theory proved very influential 

in social and cognitive psychology, and was formalized in various directions. A popular 

rule for measuring causal strength for a single cause-effect relation was the ΔP rule, 

which measures contingency as the difference between the conditional probabilities of 

the effect in the presence (P(e|c)) minus the absence of the cause (P(e|~c)) (Jenkins & 

Ward, 1965): 

ΔP=P(e|c)-P(e|~c)  (Equation 1) 

Thus, according to this rule, causes are difference makers, which raise (generative cause) 

or reduce (preventive cause) the probability of the effect. For example, eating nuts may 

be viewed as a cause of an allergy in a specific person if the person has a higher 

probability of having an allergy after having eaten nuts in comparison to not having eaten 

nuts. Interestingly, it can be shown that under certain conditions, the asymptotic strength 

computed by the Rescorla-Wagner (1972) model of associative learning is equivalent to 

ΔP (Danks, 2003). 

The ΔP rule applies to single cause-effect relations, but often fails when multiple 

causes are present, which may introduce confoundings. For example, the ΔP rule does not 

predict the blocking effect that was mentioned above because it does not take into 



account competing causes. Therefore, Cheng and Novick (1992) have developed and 

tested a formal theory that computes probabilistic contrasts that take into account main 

effects and interactions, and therefore can deal with situations in which multiple causes 

converge on a joint effect. 

The ΔP rule is not the only statistical rule that has been postulated as a measure of 

causal strength, there are numerous alternatives (see Perales & Shanks, 2007; Hattori & 

Oaksford, 2007, for overviews). However, the ΔP rule shares with most of these rules the 

problem of reducing causation to covariation between causes and effects.  

From Covariation to Causal Power 

The fact that covariation does not necessarily reflect causation can be seen in various 

cases. For example, barometer readings covary (to some extent) with the future weather, 

although there is no causal relation between the two variables. It is also possible that we 

observe zero covariations despite underlying causal power. If, for example, only people 

who do not suffer from headaches take aspirin, then aspirin will not covary with the 

amount of headaches, although they are both causally related. In this population aspirin 

simply cannot possibly display its potential power.  

Figure 1. Parameterized causal model of a single causal relation. Nodes indicate the 

causal variables under consideration (C and E); the dashed node (A) represents additional 

unobserved  causal factors influencing the effect; arrows indicate causal mechanisms 

having causal powers w. 

 

(1) Power PC theory 

In a seminal paper, Cheng (1997) has proposed a formal theory of how causal power 

can be estimated from covariation data when specific preconditions hold. The view that 

causality can be reduced to some metric of covariation was abandoned, and replaced by 
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the theory that causal power is a theoretical concept, which can be estimated under 

specific circumstances using covariation information and background knowledge. 

According to Cheng‘s (1997) power PC theory, causal power represents the probability 

of a cause, acting alone, to generate or prevent a target effect. Given that causes are never 

observed alone, this is a theoretical entity that needs to be inferred on the basis of 

observed data. To estimate causal power, several assumptions need to be made. Power 

PC theory partitions all (observed and unobserved) causes of effect e into the candidate 

cause in question, c, and a, a composite of all alternative causes of e (see Fig. 54.1). The 

term a represents the compound of all alternative enabling and generative causes. 

According to power PC theory people enter the task with the default assumption that c 

and a independently influence e, a  produces but does not prevent e, that causal powers 

are independent of the frequencies of c and a, and that e does not occur without being 

caused. These default assumptions may of course be revised on the basis of contradicting 

evidence.  

The unobservable probability with which c produces e is called generative power, 

represented by wc. The generative power of the unobservable set of causes a is 

analogously termed wa. On the condition that c and a influence e independently, it 

follows that 

P(e|c) = wc + P(a|c) 
.
 wa - wc 

.
 P(a|c) 

.
 wa                  (Equation 2), and  

P(e|~c) =  P(a|~c) 
.
 wa                               (Equation 3). 

Equation 2 implies that effect e is either caused with a specific probability by c or by the 

unobservable a minus the overlap of the two event classes. The assumption embodied in 

Equation 2 that c and a are independent causes of e is an instantiation of a noisy-OR gate 

(see Cheng, 1997; Pearl, 1988; Griffiths & Tenenbaum, 2005).  According to the noisy-

OR integration rule, each cause has an individual chance to produce the effect, and the 



causes do not interact when they occur simultaneously. The difference between P(e|c) 

and P(e|~c) can be abbreviated as P (see Equation 1). Thus, 

P = wc + P(a|c) 
.
 wa - wc 

.
 P(a|c) 

.
 wa  -  P(a|~c) 

.
 wa      (Equation 4). 

Equation 4 shows why covariations do not directly reflect causality. If we observe the 

presence of a candidate cause c and its effect e, we do not know whether e was actually 

caused by c, by a, or by both. If c and a are perfectly correlated, we may observe a 

perfect covariation between c and e, and yet c may not be a cause of e because the 

confounding variable a may be the actual cause. Ideally reasoners should restrict causal 

inference to situations in which c and a occur independently; that is, there is no 

confounding. In this special case, Equation 4 reduces to Equation 5: 

wc = P/(1- P(e|~c))        (Equation 5) 

Of course, since a is unobserved, reasoners cannot be sure whether a and c are indeed 

independent in a particular case. Cheng (1997) assumes that independence is the default 

assumption people make when there is no evidence to the contrary (but see Luhmann & 

Ahn, 2007). A strategy to ensure independence is to manipulate the presence or absence 

of c by means of an intervention, as scientists do in experiments. These manipulations 

make sure that c and a occur independently even when a is unobserved. 

The above analysis holds for situations in which P > 0 (generative causes). A 

similar derivation can be made for situations in which P < 0, and one evaluates the 

preventive causal power of c.  

Confounding may of course be due to observed alternative causes as well, not 

only to unobserved ones. Research on confounding by observed causes has shown that 

people are often aware of the confounding and therefore tend to create independence by 

holding the alternative cause constant, preferably in its absent value. For example, 

Waldmann and Hagmayer (2001) have shown that when assessing causal strength 

between a target cause and a target effect learners hold a third event constant only when it 



is an alternative cause but not when it is causally irrelevant or a causal effect (see also 

Goedert, Harsch, & Spellman, 2005; Spellman, 1996). 

Numerous studies have tested power PC theory and related accounts. The typical 

research strategy in this field is to present participants with various causal scenarios in 

which the contingencies between a target cause and an effect are varied by manipulating 

the conditional probabilities of the effect in the presence versus absence of the cause. After 

the learning phase causal strength estimates are requested by the participants. To 

discriminate between the competing theories, contingencies are chosen that entail different 

causal strength estimates in the competing theories. These studies have generally shown 

that in many circumstances learners indeed try to estimate causal power and take into 

account alternative causes when presented with covariation data (Buehner, Cheng & 

Clifford, 2003; Cheng, Novick, Liljeholm, & Ford, 2007; Hagmayer & Waldmann, 2007; 

Novick & Cheng, 2004; Wu & Cheng, 1999), although there are also situations in which 

learners seem to be trying to estimate covariation or other statistics (see Cheng & Novick, 

2005; Hattori & Oaksford, 2007; López & Shanks, 2008; Luhmann & Ahn, 2007; White, 

2003).  

In sum, Cheng‘s (1997) theory computes point estimates of wc, causal power. Formally 

the theory provides an answer to the query for the maximum likelihood estimate of wc. 

However, power PC theory does not take into account the uncertainty of inductive causal 

inference. In particular, the power PC estimate is insensitive to sample size, and other 

sample statistics that should affect inductive inference.  

(2) Causal Support Theory 

Griffiths and Tenenbaum (2005) analyzed causal inference in the context of their 

causal support model which takes into account the uncertainty of parameter estimates by 

considering distributions of parameters in contrast to point estimates (see also Griffiths, 

Kemp, & Tenenbaum, 2008). Like Cheng‘s (1997) theory this account is derived from 



normative considerations about rational inference; both theories postulate that everyday 

learners strive to reason rationally if possible. Thus, the primary goal of these theories is 

to provide a computational account of human reasoning, not a theory of cognitive 

mechanisms.  

Whereas Cheng‘s (1997) focus were judgments of causal strength, which were 

modeled as parameter estimation tasks, the causal support model focuses on the 

assessment of the likelihood of the presence of a causal link between a target cause c and 

an effect e. Griffiths and Tenenbaum argued that this is actually the question learners try 

to answer when estimating causal power. Within a Bayesian account structure judgments 

are a case of model selection (see Mackay, 2003). The causal support model aims to 

contrast the evidence in favor of a causal model in which a link exists between c and e 

(Model 1; see Fig. 54.1) with a causal model in which these two variables are 

independent, and e is only influenced by the background causes a (Model 0). As in power 

PC theory, it is assumed that there are additional hidden causes a in the background 

which affect the base rate of the effect. Also it is assumed that c and a are, in the case of 

generative causation, combined by the noisy-OR gate. 

The center of Bayesian inference is Bayes‘ rule, 

   



P(H |D) 
P(D |H)P(H)

P(D)
       (Equation 6) 

where H denotes a hypothesis, and D denotes observed data. Bayes‘ rule provides a 

formal tool for modeling the inference concerning the posterior probability of a 

hypothesis, )|( DHP , with )(HP representing the prior belief in the hypothesis and 

)|( HDP  representing the likelihood of the data given the hypothesis. 

In general, there are several competing hypotheses that may explain a given set of 

data, like Model 1 and Model 0 for a simple causal relation. To compute how likely a 

model is in comparison to other models, a ratio representation of Bayes‘ rule is used. In 



causal support theory the decision for a model is based on the posterior probability ratio of 

Model 1 and Model 0 by applying Bayes rule (cf. Equation 6): 

)0(

)1(
log

)0|(

)1|(
log

)|0(

)|1(
log

ModelP

ModelP

ModelDP

ModelDP

DModelP

DModelP
  .                          (Equation 7) 

Thus, the log ratio of the posterior probabilities (left side of Eq. 6) equals the sum of 

the log ratio of the likelihoods of the data given each model (first expression on right 

side) and the log ratio of the models‘ prior probabilities (second expression). Assuming 

equal base rates of Models 1 and 0, causal support is determined by the log likelihood ratio, 

)0|(

)1|(
logsupport 

ModelDP

ModelDP
 .                                           (Equation 8) 

Thus, support represents a measure of the degree of evidence that data D provide in favor 

of Model 1 over Model 0. The computations of the likelihoods of the data D given the 

models take into account the uncertainty attached to parameter estimation. The likelihood 

of D given Model 1 versus Model 0 are computed by averaging over the unknown 

parameter values, causal strengths wa and wc, which can vary between 0 and 1. 

Griffiths and Tenenbaum (2005) presented experiments providing evidence for their 

causal support theory, generally using the same research paradigm used to test power PC 

theory: Participants are confronted with contingencies which entail different patterns of 

strength estimates in the competing theories (e.g.,  causal support theory vs. power PC 

theory). These experiments showed sensitivity to sample size, and demonstrated good fits 

between power estimates and the Bayesian causal support measure. Thus, these studies 

suggest that people indeed take into account the uncertainty of statistical inference in causal 

induction.  

Lu, Yuille, Liljeholm, Cheng, and Holyoak (2008) have further developed Bayesian 

models of power estimation, considering different variants of priors for the causal models 

and their parameters. Various experiments showed that models incorporating a simplicity 



bias along with the assumption that causes tend to be strong (―strong and sparse bias‖) 

provided the best fit to the data.  

(3) Summary 

In sum, the literature on causal power estimation suggests that people often try to go 

beyond covariation information and are sensitive to causal power. However, there are 

different ways a learner may interpret a power query. For example, she may provide an 

estimate of the strength parameter, assess the likelihood of a causal link, or interpret the test 

question as a request to judge the extent to which the observed cause actually is responsible 

for the occurrence of the effect in the case at hand (see Cheng & Novick, 2005). The 

complexity of the task also affects the inference strategies, which sometimes prevents 

reasoners from reaching their goals to estimate power (see De Houwer & Beckers, 2003; 

Waldmann & Walker, 2005). Despite the wealth of studies on causal strength estimations, 

little is known about the interplay between inference goals and task factors in determining 

how people estimate causal strength. 

Causal Mechanisms, Processes, and Forces 

The theories we have discussed so far are all variants of theories that view causes as 

difference makers. In probabilistic theories, causes change the probability of the effect, 

counterfactual and logical theories compare the hypothetical or actual absence of the 

cause with its presence (Dowe, 2000). These accounts can be contrasted with mechanistic 

process theories, which focus on processes and mechanisms initiated by causal events. A 

popular recent philosophical example of such a theory was developed by Dowe (2000), 

who characterized causal processes in terms of the transmission of a conserved quantity, 

such as linear momentum, charge, and so on. This theory can be applied to physical 

processes but it is less clear how such an account would model other domains (e.g., 

economy). Moreover, it seems unlikely that people who are not scientists know much 

about conserved quantities. A more general account, which has also been adopted in 



psychology are theories that focus on the mechanisms relating causes and effects (e.g., 

Machamer, Darden, & Craver, 2000). 

(1) Mechanisms and Covariation 

Although Rozenblit and Keil (2002) have shown that people have little knowledge 

about the mechanisms underlying artifacts from everyday life, it still seems plausible that 

mechanism information is considered important when it is available. Most of us certainly 

believe that causes are connected with effects by some mechanism, even when we do not 

really care to get to know the details.  

A number of studies have investigated how covariation and mechanism information 

interact. Knowledge about causal mechanism typically increases estimates of perceived 

correlations relative to the objective covariations in the data (Koslowski, 1996) – even 

when the covariation is zero (Chapman & Chapman, 1967, 1969). Ahn, Kalish, Medin, 

and Gelman (1995) employed an information search paradigm to pit mechanism against 

covariation information. In their experiments participants were confronted with various 

positive and negative fictitious facts, such as the promotion of Mary last year. 

Participants were requested to ask further questions which would help them to find out 

which causal factor is responsible for the target event. The general finding of this study 

was that participants were more interested in potential mechanisms rather than 

covariation. For example, participants were more interested in whether Mary did 

something special that would motivate her raise, rather than information about how many 

of her colleagues also got raises.  

Fugelsang and Thompson (2003) proposed a dual-process theory which claims that 

causal judgments are influenced by two independent sources, covariation information and 

mechanism knowledge. The results were not entirely conclusive (see Perales, Shanks, & 

Lagnado, 2010), but the authors interpret their findings as showing that new data is 

weighted more heavily in causality judgments when there  is a plausible mechanism than 



when the mechanism is implausible. In contrast, new covariation data is simply combined 

with information about covariation in the past, regardless of whether the new and old 

covariation match or mismatch.  

All these studies show that people care for mechanism information. However, pitting 

mechanisms against covariation does not reflect the current state of the field anymore. 

The previous sections have shown that modern theories of probabilistic causation do not 

claim anymore that causation can be reduced to covariation. Covariation rather is an 

empirical indicator of causal relations, which is especially important in situations in 

which we do not have prior knowledge and need to induce causal knowledge based on 

data (see Cheng, 1993). This view is certainly consistent with the findings that 

knowledge about mechanisms, which might have been induced in previous learning 

contexts, may influence current judgments. It also makes sense to weigh well established 

knowledge more than current data, which is typically noisy.  

Moreover, covariation assessment itself is intrinsically linked to mechanism 

knowledge. If people observe a continuous sequence of events, the number of possible 

covariations that could be computed clearly surpasses their information processing 

capacity. Mechanism knowledge can place constraints on the events we consider for 

covariation assessments. If we suddenly experience nausea we may hypothesize a drug 

we ingested two hours ago as the cause but not a food item we ate one minute ago, or 

various other irrelevant events. A number of studies have shown that people use 

intuitions about the temporal delays of different mechanisms when making covariation 

assessments (Buehner & May, 2002, 2003; Buehner, 2005; Greville & Buehner, 2007, 

2010; Hagmayer & Waldmann, 2002).  

Another reason why mechanism and covariation theories need not be seen as 

competitors anymore, is that the focus on single cause-effect relations has been replaced 

by a greater interest in other causal models, such as causal chains (see section on 



Reasoning with Causal Models). Within probabilistic theories, mechanisms can be 

modeled as causal chains in which multiple events form a sequence (see Fig. 54.2). When 

information about the potential alternative causal explanations is already available, it 

seems reasonable to ask for information about the chaining of causal relations, rather than 

for contrast information that is already known. For example, in the study of Ahn et al. 

(1995) participants probably already knew possible causes for salary raises, and therefore 

needed  information which restrict the possible explanations. 

(2) Causal Forces 

So far we have discussed theories that postulate causal relations between classes of 

events, for example between smoking and lung disease. However, we can also ask about 

the actual cause in specific situations (i.e., singular causation), for example whether the 

lung disease Peter contracted last year was due to his smoking, exposure to asbestos, or 

some other cause. According to probabilistic theories, both levels are clearly related, we 

need generic level knowledge to answer questions about actual causes but nevertheless 

both levels need to be separated. Thus, although in Peter‘s case we only have observed 

the presence of smoking and lung disease, which by itself does not ensure a causal 

relation, smoking is a candidate for his lung disease because we know that in the 

reference class to which Peter belongs smoking and lung disease are causally related (see 

Pearl, 2000).  

However, there is an alternative view: Some psychologists have argued that the 

specific level in which no covariation information is available is the primary level, and 

that we derive generic level conclusions from collections of specific, singular cases. An 

example of such an approach are force theories which assume that people represent 

singular causal events as generated by hidden forces. Whereas philosophical theories of 

mechanisms and processes try to model causation in terms of normative scientific 



theories, the forces postulated by the psychological theories bear more similarity to 

medieval impetus theories (McCloskey, 1983) than to modern Newtonian physics.  

White (2006, 2009) uses Michotte type launching events to demonstrate the 

difference between intuitive causal representations and physics (see also White, 2005). In 

Michotte‘s (1963) famous demonstrations of phenomenal causality participants observed 

moving objects. For example, in a launching scenario, Object A moves towards Object B, 

and touches it. This stops Object A and sets Object B into motion at the same or a slightly 

lesser speed. Observers typically describe this scenario as a case in which the movement 

of Object B is caused by Object A (i.e., launching). Although according to Newtonian 

physics the force on body B exerted by body A is equal in magnitude but opposite in 

direction to that on body A exerted by body B, observers often see Object A as the cause 

and Object B as the effect (causal asymmetry). Nobody would describe the scenario as a 

case of Object B stopping Object A, although this would be a legitimate description.  

The impression of causal asymmetry is also reflected in judgments about force. White 

(2009) presented participants with different launching events and asked them provide 

estimates of the relevant underlying forces. The results showed that in such events more 

force is attributed to Object A than Object B, and that Object A is viewed as active and 

exerting a force on Object B, whereas the initially stationary Object B is viewed as 

inactive, exerting resistance to being moved. Thus, causal interactions are perceived as 

the result of the opposition between forces of agents (e.g., Object A) and resistance of 

patients (e.g., Object B). Within White‘s theory, force and resistance are theoretical 

concepts that need to be estimated based on observable data. White (2009) shows that 

different observable kinematic features, such as the velocity of objects before and after 

contact, are the basis for force and resistance attributions.  

How can the impression of causal asymmetry be explained? In developmental 

psychology the hypothesis is popular that force attributions in launching scenarios may 



be due to an innate module specialized for causal analysis (see Carey, 2009; Leslie & 

Keeble, 1987). White (2009) disagrees and proposes the theory that our haptically 

experienced actions are the primary sources of intuitions about force and resistance. 

When we manipulate object we experience the required force, and take into account 

properties of the objects, which are experienced as resistance. These sensorimotoric 

schemas are used to make sense of analogous causal interactions which we only passively 

observe.  

White‘s (2009) theory is restricted to launching and similar events. A more general 

theory that aims at elucidating our understanding of abstract causal concepts, such as 

cause, prevent, and enable, is Wolff‘s (2007) theory of force dynamics (see also Wolff & 

Song, 2003; Talmy, 1988). Wolff (2007) also focuses on specific causal events, but 

studies a wide range of scenarios from different domains. As in the theories of White 

(2009) and Talmy (1988), two entities are distinguished, which Wolff calls affectors and 

patients (i.e., the entity acted upon by the affector). Force theory states that people 

evaluate configurations of forces attached to affectors and patients, which may vary in 

direction and degree, with respect to an endstate, that is, the possible result. Forces can be 

physical, psychological (e.g., intentions) or social (e.g., peer pressure). Causal relations 

are analyzed in terms of three components, (a) the tendency of a patient for an endstate, 

(b) the presence or absence of concordance between affector and patient, and (c) the 

degree to which the endstate is reached. Table 1 summarizes the predictions for how 

people use the concepts cause, prevent, and allow (enable). 

Table 1: Force dynamic analysis of the meaning of causal concepts 

 Patient tendency 

for endstate 

Affector-patient 

concordance 

 

Endstate 

approached 

Cause No No Yes 

Allow (enable) Yes Yes Yes 

Prevent Yes No No 

 



For example, force theory would represent the singular causal fact ―Winds caused the 

boat to heel‖ in terms of a patient (the boat) that had no tendency to heel (Tendency = 

No), the affector (the wind) acted against the patient (Concordance = No), and the result 

(heeling) occurred (Endstate approached = Yes). In contrast, ―Vitamin B allowed the 

body to digest‖ describes a scenario in which the patient (body) already has a tendency 

toward the endstate (digest), which is reached in accordance with the affector (vitamin 

B). Preventing, in contrast, refers to cases in which an affector exerts a force that 

counteracts the tendency of a patient toward an endstate (e.g., ―Wind prevented the boat 

from reaching the harbor‖).  

Empirical support for the model was provided in a series of experiments in which 

participants made judgments about 3-D animations of realistically rendered objects (e.g., 

moving boats on a lake) with trajectories that were wholly determined by the force 

vectors entered into a physics simulator. For example, participants were asked to judge 

whether they are viewing a case of cause, enable, or prevent (see Wolff, Barbey, & 

Hausknecht, 2010; Lombrozo, 2010, for further developments).   

Force theories represent an important novel class of theories which highlight aspects 

of causality that have largely been neglected in previous theories. Causes have mostly 

been viewed as entities that make a difference with respect to their effects, but little is 

said about how they make a difference, and why a specific functional form is observed 

between causes and effects. Force theories also point to the importance of empirical 

indicators of causation beyond (or instead) of covariation (e.g., velocity).  However, 

research on force theories is still in the beginning stage so that a number of questions 

remain unanswered. For example, it is unclear how general these theories are. Wolff  

(2007) thinks that force theories can replace other theories, but at this point it is not clear 

whether they can successfully model all kinds of causal relation. The model is very 

convincing in cases of perceptions of cases of singular causation (e.g., moving objects) in 



which attributions of forces and endstates seem natural, but it is less clear whether all 

causal relations, especially generic ones, are also represented this way. Do we represent 

causal claims such as ―social status influences success‖ or ―interest rates influence 

spending‖ in terms of forces and resistance, or forces and endstates? Although this may 

be the case, there is no direct empirical evidence for such a claim. Sloman, Barbey, and 

Hotaling (2009) have proposed a successful causal model theory of cause, enable, and 

prevent that does not contain references to forces and tendencies (see also Cheng & 

Novick, 1991). 

Wolff‘s (2007) version of force theory is more general than White‘s (2009) analysis 

of launching events, which comes at the cost that it is unclear how the different 

theoretical concepts are estimated. White has elaborated such an account for launching 

events but kinematic information (e.g., velocity) is obviously only relevant in a restricted 

set of domains. Other empirical indicators need to be discovered for other manifestations 

of causal forces. 

Force theories have tried to separate themselves from theories that use covariation as 

input to causal power assessments. However, it seems implausible to generally dismiss 

this information. For example, it seems unlikely that people would make force 

attributions when considering the claim ―Vitamin B allowed the body to digest‖ (Wolff, 

2007), when there is no prior covariational knowledge that supports vitamins as potential 

causal agents. Covariation information allows people to infer causal relations between 

variables even when no cues relevant for phenomenal causality are present. Schlottmann 

and Shanks (1992), for example, showed that people can use correlations between color 

change cues and movements to judge an underlying causal relation although color 

changes did not lead to the perception of phenomenal causality.  

Reasoning with Causal Models 



Force and mechanism theories have so far primarily been applied to singular causal 

relations, and do not address the question how intuitions about forces and mechanisms 

can be related to covariation information. Causal model representations provide tools to 

integrate basic intuitions about causal relations with inference and learning methods. A 

further advantage of causal models is that they can be applied to complex networks of 

causes and effects, thus overcoming the restrictive focus on individual causal relations.  

Networks of cause-effect relations lend themselves to graphical representations, 

which have been introduced in philosophy (Reichenbach, 1956), and further developed to 

Bayes net or causal Bayes net theory in both philosophy and Artificial Intelligence 

research (e.g., Pearl, 1988, 2000; Spirtes, Glymour, & Scheines, 1993; see Koller & 

Friedman, 2009, for a recent textbook). Although Bayes nets have primarily been 

developed as a practical tool for automated inference and data mining, they have also 

inspired psychological research (see Gopnik et al., 2004; Sloman, 2005, for overviews). 

Causal Bayes net theory is not a unified theory but integrates various more specific tools, 

which neither are nor are meant to be plausible as psychological theories. Moreover, a 

number of formal assumptions are controversial as psychological claims. Therefore, we 

will use the more neutral term causal model in the following discussion except when 

discussing the specific assumptions underlying causal Bayes nets.   

Figure 54.2 shows examples of causal models with three events. In general, causal 

models include variables that represent causes and effects along with arrows representing 

direct causal relations. These graphical representations of the structure of the causal 

models provide useful information about conditional dependence and independence 

relations. Assuming the Markov condition, which states that each variable, conditional 

upon its direct causes, is independent of all other variables except its direct and indirect 

effects, the common cause model in Figure 54.2b implies, for example, that effects A and 

B of the common cause C are correlated but become independent conditional upon their 



cause. Similarly, in the causal chain model (Fig. 54.2c) the final effect B is correlated 

with the initial cause A and the intermediate cause C but becomes independent from the 

initial cause when the intermediate cause is kept constant. Finally, the common effect 

model (Fig. 54.2a) implies that the causes A and B are marginally independent from each 

other but become dependent once the state of the effect C is known. This feature of 

common effect models explains the familiar intuition of explaining away or discounting. 

For example, once we know that we have nausea due to contaminated food, other 

potential causes, such as an infection, become less probable.  

Apart from structure information, causal models also contain parameters that can be 

estimated based on learning data. These parameters (e.g., wc in Fig. 54.1) quantify 

estimates of causal power of generative or preventive causes, and assumptions about the 

way multiple causes are integrated (e.g., linear additive integration by noisy-OR). Causal 

models can be learned, and they can support predictive inferences from causes to effects, 

or diagnostic inferences from effects to causes. The following sections will give an 

overview of the most important psychological findings motivated by causal model 

theories. 

 

Figure 2. Basic causal models with three causal variables, (a) common effect, (b) 

common cause, (c) causal chain model.  
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(1) Causal arrows 

One of the most fundamental properties setting causal relations apart from mere 

covariations is the directionality of the causal arrow. Regardless of the order in which 

causal events are experienced, causal relations are directed from causes to their effects. 

Causes generate their effects but not vice versa, which can be explained by the 

unidirectionality of the underlying mechanism.  

Waldmann and Holyoak (1992; Waldmann, Holyoak, & Fratianne, 1995) introduced 

causal model theory in cognitive psychology, hypothesizing that learners use abstract 

causal knowledge about causal networks guiding their processing of the learning input. 

The general idea of their experimental paradigm was to present participants in different 

learning conditions with identical covarying events but manipulate the intuitions about 

which events represent causes and which effects (see also the section on Associative 

Theories). For example, Waldmann (2000, 2001) presented learners first with cues that 

represented substances in hypothetical patients‘ blood and then gave feedback about 

fictitious blood diseases. Two conditions manipulated—through initial instructions—

whether learners interpreted the substances as effects of the diseases (common cause 

model) or as causes (common effect model). Thus, learners represented identical cues 

either as causes which they used to predict a common effect (i.e., predictive learning) or 

as effects to diagnose a common cause (i.e., diagnostic learning). In the test phase 

learners were asked to estimate the strength of the relation between substances and 

disease. The results showed that causal models guided how the learning input was 

processed. Learners treated the substances as potentially competing explanations of the 

disease in the common effect condition, whereas the substances were treated as collateral 

correlated evidence of a common cause in the contrasting condition.  Consequently, 

effects conforming to patterns entailed by cue competition (e.g., blocking) resulted only 

when the cues represented causes but not effects. These findings demonstrate that people 



do not simply associate cues with outcomes but represent the learning events within 

causal model structures. 

Further evidence for sensitivity to the direction of the causal arrow comes from a 

semantic memory study by Fenker, Waldmann, and Holyoak (2005). Questions referring 

to the existence of a causal relation between events described by a pair of words (e.g., 

spark-fire) were answered faster when the first word of a pair of words referred to a cause 

and the second word to its effect than vice versa (i.e., fire-spark). No such asymmetry 

was observed, however, with questions referring to the associative relation between the 

two words.  

Evidence for the asymmetry of causes and effects can also be found in research on 

inductive reasoning about properties. For example, undergraduates are more likely to 

infer that ―lions have enzyme X‖ from the premise ―gazelles have enzyme X‖ than vice 

versa because their knowledge about food chains makes it easier for them to imagine the 

transmission from gazelles to lions than the other way around (Medin, Coley, Storms, & 

Hayes, 2003).  

Finally, Ahn and colleagues, using category membership judgments, have 

demonstrated that causes often carry more weight than effects in causal categories 

(causal status effect). For example, in Ahn, Kim, Lassaline, and Dennis (2000) 

participants were instructed about artificial animal categories that were described as 

possessing three features: eats fruit (X), has sticky feet (Y), and builds nests on trees (Z), 

which are causally linked within a chain. When presented with items in which one feature 

was missing subjects showed that they found the item least likely to be a member of the 

category when X was missing and most likely when only Z was missing (see also Kim & 

Ahn, 2002, for examples from clinical psychology). The theoretical source and generality 

of these findings is currently under debate.  Rehder and Kim (2006) have questioned the 

generality of the causal status effect, and have shown that a common effect of multiple 



alternative causes may receive more weight than either of its causes. At any rate this set 

of findings does provide additional evidence for the psychological difference between 

cause and effect representations.  

(1) Causal Structure 

One of the main strengths of causal model theories is that they do not only focus on 

models in which one or more causes converge on a common effect, but also on more 

complex causal models. One key advantage of causal model representation is their 

parsimony. Only direct causal relations are represented (by arrows), whereas covariations 

between indirectly linked events can be computed from the model based on information 

about the strengths of the direct relations and the structure of the model. A number of 

studies have investigated whether people are capable of deriving predictions for indirect 

relations.  

For example, Waldmann et al. (1995) have used a learning paradigm in which 

participants were presented with multiple cues which were either described as causes of 

an effect (common effect model), or as effects of a single cause (common cause model). 

For example, in one experiment the task was to learn to classify stones as magnetic or 

non-magnetic based on the spatial orientation of surrounding iron compounds. In the 

common effect condition the iron compounds were described as potential causes of the 

stones being magnetic, whereas in the common cause condition the magnets were 

characterized as influencing the spatial orientation of the surrounding iron compounds. 

Learning difficulty was assessed by measuring the mean number of errors until a criterion 

was reached. Across different conditions, it was manipulated whether the cues were 

correlated or independent. The findings showed that participants in the common cause 

condition learned faster to predict the outcome when the cues were correlated, whereas 

independent cues yielded faster learning with the common effect model. This finding is 

consistent with the fact that common cause models entail correlations between their 



effects, whereas the default assumption of common effect models is that the causes are 

independent. 

Rehder and colleagues have presented a number of studies showing sensitivity to 

structural implications of causal models in categorization tasks. For example, Rehder 

(2003a, b) presented subjects with fictitious categories of stars (e.g., Myastars) which had 

five different binary features (e.g., ionized helium, very hot, high density, etc.), which 

varied between abnormal and normal values (see also Rehder & Hastie, 2001). 

Additionally instructions about the causal model connecting these features were provided 

(common cause model; chain; common effect model). Then different exemplars with 

different feature configurations were presented along with the task to rate the degree of 

category membership (i.e., typicality). One important finding was that subjects rated 

exemplars more typical that were consistent with the structural implications of the 

instructed causal model (coherence effect). For example, subjects expected that in causal 

chains or common cause models it is very likely that either all features are normal or all 

abnormal. Thus, subjects expected correlations between indirectly linked events, which is 

in line with the structural implications of causal models (see also Rehder & Kim, 2006, 

for more complex causal models). 

Sensitivity to the structure of the underlying causal model has also been demonstrated 

in inductive inference tasks (see Rehder & Hastie, 2001; Rehder, 2009). Rehder (2009) 

used his paradigm in which subjects were informed about fictitious categories with 

multiple features, for example, Romanian Rogos (a type of automobile).  After learning 

about Rogos, participants in one of the experiments were presented with a series of trials 

in which they were told about one novel feature, for example a zinc laden tank. The 

crucial manipulation involved the causal role of this new feature. Some participants were 

told that zinc laden tanks caused one of the familiar features of Rogos, whereas others 

were instructed that these tanks were effects of one of the features. When subjects were 



asked how prevalent the new feature was within the category of Rogos they gave higher 

ratings when it was causally linked to a common feature than to a rare feature regardless 

of its causal status, which is predicted by causal model theories.  

(2) Observing versus Intervening 

One of the key differences between causal models and probabilistic or associative 

models is that they support inferences about the consequences of actions. Probabilistic or 

associative models tell us how variables are correlated but they do not distinguish 

between spurious non-causal and causal correlations. Interventions in a cause lead to its 

effects, but this effect cannot be accomplished by an intervention in a spurious correlate. 

For example, barometers are spuriously correlated with weather, and therefore can be 

used to predict the weather. However, tampering with the barometer does not change the 

weather because they are not causes of the weather. Thus, causal representations are 

crucial for correct predictions of the consequences of actions. Another feature of 

interventions, which are captured by causal Bayes net theories, is the fact that 

interventions, which deterministically and independently change the states of a target 

variable, remove all causal influences on the variable that is the target of the intervention. 

If we tamper with the barometer, then its reading is solely influenced by our manipulation 

but not by its usual cause, atmospheric pressure (Pearl, 2000; Spirtes et al., 1993; 

Woodward, 2003). Causal Bayes nets model interventions in variables as a removal of all 

causal arrows that normally influence this variable (―graph surgery‖)(see also Waldmann, 

Cheng, Hagmayer, & Blaisdell, 2008, for an explanation of interventions in terms of 

discounting and explaining away).  

Do people distinguish between observations and interventions as causal Bayes nets 

predict? Research indicates that they do (see Hagmayer, Sloman, Lagnado, & Waldmann, 

2007, for an overview). Sloman and Lagnado (2005) studied a number of causal models 

and interventions that removed individual events in reasoning tasks. For example, 



participants were told that ‗When A happens, it causes B most of the time; when B 

happens it causes C most of the time, A is present and C is present.‘ Then they were 

asked either to imagine that B was observed to be absent, or to imagine that B was 

actively prevented from occurring. In both cases participants were requested to draw 

inferences about A and C. Subjects generally predicted the absence of C but they 

predicted the absence of A only when the absence of B was observed but not when it was 

removed by an intervention (―undoing‖). Thus, subjects had the intuition that the cause of 

B is unaffected if B is actively removed. Probabilistic theories or theories of propositional 

logical reasoning including mental model theory do not predict this finding.  

Waldmann and Hagmayer (2005) showed that people also distinguish between 

observations and interventions when subjects receive both instructions about the structure 

of the underlying causal model and learning data about probabilistic relations between 

causal events (i.e., covariations). The study demonstrates that people use the learning data 

to infer the parameters of the underlying causal model, and are able to use the 

parameterized causal model to derive estimates about the probabilities resulting from 

hypothetical interventions and observations. These findings have been confirmed for 

more complicated models involving confounding causal pathways and a broader variety 

of learning procedures and species (Blaisdell, Sawa, Leising, & Waldmann, 2006; 

Leising et al., 2008; Meder et al., 2008, 2009a).  

It is particularly important to distinguish between interventional and observational 

probabilities when we make choices. When we decide which action to take, it is the 

interventional probabilities that matter, and not simply the observed probabilities (Joyce, 

1999). Hagmayer and Sloman (2009) examined the question whether subjects use 

interventional probabilities in decision making. For example, participants were told that 

men who do the chores are substantially more likely to be in good health than men who 

do not. In addition, participants were provided with causal explanations for this fact. 



Participants in one group were informed that the relation is due to a common cause 

(degree of concern) that causes men to help at home and to care about their health. 

Another group was told that doing the chores is a form of exercise that positively affects 

health. Participants were sensitive to the causal structure underlying the probabilistic 

relation and preferred to start doing the chores when there was a direct causal link. 

Moreover, participants differentiated between an action that was merely observed versus 

an action that was actively chosen in their estimates of the probability of the desired 

outcome. Only choices were treated as hypothetical interventions within a causal Bayes 

net.  

The difference between observations and interventions is not only important in 

reasoning and decision making, but also can aid learning. Interventions often allow us to 

discriminate between alternative causal models. For example, a correlation between 

bacteria and ulcer does not tell us whether bacteria cause ulcer or whether there is a 

common cause of both. An intervention (e.g., removing the bacteria) can tell us whether 

bacteria are the cause. A number of studies have shown that learners can use 

interventions to aid their learning (Gopnik et al., 2004; Lagnado & Sloman, 2004; 

Steyvers, Tenenbaum, Wagenmakers, & Blum, 2003).  

 

 

(3) Knowledge-based causal induction 

Many Bayes net researchers in computer science have focused on the development of 

statistical tools for scientific research which require minimal prior knowledge. An 

example of a learning method that uses minimal knowledge are constraint-based 

algorithms which allow us to induce causal structures on the basis of the patterns of 

statistical dependency within a set of variables (Pearl, 2000; Spirtes et al., 1993). A 

second approach to structure learning is framing the task in terms of Bayesian inference. 



In this approach the learner must determine the likelihood of a structure hypothesis given 

data. To achieve generality, all possible structures along with minimal assumptions about 

the parameters are being considered in these statistical theories. Both approaches make 

few assumptions about the domain and therefore need vast amounts of reliable data to 

accomplish their goal. 

In psychology there has been a debate whether these algorithms are plausible models 

of human learning (see Gopnik et al., 2004; Griffiths & Tenenbaum, 2009). The high data 

demands of the Bayes net algorithms cast doubt on the psychological plausibility of these 

models given that people often successfully acquire causal knowledge on the basis of 

very few learning trials. Empirical studies confronting subjects with the task to induce 

causal models based on covariation data alone have generally shown poor performance 

with observational data although these studies typically presented a small number of 

variables along with information about a limited number of alternative models to be 

considered (Steyvers et al., 2003). A number of studies have shown that allowing subjects 

to intervene helps (Gopnik et al., 2004; Steyvers et al., 2003). Kushnir, Gopnik, Lucas, 

and Schulz (2010) could even show that people can induce hidden causes when people 

received information about salient (deterministic) covariations. In sum, there is some 

evidence that people can use covariation information to induce causal structures but 

performance is poor unless learning conditions are favorable.  

The implausibility of domain-general algorithms of structure induction has led 

Waldmann (1996) to propose the view that people generally use prior hypothetical 

knowledge about the structure of causal models to guide learning in a top down fashion 

(―knowledge-based causal induction‖)(see also Lagnado, Waldmann, Hagmayer, & 

Sloman, 2007). People use various cues which guide their initial hypotheses about causal 

structure, including temporal order, interventions, and prior knowledge. Temporal order 

is a potent cue to causal order (causes typically precede their effects). Prior knowledge 



may, however, override the temporal cue. For example, a physician may see the symptom 

of herpes (i.e., effect information) before test results about the cause come in but can 

nevertheless form the correct causal hypothesis that a herpes virus has caused the 

observed skin symptoms and not vice versa. Numerous studies have shown that people 

can disentangle temporal from causal order (see Waldmann et al., 2006). Interventions 

are a further potent cue that allows us to distinguish causes from effects. Inducing causal 

structures based on cues simplifies the learning of causal strength parameters because 

learners may now focus on individual links rather than encoding patterns of dependency 

(see Fernbach & Sloman, 2009; Waldmann et al., 2008). 

Assumptions about integration rules underlying multiple causes (i.e., functional form) 

also provide knowledge-based constraints on learning. Instead of considering large 

numbers of possible parameterizations as in Bayesian structure learning, the task may be 

simplified by considering only plausible default rules (see Griffiths & Tenenbaum, 2009). 

A typical default assumption underlying common effect models with generative causes is 

that the multiple causes independently influence their effect (noisy-OR schema)(see 

Cheng, 1997; Griffiths & Tenenbaum, 2005; Lu et al., 2008).   

Although independent causal influences may be the default assumption, multiple 

causes can also interact (see Novick & Cheng, 2004). Interactions require more complex 

representations because the causal influence of a configuration of multiple causes cannot 

be reduced to a function of the individual causes. Empirical work on interactions and 

integration rules has only just begun. One factor influencing assumptions about 

integration rules is prior learning. Beckers et al. (2005) and Lucas and Griffiths (2010) 

have shown that people can transfer non-additive integration rules from a previous 

learning context to the present task (see also Shanks & Darby, 1998).  

Another factor influencing the choice of integration rules is domain knowledge. 

Waldmann (1996, 2007) presented subjects with colored liquids which potentially 



affected the heart rate when consumed. Different conditions showed that subjects tended 

to add the individual influences when the liquids were introduced as drugs with different 

strengths. However, subjects averaged the influences when they believed that the heart 

rate is dependent on the taste of the liquids. Here domain knowledge about the different 

properties of extensive and intensive physical quantities determined the integration rule. 

Griffiths and Tenenbaum (2007, 2009) have proposed hierarchical Bayesian 

inference to model knowledge-based (or theory-based) causal induction. The basic idea is 

that probabilistic inference is carried out at multiple levels of abstraction which influence 

each other and are updated simultaneously. In causal learning these levels include the 

data, alternative causal models, and the theory level which encodes knowledge about the 

types of events (e.g., causes vs. effects), the plausibility of a causal relationship, and the 

functional form of these relationships (e.g., noisy-OR). In the hierarchical probabilistic 

model, the theory level at the top defines a probability distribution over causal model 

hypotheses, as each hypothesis defines a probability distribution over data. These 

different levels are then updated based on the data using the basic Bayes‘ rule (see 

Equation 5). Hierarchical Bayesian models speed up learning because the range of 

alternative hypotheses being considered is constrained by both the data and the theory 

level. Moreover, updating occurs on each level so that it is not necessary to assume fixed 

innate knowledge. Biases encoded on the theory level can be changed when the data 

disconfirms them. Finally, hierarchical models have the advantage of being able to 

generalize to new contexts. In a specific learning context both specific causal model 

knowledge and abstract theory knowledge are being updated. This abstract knowledge 

can in turn influence learning in novel domains, and thereby explain transfer effects 

(Lucas & Griffiths, 2010). 

(4) Summary 

 



Causal models provide a fruitful framework for modeling reasoning and learning in 

causal domains. They overcome the traditional restrictive focus on single cause-effect 

relations and have motivated studies on more complex causal scenarios. Moreover, the 

simultaneous development of causal model theory in both computer sciences and 

psychology has proven mutually fruitful, although it turned out that not all developments 

in engineering yield plausible psychological theories. Causal model theories go beyond 

traditional non-causal theories in that both the postulated representation and the inference 

and learning mechanisms are causally motivated. Causal models embody information 

about the structural difference between causes and effects, interventions and 

observations, and combine causal structure information with parameters reflecting causal 

power. Moreover, hierarchical knowledge-based theories allow for the integration of 

abstract theoretical knowledge with the processing of covariation information.  

Unlike, for example, force theories, causal models provide an integrated 

computational mechanism which connects mechanism knowledge with covariation 

information. However, thus far only very basic information about mechanisms is 

expressed in causal models. The asymmetry of causal relations is encoded in arrows, 

which Pearl (2000) has interpreted as ―mechanism placeholders.‖ Prior knowledge about 

causal interactions are being encoded in parameters reflecting functional form and 

integration rules. Although these are certainly important steps in the direction of 

encoding mechanism knowledge, mechanism and force theories suggest that we have 

deeper intuitions about underlying mechanisms which may also need to be expressed in 

causal model theories. Moreover, singular causation, the main focus of force theories, has 

been neglected by causal model theories, although there are some attempts to model 

singular causation (Cheng, 1993; Sloman et al., 2009; Griffiths & Tenenbaum, 2009). 

There are also findings which are critical for causal model theories. Empirical 

evidence for the insufficiency of simple causal models comes from a study by Rehder and 



Burnett (2005), who have developed a reasoning task which allowed for testing people‘s 

intuitions about the Markov condition, which is arguably the most fundamental feature of 

Bayes nets. In their experiments subjects had to rate the conditional probability of an 

effect‘s presence given the state of its cause C. The crucial manipulation was whether 

other effects of C were present or absent (i.e., common cause model). According to the 

Markov condition, participants‘ ratings should be invariant across these conditions. The 

probability of each effect should be only dependent on its cause, not the states of the 

other effects, which are screened off by this cause. Contrary to this prediction, the ratings 

were clearly sensitive to the states of other effects of C. The more collateral effects were 

present, the higher were the rating of the conditional probability of the target effect given 

the presence of C. This Markov violation was extremely robust across many cover stories 

and domains.  

One possible explanation of this finding is that people bring to bear additional 

assumptions about hidden causal events and mechanisms. Possibly the absence of the 

collateral effects of the target cause led subjects to infer that something was wrong with 

the underlying mechanism, hence their uncertainty about the target effect. Although such 

knowledge can be modeled within Bayesian causal models when they are augmented 

with hidden variables and mechanisms (Rehder & Burnett, 2005), the robustness of the 

finding indicates that the usually postulated minimal versions of causal models (e.g., Fig. 

54.2) do not sufficiently capture our causal intuitions.  

General Summary and Perspectives for Research 

Our overview of research on causal reasoning has demonstrated how much progress 

has been made in this field in the past two decades. Not long ago theories of causal 

reasoning dominated which tried to get away with subsuming causal reasoning as a 

special case of more general theories of reasoning, thus ignoring the unique features of 

causality. In these theories causal reasoning has been viewed as a special case of 



associative, logical, or probabilistic reasoning with minimal constraints coming from 

causal notions. Although domain-general reasoning certainly plays a role in causal 

domains, it has been shown that these theories fail to capture truly causal reasoning. 

People are sensitive to various aspects of causality including the directionality of the 

causal arrow, the structure of causal models, causal power, or forces and mechanisms, 

and this sensitivity needs to be an integral part of theories of causal reasoning. The 

present review has discussed a number of recent theories that capture the unique features 

of causality. 

We only could touch upon a subset of studies on causal learning and reasoning. An 

increasing number of studies are interested in the relationship of causal reasoning with 

other cognitive tasks, including diagnostic reasoning (Fernbach, Darlow, & Sloman, 

2010; Krynski & Tenenbaum, 2007; Meder, Mayrhofer, & Waldmann, 2009b), legal 

reasoning (Lagnado & Harvey, 2008), scientific explanations (Lombrozo, 2007, 2010), or 

analogical problem solving (Holyoak, Lee, & Lu, 2010; Lee & Holyoak, 2008). 

Moreover, the interaction between category learning and causal induction has been an 

important recent area of research (Kemp, Goodman, & Tenenbaum, 2010; Lien & Cheng, 

2000; Marsh & Ahn, 2009; Waldmann & Hagmayer, 2006; Waldmann, Meder, von 

Sydow, & Hagmayer, 2009).  

We have discussed research in the context of different theoretical paradigms, which 

have precursors in philosophy and Artificial Intelligence research. This leads to the 

obvious question how the different approaches can be unified. Obviously each theoretical 

paradigm has its pet empirical paradigm for which it works best, whereas other 

applications are neglected. Currently promising approaches are the attempts to integrate 

our knowledge about mechanisms with theories that pick up covariation information to 

induce causal power and causal structures (e.g., causal model theories). However, the 



postulated mechanism knowledge is currently far more abstract than what force theories, 

for example, postulate.  

The different levels of abstraction in the competing theories may turn out to be a 

blessing in disguise. It seems highly implausible that people represent causal relations 

uniformly at the same level of abstraction (e.g., as forces or as abstract causal arrows). 

Cartwright (2004) has expressed skepticism about the possibility of reducing causal 

relations to a few abstract concepts or to a uniform theory. Causal knowledge can be 

represented on an abstract level which is sufficiently captured by nodes and arrows in a 

Bayes net (e.g., ―IQ influences motivation‖), or can make very specific references to 

various mechanisms, which require more detailed representations (e.g., ―the sun attracts 

the planets; ―pistons compress air in the carburetor chamber‖). Often, we may not care 

about mechanisms. If we intervene in a complex system, such as our economy, we are 

generally only interested in global outcomes rather than the myriads of arbitrary causal 

processes that govern complex systems. At other times, we spend huge efforts searching 

for the underlying mechanisms (e.g., air plane crashes).  

One reason for shifting levels of abstraction is that causal explanations are sometimes 

more stable on the specific process level, sometimes more on the abstract level. For 

example, when we send off an e-mail we are fairly sure that the recipient will receive it, 

although it is unpredictable what path the message will take in the internet (see also 

Cartwright, 2001; Lombrozo, 2010). It seems plausible that various factors, including 

expertise and goals, influence how we choose to represent and use causal knowledge. 

This flexibility may in part justify why we have so many theories of causal reasoning.  
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