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Our research examines the normative and descriptive adequacy of alternative computational models of
diagnostic reasoning from single effects to single causes. Many theories of diagnostic reasoning are based
on the normative assumption that inferences from an effect to its cause should reflect solely the
empirically observed conditional probability of cause given effect. We argue against this assumption, as
it neglects alternative causal structures that may have generated the sample data. Our structure induction
model of diagnostic reasoning takes into account the uncertainty regarding the underlying causal
structure. A key prediction of the model is that diagnostic judgments should not only reflect the empirical
probability of cause given effect but should also depend on the reasoner’s beliefs about the existence and
strength of the link between cause and effect. We confirmed this prediction in 2 studies and showed that
our theory better accounts for human judgments than alternative theories of diagnostic reasoning.
Overall, our findings support the view that in diagnostic reasoning people go “beyond the information
given” and use the available data to make inferences on the (unobserved) causal rather than on the
(observed) data level.
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Diagnostic inferences are ubiquitous not only in medicine but
also in everyday reasoning. For example, we reason from effects to
causes when we try to explain why our car does not start, why our
significant other is angry with us, or why our job application was
rejected. In the present research, we focused on the most basic type
of diagnostic reasoning involving a single cause–effect relation
between two binary variables. We refer to such inferences as
elemental diagnostic reasoning.

Research on diagnostic reasoning has a long history in cognitive
psychology, especially in the context of the “heuristics and biases”
framework (Tversky & Kahneman, 1974). The typical result of
this research is that human diagnostic reasoning is deeply flawed

and not in line with statistical norms, such as Bayes’ rule. Kah-
neman and Tversky (1973; Tversky & Kahneman, 1974, 1982)
reported numerous experiments indicating that people tend to
ignore prior probabilities (i.e., base rates) in belief updating and
give too much weight to likelihoods (but see Edwards, 1968;
Peterson & Beach, 1967). Similar findings were obtained in hy-
pothetical medical diagnosis tasks in which participants had to
assess the posterior probability of having a disease, given a posi-
tive test result and the prior probability of the disease (Eddy,
1982).

Although these findings seem to indicate that human diagnostic
reasoning is often biased and error prone, more recently the scope
of many of these phenomena has been questioned. Koehler (1996)
and Barbey and Sloman (2007) have summarized research show-
ing that under specific learning and testing conditions base rates
are actually appreciated. For example, Gigerenzer and Hoffrage
(1995; see also Cosmides & Tooby, 1996; Sedlmeier & Gigeren-
zer, 2001) showed that presenting information in terms of natural
frequencies, rather than as conditional probabilities, substantially
improves participants’ diagnostic inferences. This is in line with
research showing that people often perform well in real-world
diagnostic tasks (Christensen-Szalanski & Bushyhead, 1981).

Causal knowledge is another important factor in diagnostic
reasoning. For example, Ajzen (1977; see also Tversky & Kahne-
man, 1982) showed that increasing the causal relevance of base
rate information improves people’s capacity to reason in accor-
dance with Bayes’ rule when making diagnostic inferences. Kryn-
ski and Tenenbaum (2007) demonstrated that causal models that
highlight the presence of alternative explanations of the evidence
(e.g., alternative causes that can lead to a positive mammogram in
breast cancer screening) help people make better diagnostic judg-
ments. Finally, Fernbach, Darlow, and Sloman (2010, 2011) com-
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pared predictive reasoning from cause to effect with diagnostic
reasoning from effect to cause, using basic causal Bayes nets
(Cheng, 1997; Pearl, 2000) as the normative benchmark. They
showed that people are more sensitive to the presence and strength
of alternative causes when making diagnostic inferences from
effects to causes than when making predictive inferences from
causes to effects.

Scope and Goals

The main focus of the current work is the normative and
descriptive adequacy of alternative computational models of diag-
nostic reasoning. The primary scope of these models concerns
situations in which a data sample about the covariation of a single
binary cause (e.g., a virus) and a single binary effect (e.g., a
substance in the blood of patients) provides the basis for making
diagnostic judgments (e.g., probability of virus given substance)
(i.e., elemental diagnostic reasoning).

Whereas the traditional normative benchmark for such infer-
ences is provided by purely statistical models such as Bayes’ rule,
we analyze diagnostic reasoning from the perspective of causal
inference under uncertainty. In particular, we focus on uncertainty
with respect to the causal structure that may have generated the
observed data. We will show that a simple causal inference theory
that neglects uncertainty, power PC theory (Cheng, 1997; Fern-
bach et al., 2011), makes identical predictions to a purely statistical
approach (i.e., Bayes’ rule). However, modeling diagnostic rea-
soning as a causal inference under uncertainty yields predictions
that diverge from the commonly accepted norm. We will present a
novel model, the structure induction model of diagnostic reason-
ing, which assumes that diagnostic judgments are constrained by
assumptions about alternative causal structures that may have
generated the observed data. This approach takes into account the
uncertainty regarding the causal structure of the environment and
the uncertainty associated with parameter estimates, such as the
cause’s base rate and its causal strength.

A key prediction of our model is that diagnostic judgments
should not only reflect the empirical conditional probability of
cause given effect in the sample data. Rather, judgments should
also take into account to what extent the available data support the
existence of a causal relation between the candidate cause and the
candidate effect, even when the empirical probability of cause
given effect is fixed. Take, for example, the case of a causal
relation between a disease and a symptom. The model predicts that
the observation of the symptom should lead to higher diagnostic
inferences the stronger the belief is in the existence of a causal
relation between the disease and the symptom. By contrast, if the
available data provide only limited evidence for the existence of a
causal link, the model predicts that the diagnostic inference should
be lower in this case, even when the conditional probability of
cause given effect in the data sample is the same. Thus, even if one
observes an identical probability of the disease given the symptom
in different data sets, this does not mean that the diagnostic
judgments should be invariant.

We tested this prediction in two experiments using a learning
paradigm in which participants were provided with frequency
information about the covariation of a binary cause event and a
binary effect event. The base rate of the cause event was always set
to 50%. Thus, in the present experiments we did not focus on the

appreciation of base rates but rather on the role of causal structure
in diagnostic inferences. We analyzed and tested our theory against
a number of alternative models, such as Bayesian variants of
power PC theory (Lu, Yuille, Liljeholm, Cheng, & Holyoak, 2008)
and different models of causal attribution (Cheng & Novick, 2005;
Holyoak, Lee, & Lu, 2010).

Models of Elemental Diagnostic Reasoning

In the following sections, we will discuss three different com-
putational models of elemental diagnostic reasoning (we will later
consider additional models). We will start off with a basic statis-
tical model, simple Bayes, which for many years served as the
normative benchmark. Whereas this model does not make any
assumptions about the relation between data and an underlying
generative causal structure, the other two, power PC theory (in this
case equivalent to a simple causal Bayes net; see Cheng, 1997;
Fernbach et al., 2011) and our structure induction model, share the
assumption that diagnostic inferences operate over causal structure
representations that are inferred from data. That is, diagnostic
inferences take place on the causal, rather than on the data level.
The observed data are assumed to be noisy and are used only as a
proxy for inferring the existence and strength of the underlying,
not directly observable causal relations.

A core feature of causal representations is that they mirror a
characteristic property of our environment, namely, that some
events—causes—have the power to generate or prevent other
events—their effects (Cheng, 1997; Waldmann, Hagmayer, &
Blaisdell, 2006). Causal representations allow us to make different
types of probabilistic inferences (e.g., Buehner, Cheng, & Clifford,
2003; Cheng, 1997; Cheng & Novick, 2005; Meder & Mayrhofer,
2013; Waldmann, Cheng, Hagmayer, & Blaisdell, 2008), general-
izations across different contexts (Liljeholm & Cheng, 2007), and
inferences regarding interventions (Hagmayer & Meder, 2013;
Hagmayer & Sloman, 2009; Meder, Hagmayer, & Waldmann,
2008, 2009; Sloman & Lagnado, 2005; Waldmann & Hagmayer,
2005). These studies support the view that people have a natural
tendency to go “beyond the data given” by inducing representa-
tions that mirror the causal structure of the environment.

Simple Bayes: Empirical Probabilities as the Classical
Norm of Diagnostic Reasoning

If a diagnostic judgment from effect to cause is required, such as
estimating the probability of a disease given the presence of a
symptom, it seems natural to assess the conditional probability of
cause given effect. The diagnostic conditional probability, either
obtained directly from the sample data or derived by Bayes’ rule,
has been endorsed by many researchers as the natural normative
standard, although there is disagreement about whether people’s
reasoning conforms to this norm (e.g., Barbey & Sloman, 2007;
Eddy, 1982; Gigerenzer & Hoffrage, 1995; Kahneman & Tversky,
1973; Koehler, 1996; Krynski & Tenenbaum, 2007).

Let C denote a binary cause event and E a binary effect, and let
{c, ¬c} and {e, ¬e} indicate the presence and absence of these
events. Given a joint frequency distribution over C and E, the
empirical conditional probability of a cause given its effect,
P(c |e), can be directly estimated from the observed relative fre-
quencies (see left panel of Figure 1), or inferred by using Bayes’
rule:
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P(c |e) �
P(e |c) · P(c)

P(e)
�

P(e |c) · P(c)

P(e |c) · P(c) � P(e | ¬ c) · P(¬c)
. (1)

Under the simple Bayes account, no reference is made to the
generative causal processes underlying the observed events, and no
uncertainty regarding parameter estimates is incorporated in the
model. This model is strictly noncausal in that it can be applied to
arbitrary statistically related events (see Waldmann & Hagmayer,
2013).

Power PC Theory: Diagnostic Inferences Under
Causal Power Assumptions

Cheng’s (1997) power PC theory was the first theory in psy-
chology to separate empirical indicators of causal strength (i.e.,
covariation) from estimates of unobservable causal power (see
Waldmann & Hagmayer, 2013, for an overview). The theory
assumes that people aim to infer causal power because one distal
goal of cognitive systems is to acquire knowledge of stable causal
relations rather than arbitrary statistical associations in noisy en-
vironments.

Power PC theory focuses on a default common-effect structure
with an observable cause C and an amalgam of unobservable
background causes A (graph S1 in Figure 2). An estimate for the
strength of the background cause(s), wa, is given by P(e |¬c) (for
mathematical convenience, A is assumed to be constantly present;
see Griffiths & Tenenbaum, 2005). The unobservable probability
with which C produces E is called generative causal power,
denoted wc:

wc �
P(e |c) � P(e | ¬ c)

1 � P(e | ¬ c)
. (2)

This estimate of causal strength differs from the conditional prob-
ability of the effect given its cause, P(e |c), because it “partials out”
the influence of alternative causes that may also have generated the
effect (see Cheng, 1997, for a detailed analysis).

According to power PC theory, people make the default assump-
tions that C and A independently influence E, that A produces but
does not prevent E, that causal powers are independent of the
frequencies of C and A, and that E does not occur without being
caused by either C or A. These assumptions instantiate a particular
generative causal structure known as a noisy-OR gate (Cheng,
1997; Glymour, 2003; Griffiths & Tenenbaum, 2005; Pearl, 1988),
according to which the probability of effect given cause is given by

P(e |c; wc, wa) � wc � wa � wcwa, (3)

where wc and wa denote the causal powers of target cause C and
background cause A, respectively.

Although the primary focus of power PC theory has been on
estimates of causal strength and predictive inferences, the account
can also be applied to diagnostic inferences (Cheng & Novick,
2005; Waldmann et al., 2008). From the noisy-OR parameteriza-
tion, it follows that the diagnostic probability of cause given effect
is given by

P(c |e; bc, wc, wa) �
P(e |c) · P(c)

P(e)

�
(wc � wa � wcwa) · bc

(wc � wa � wcwa) · bc � wa(1 � bc)
�

wcbc � wabc � wcwabc

wcbc � wa � wcwabc
,

(4)

where wc denotes the causal power of candidate cause C, bc is an
estimate of the base rate of cause C, and wa corresponds to the
causal power of the unobserved background A. Equation 4 speci-
fies how the diagnostic probability of a cause given its effect can
be derived under causal power assumptions (Waldmann et al.,
2008).

Conceptually, the power PC model of diagnostic reasoning
distinguishes between the (observable) data and the (unobservable)
causal level and uses data to estimate causal parameters. However,
because all parameters involved in these computations are maxi-

Figure 2. Alternative causal structures in the structure induction model.
C and E denote a binary cause and effect event, respectively. According to
structure S0, there is no causal relation between candidate cause C and
candidate effect E, whereas structure S1 states that there potentially exists
a causal relation between C and E. S1 is the default structure in power PC
theory. Parameter bc denotes the base rate of C, and parameters wc and wa

represent the causal strengths of target cause C and (unobservable) back-
ground cause A, respectively.

Figure 1. Contingency table (left) and experimental stimuli (right) used to represent the co-occurrences (N) of
cause C � {c vs. ¬c} and effect E � {e vs. ¬e} in Experiments 1 and 2.
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mum likelihood estimates directly derived from the sample data,
the inferred diagnostic probability corresponds exactly to the em-
pirical probability in the data. Thus, the power PC model effec-
tively yields the same numeric predictions as the simple Bayes
approach.

Fernbach et al. (2011), examining both predictive and diagnostic
reasoning, tested a causal Bayes net that is formally equivalent to
the power PC model described in this section. Thus, like the
standard power PC model, their causal Bayes net model is not
sensitive to the uncertainty of causal structures and their parame-
ters. The results of their experiments seem consistent with the
predictions of the standard causal Bayes net in diagnostic reason-
ing cases. However, their paradigm is not ideal to test the role of
uncertainty because the studies were based on already acquired
real-world knowledge rather than learning data, which makes it
difficult to control levels of uncertainty.

Structure Induction Model: Diagnostic Causal
Reasoning With Structure Uncertainty

In this section, we present a new model of elemental diagnostic
inference that goes beyond simple Bayes and the power PC frame-
work (see also Meder, Mayrhofer, & Waldmann, 2009). Our
structure induction model of diagnostic reasoning takes into ac-
count both the uncertainty regarding the underlying causal struc-
ture and the uncertainty regarding the parameters.

The characteristic feature of the structure induction model is that
it does not operate on a single causal structure, as does power PC
theory, but estimates the posterior probability of alternative causal
structures given the observed data (Anderson, 1990; Griffiths &
Tenenbaum, 2005, 2009; see also Steyvers, Tenenbaum, Wagen-
makers, & Blum, 2003). According to this model, hypotheses
about alternative causal structures and the existence of a causal
relation between C and E constrain and guide diagnostic infer-
ences. Importantly, taking into account structure uncertainty can
lead to estimates of diagnostic probability that systematically
deviate from the simple Bayes and power PC estimates.

We used the framework of Bayesian inference over graphical
causal networks (i.e., causal Bayes nets) to implement the model.
Analogous to the model of Griffiths and Tenenbaum (2005; see
also Anderson, 1990), our model considers two alternative causal
structure hypotheses that differ with respect to the presumed
existence of a causal relation between C and E. The account uses
the sample data to estimate the structures’ parameters and posterior
probabilities. To arrive at an estimate for a diagnostic inference
that reflects the uncertainty with respect to the true underlying
causal structure, the causal structure hypotheses are integrated out
(Bayesian model averaging; Chickering & Heckerman, 1997). The
resulting diagnostic estimate then reflects the uncertainty regard-
ing the presence of a causal link between C and E. This is crucial
for diagnostic inferences because an effect E only provides evi-
dence for C within the underlying causal model if C and E are
(directly or indirectly) linked, but not when these two events are
unrelated.

In sum, the key mechanism behind the structure induction model
is that the uncertainty about the underlying causal structure and the
existence of a causal link between C and E are taken into account
by averaging over possible causal structures when making a diag-
nostic inference from effect to cause. We next describe the com-

putational steps of the model at the conceptual level; a detailed
formal description is provided in Appendix A.

Causal structure hypotheses. Given a joint distribution over
a cause C (e.g., virus) and an effect E (e.g., symptom) the structure
induction model considers two alternative causal structures that
might underlie the data. These graphs, denoted S0 and S1, are
shown in Figure 2 (cf. Anderson, 1990; Griffiths & Tenenbaum,
2005, 2009). The (prior) probability distribution over the structures
is denoted P(S).

Each of the two graphs represents a hypothesis about a different
generative causal structure potentially underlying the observed
data. According to structure S0, C and E are independent events;
that is, there is no causal relation between candidate cause C and
candidate effect E. Although the two events may sometimes co-
incidentally co-occur, the effect is exclusively generated by unob-
served (independent) background causes A. The second structure,
S1, is the default causal structure in power PC theory (Cheng,
1997; Glymour, 2003; Griffiths & Tenenbaum, 2005). According
to this structure, there exists a causal relation between C and E, but
there are also alternative background causes A that can indepen-
dently generate the effect (for evidence that such independence
assumptions are the default in human causal reasoning, see, e.g.,
Hagmayer & Waldmann, 2007; Mayrhofer, Nagel, & Waldmann,
2010; but see Luhmann & Ahn, 2007).

Note that graph S0 is not merely a special case of graph S1 but
constitutes a qualitatively different, less complex structure hypoth-
esis that suggests an alternative explanation of the data. Impor-
tantly, despite its simpler form, causal structure S0 can have a
higher posterior probability than structure S1. This is because using
Bayesian inference over causal structure hypotheses allows it to
capitalize on Bayesian Occam’s razor (MacKay, 2003). Loosely
speaking, Occam’s razor states that if there are two models (the-
ories, hypotheses) that explain the data equally well, then the
simpler model should be preferred. Conversely, if we compare two
models differing in complexity (e.g., in the number of parameters),
the plausibility of the two models should not be evaluated only
with respect to how well they predict the data, as more complex
models can generate a greater variety of predictions. Bayesian
inference embodies Occam’s razor automatically since a model
that makes more diverse predictions must spread its probability
mass across many predictions, whereas the probability mass of
simpler models will concentrate on the few predictions they are
capable of making. As a consequence, simpler models can achieve
a higher posterior probability when the data conform well with
their (more limited) predictions, without assigning a simpler model
a higher prior probability.

Estimating causal structure parameters. Associated with
each of the two causal structures is a set of parameters (Figure 2),
representing the base rate of the target cause (bc), the causal
strength of C with respect to E (wc), and the strength of the
background cause A (wa). In the structure induction model, the
parameters’ posterior distributions are derived separately for each
of the two causal structures, using Bayesian inference (see Appen-
dix A). For structure S1, parameters bc, wc, and wa are estimated.
Structure S0 has only two parameters: According to this structure
there is no causal relation between C and E; therefore, only
estimates for bc and wa are derived (i.e., the strength of C, wc, is
set to zero).
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Given some data D, different posterior parameter distributions
result under the two causal structures. Assuming a noisy-OR
parameterization of the graphs and independent uniform (i.e., flat)
Beta(1, 1) priors over the parameters, the mean posterior estimates
under S1 will approximate the maximum likelihood estimates of
standard power PC theory. By contrast, under graph S0 (which
states that C has no causal impact on E), the impact of the
background cause may be overestimated, reflecting the base rate of
the effect in the data, as the occurrence of the effect is attributed
to A alone.

Posterior probabilities of causal structure hypotheses. The
posterior probability of the two causal structure hypotheses, S0 and
S1, is proportional to the likelihood of the data given a structure,
P(D |Si), weighted by the prior probability of the structure, P(Si)
(see Appendix A). For our simulations, we assumed a uniform
prior over the structures, that is, P(S0) � P(S1) � 1/2. Depending
on the match between data and causal structure, different posteri-
ors for the two causal structures result. In particular, the weaker the
contingency between cause and effect, the more likely is S0, which
implies that there is no causal relation between C and E.

Integrating out the causal structures. Given the parameter-
ized causal structures and their posterior probability, one can
derive different quantities of interest, such as diagnostic and
predictive probabilities, using Bayesian model averaging (see
Appendix A). For instance, to derive an estimate of the diag-
nostic probability of cause given effect, P(c | e) is computed
separately under each of the two (parameterized) causal struc-
tures, S0 and S1. To obtain a single estimate for the diagnostic
probability, the structures are integrated out by summing over
the estimates, with each estimate being weighted by the poste-
rior probability of the respective graph. This diagnostic proba-
bility then reflects the uncertainty regarding the true underlying
causal model, as well as the uncertainty of the parameter
estimates. The same procedure can be applied to derive esti-
mates of the predictive probability of effect given cause, P(e | c)
(see below and Appendix A).

Differential Predictions of the Competing Models of
Diagnostic Reasoning

One of the key differences between the models of diagnostic
reasoning concerns the role of predictive probability and causal
strength in diagnostic judgments. Both simple Bayes and power
PC theory predict that diagnostic inferences should correspond to
the diagnostic probability, P(c |e), in the data sample. Therefore,
the predictive probability, P(e |c), and the causal strength of C
should not affect diagnostic inferences as long as P(c |e) stays
invariant. In contrast, the structure induction model predicts that
estimates of causal strength and predictive probability should
influence diagnostic judgments, as they influence the posterior
probability of structures S0 and S1.

Figure 3 (left column) illustrates the diverging predictions of
the structure induction model and the simple Bayes model for
diagnostic inferences. Three data sets are considered in which
the empirical diagnostic probability is invariant at P(c | e) � .75
and the base rate of the cause is P(c) � .5 (see Table 1 for
numerical values). The diagnostic probability is identical in all
three data sets, but the predictive probability of the effect given

its cause, P(e | c), takes the value .3, .6, or .9 (see Figure 3, top
left).

Figure 3 shows how the structures’ posterior probabilities (mid-
dle left) vary depending on the observed data (top left), and how
these differences, in turn, influence the diagnostic probabilities
(bottom left). The important feature here is that the posterior
probabilities of S0 and S1 vary as a function of the sample data. In
the data set in which the predictive probability P(e |c) � .3, causal
structures S0 and S1 are about equally likely to have generated the
data. This mirrors the intuition that the weak empirical contin-
gency between C and E is not reliable enough to conclude that
there is indeed a causal relation between C and E. As a conse-
quence, the diagnostic probability derived from the structure in-
duction model is substantially lower than the empirical diagnostic
probability (.61 vs. .75). More intuitively, the higher the posterior
probability of S0, the closer is the diagnostic probability to the base
rate of the cause, which is .5 in all three data sets.

Figure 3 (bottom left) also shows how the discrepancy becomes
weaker when the predictive probability increases to P(e |c) � .6
and P(e |c) � .9. For these data, graph S1 is the most likely
generating causal structure. As a consequence, the diagnostic
probabilities derived from the structure induction model approach
the empirical probability of the cause given its effect, generating
an upward trend with increasing P(e |c).

In sum, although the empirical diagnostic probability is iden-
tical in all three data sets, the diagnostic probabilities derived
from the structure induction model systematically deviate from
the probability of cause given effect in the sample. This dis-
crepancy occurs because the alternative causal structures influ-
ence the overall estimate of the diagnostic probability in pro-
portion to their posterior probabilities. Typically, the higher the
posterior probability of S0, the lower the resulting overall
estimate of the diagnostic probability (for details, see Appendix
A). According to S0, C and E are independent events; therefore,
observing the presence of E does not increase the probability of
C (i.e., P(c | e) � P(c)). More intuitively, if the observed data
provide only weak evidence for a causal link from C to E, one
is less sure about the diagnostic evidence provided by E and
adjusts the diagnostic judgment regarding C accordingly toward
the base rate of the target cause.

Asymmetries Between Diagnostic and Predictive
Causal Inferences

Although the primary focus of this article is on diagnostic
reasoning, predictive inferences from cause to effect can also be
modeled within the structure induction model (see also the General
Discussion). In this case, an estimate of the predictive probability,
P(e |c), is derived under each of the two structures, which are then
integrated out to obtain a single estimate (see Appendix A). Inter-
estingly, whereas the structure induction model predicts that diag-
nostic judgments should be affected by the predictive probability
and the strength of the target cause, in the situations considered
here predictive judgments should predominantly be a function of
the empirical predictive probability P(e |c), irrespective of the
diagnostic probability P(c |e).

The right column of Figure 3 provides an example of the
asymmetry between diagnostic and predictive inferences. In all
three data sets, the predictive probability of effect given cause is
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P(e |c) � .6, whereas the diagnostic probability, P(c |e), takes the
values .6, .75, and 1, respectively (see Figure 3, top right). Al-
though the posterior probability of the causal structures S0 and S1

also varies across the three data sets (see Figure 3, middle right),
this variation has little influence on the aggregate estimate of
P(e |c) (bottom right). The reason for the asymmetry between
predictive and diagnostic inferences is that under structure S0

(which drives the deviation in the case of diagnostic inferences),
the estimated value of wa is larger than under S1 because all
occurrences of the effect must be necessarily attributed to the
influence of the background cause. Thus, whereas a higher poste-
rior probability of S0 entails a lower diagnostic probability, only a
weak effect is implied for estimates of P(e |c) when integrating out
the causal structures (see Table 1).
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Figure 3. Diagnostic and predictive reasoning in the structure induction model. The left column shows an
example of diagnostic inferences for three data sets with identical probability of cause given effect, P(c |e) �
.75, but different predictive probabilities, P(e |c) � {.3, .6, .9} (top left). The data sets entail different posterior
probabilities of structures S0 and S1 (middle left); therefore, the diagnostic probabilities derived from the
structure induction model differ from the empirical probabilities when integrating out the causal structures
(bottom left). The right column gives an example of predictive inferences for three data sets with an identical
predictive probability, P(e |c) � .6, but different diagnostic probabilities, P(c |e) � {.6, .75, 1} (top right).
Although the structures’ posteriors also vary across these data sets (middle right), the predictive probabilities
derived from the structure induction model only weakly differ from the predictions of the simple Bayes model.
All estimates were derived using uniform priors over the causal structures and their parameters.
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This predicted asymmetry in inferences about predictive and
diagnostic probabilities allows us to test the structure induction
model against older accounts of diagnostic reasoning, such as the
conversion fallacy (Dawes, Mirels, Gold, & Donahue, 1993),
according to which people tend to confuse predictive and diagnos-
tic probabilities. If people tend to report predictive probabilities
when asked about diagnostic probabilities the asymmetries pre-
dicted by the structure induction model should not be observed in
the data.

Further relevant research was presented by Fernbach and col-
leagues (2010, 2011; see also Fernbach & Rehder, 2013), who
compared predictive and diagnostic reasoning using real-world
stories. No learning data were presented in their studies. As the
normative standard, they used a causal Bayes net model that for the
simple case of elemental diagnostic and predictive causal reason-
ing corresponds to the power PC model. In their paradigm, peo-
ple’s diagnostic judgments showed sensitivity to alternative causes
of the target effect (as predicted by the Bayes net model), but their
predictive inferences revealed a neglect of alternative causes.
Predictive inferences were better predicted by causal power than
by predictive probability. However, these studies did not control
the learning input and are therefore ill-suited for assessing the role
of uncertainty in causal judgments so that we will revisit these
theoretical claims in our Experiment 1, in which we collected both
predictive and diagnostic judgments after having presented learn-
ing data.

Summary

Our theoretical analyses have shown that modeling diagnostic
reasoning from the perspective of causal inference can lead to
identical predictions to those of a purely statistical approach, such
as in the case of simple Bayes and power PC theory (and its
isomorphic causal Bayes net representation). By contrast, we have
developed a computational model of diagnostic reasoning that is
sensitive to the uncertainty of predictive and diagnostic inferences.
By considering alternative causal structures that may underlie the
data, the diagnostic probabilities derived from this model system-
atically deviate from the empirical probability of cause given
effect observed in a data sample.

The structure induction model provides a formalization of the
intuition that diagnostic inferences should take into account the
uncertainty about the generating causal structure and the exis-
tence of a causal link between C and E. Are people’s diagnostic
judgments sensitive to this uncertainty? The goal of the follow-
ing experiment was to test whether people’s diagnostic infer-
ences indeed take into account uncertainty, or whether diagnos-
tic inferences simply reflect the objective diagnostic conditional
probabilities in the learning data (as predicted by simple Bayes,
power PC theory, and basic versions of causal Bayes net the-
ory). The experiment also allows us to test whether people
confuse diagnostic and predictive queries (i.e., conversion fal-
lacy).

Experiment 1

The main goal of Experiment 1 was to examine people’s
diagnostic judgments by systematically varying the predictive
and diagnostic probability in the learning data. We generated

nine data sets of sample size N � 40 by factorially combining
three levels of the diagnostic probability P(c | e) � {.6, .75, 1}
with three levels of the predictive probability P(e | c) � {.3, .6,
.9} to cover the relevant parameter space. The resulting nine
data sets are shown in Figure 4.

The second row of Figure 5 illustrates the diverging predic-
tions of the simple Bayes and power PC account (left) and the
structure induction model (right). (See Table 1 for a detailed
overview of the parameter estimates and model predictions for
the nine data sets.) Both accounts agree that the overall size of
the diagnostic estimates should vary as a function of the level of
the diagnostic probability, P(c | e) � {.6, .75, 1} in the data. The
crucial difference is that the structure induction model— but not
the simple Bayes account—also predicts specific trends within
each level of the diagnostic probability. In particular, for each
level of the empirical diagnostic probability, the structure in-
duction model entails an influence of predictive probability,
with higher diagnostic judgments for higher levels of P(e | c).
This influence results in systematic upward trends across dif-
ferent data sets with the same empirical probability of cause
given effect.

We asked participants to make a diagnostic judgment from
effect to cause as well as a predictive judgment from cause to
effect. The predictive judgments were elicited to control for the
possibility that people confuse diagnostic and predictive judg-
ments. Moreover, analyzing the predictive judgments allowed us
to test if the findings of Fernbach et al. (2011) on the neglect of
alternative causes in predictive inferences were replicated in our
learning tasks.

Method

Participants and design. Thirty-six students from the Uni-
versity of Göttingen (32 women; Mage � 22.3 years) participated
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Figure 4. Learning data in Experiments 1 and 2. Nine data sets of sample
size N � 40 were created by factorially combining three levels of the
diagnostic probability P(c |e) � {.6 vs. .75 vs. 1.0} with three levels of the
predictive probability P(e |c) � {.3 vs. .6 vs. .9}.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

284 MEDER, MAYRHOFER, AND WALDMANN



for course credit or were paid €5. The factors level of diagnostic
probability P(c |e) (.6 vs. .75 vs. 1), level of predictive probability
P(e |c) (.3 vs. .6 vs. .9), and type of causal judgment (predictive vs.
diagnostic) were varied within subject, yielding a 3 � 3 � 2
within-subject design.

Materials and procedure. We used a medical scenario in
which physicians investigated how novel diseases causally relate
to the presence of certain substances found in the blood of patients.
Participants were informed that they would receive information
regarding the cause event (i.e., disease present or absent) and the
effect event (i.e., substance present or absent) for a sample of
patients. They were also informed that every outcome would be
possible: It could be that the disease always leads to the presence
of the substance, that the disease never generates the substance, or
that the disease is probabilistically related to the presence of the
substance.

Then participants were familiarized with the stimuli (see
right panel of Figure 1) and told that they would be asked to
make two judgments after being presented with the data. One
question would require them to make a diagnostic inference
from the presence of the effect (substance) to its cause (dis-
ease). The other question would require them to make a pre-
dictive inference from the presence of the cause (disease) to the
effect (substance).

Subsequent to reading the instructions, participants received
the learning data. Each data set was presented on a sheet of
paper showing 40 individual cases organized in a table with five
columns and eight rows. Each case referred to a patient who had
been tested for the presence of the disease and the presence of
the substance and was depicted by the corresponding symbol
combination (see right panel of Figure 1). For each disease–
substance combination, nine random arrangements of the cases
were created and used for the experiment. Participants could
inspect the data set for as long as they wanted and were then
presented with the two test questions. The data were removed
before the test questions were presented and could not be
inspected again. The order of questions was counterbalanced
across participants.

The diagnostic question asked for an inference from effect to
cause: “How certain are you that a novel patient who has the
substance [Rothan] in his blood has been infected with [Mido-
sis]?” The rating scale ranged from 0 (I am absolutely certain
that the patient does not have the disease) to 7 (I am absolutely
certain that the patient does have the disease). The predictive
question asked for an inference from cause to effect: “How
certain are you that a novel patient who has been infected with
[Midosis] has the substance [Rothan] in his blood?” Estimates
were given on a rating scale ranging from 0 (I am absolutely
certain that the patient does not have the substance in his
blood) to 7 (I am absolutely certain that the patient does have
the substance in his blood). After they answered the two ques-
tions, participants proceeded to the next disease–substance
combination, with each scenario using different fictitious labels
for cause (disease) and effect (substance) (e.g., Midosis ¡

Rothan). The order of the nine disease–substance combinations
was counterbalanced across subjects.

Results

Figure 5 (top left) shows participants’ mean diagnostic judg-
ments for the nine data sets. Not surprisingly, participants’
diagnostic judgments varied overall as a function of the level of
the diagnostic probability in the learning data (i.e., higher
judgments for higher levels of P(c | e)). The crucial finding is
that within a given level of P(c | e) participants’ estimates in-
creased when the predictive relation between cause and effect
became stronger. For instance, for the data sets in which the
diagnostic probability P(c | e) was fixed to .75 but the strength
of the predictive relation P(e | c) varied (.3 vs. .6 vs. .9), the
diagnostic judgments show an upward trend when the predictive
relation became stronger, increasing from 3.7 to 4.3 to 5. A
similar trend was obtained for data sets in which P(c | e) was
fixed to .6. The influence of the predictive relation on partici-
pants’ diagnostic judgments when P(c | e) � 1 is not fully clear;
here, only a weak influence of the predictive probability was
observed (see Experiment 2).

To validate the observed trends, we conducted an analysis of
variance (ANOVA) with level of diagnostic probability and
level of predictive probability as within-subject factors (see
below for a quantitative model comparison). Participants’ re-
sponses to the diagnostic inference questions were influenced
not only by the diagnostic probability, F(2, 70) � 74.0, p �
.001, �2 � .68, but also by the strength of the predictive relation
between cause and effect, F(2, 70) � 12.8, p � .001, �2 � .27.
The higher the predictive probability, the higher was the diag-
nostic judgment, even when the diagnostic probability was held
constant. The analysis also revealed a weak interaction between
the two factors, F(4, 140) � 2.7, p � .04, �2 � .07, resulting
from the weaker trend for the data sets in which P(c | e) � 1.
Taken together, these findings are at variance with the simple
Bayes and power PC accounts, which predict no influence of
predictive probability on diagnostic judgments.1

Could the observed trends result from a confusion of predictive
and diagnostic probabilities (conversion fallacy)? If that was the
case, a similar pattern should be observed for participants’ predic-
tive inferences, namely, an influence of diagnostic probability on
predictive judgments when P(e |c) is fixed to a specific level. This

1 An inspection of Figure 5 (top left) shows that the diagnostic judg-
ments for P(c |e) � .6 and P(c |e) � .75 are fairly close to each other, in
terms of their absolute values. To make sure that the influence of level of
diagnostic probability on diagnostic judgments is not solely driven by the
scenarios in which P(c |e) � 1, we conducted an ANOVA comparing
P(c |e) � .6 with P(c |e) � .75. In line with the overall ANOVA, diag-
nostic judgments were influenced not only by the level of the diagnostic
probability, F(1, 70) � 13.2, p � .001, �2 � .27, but also by the level of
the predictive probability, F(2, 70) � 15.0, p � .0001, �2 � .30 (the
interaction was not significant, p � .18). An ANOVA comparing P(c |e) �
.75 with P(c |e) � 1 yielded a similar result: Participants’ diagnostic
judgments varied as a function of P(c |e), F(1, 70) � 67.0, p � .0001, �2 �
.66, as well as of the predictive probability P(e |c), F(2, 70) � 8.6, p �
.0001, �2 � .20. Consistent with the overall effect, there was also a weak
significant interaction, F(2, 70) � 8.6, p � .05, �2 � .10.
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Figure 5. Diagnostic judgments (M � 95% CI) from effect to cause in Experiments 1 and 2 and model
predictions (see also Table 1). In Experiment 1, judgments were given on a scale from 0 to 7; in Experiment 2,
judgments were given on a scale from 0 to 100. The model fits refer to diagnostic judgments of Experiment 2 (see Table
2 for model fits for Experiment 1). The notation roverall denotes the overall correlation between a model’s predictions and
the mean human judgments; rtrends denotes the mean of the correlations computed separately for each of the three levels of
the diagnostic probability P(c |e), a measure indicating how well the observed upward trends within each level are accounted
for. MLE � maximum likelihood estimate; RMSE � root-mean-square error of a model’s predictions and the mean human
judgments; SS � sparse and strong.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

286 MEDER, MAYRHOFER, AND WALDMANN



test is also interesting as the structure induction model predicts no
such influence; that is, participants’ predictive judgments should
only vary as a function of the observed P(e |c) in the data, irre-
spective of the level of the diagnostic probability P(c |e).

The results indicate that the predictive judgments were sensitive
to the observed probability of effect given cause but unaffected by
the diagnostic probability (see Figure 6). This observation is sup-
ported by an ANOVA with level of predictive probability and level
of diagnostic probability as within-subject factors, which revealed
a main effect of predictive probability, F(2, 70) � 100.7, p � .001,
�2 � .74, but no effect of diagnostic probability, F(2, 70) � 1.3,
p � .28, �2 � .04, and no interaction (F � 1). These results refute
the possible hypothesis that the observed pattern of diagnostic
judgments merely resulted from a confusion of diagnostic and
predictive probabilities.

Discussion

The observed diagnostic judgments are at variance with the
predictions of simple Bayes and power PC (and related causal
Bayes net) theories. These accounts predict that diagnostic infer-
ences should solely reflect the size of the diagnostic probability,
which in our study was kept constant across different levels of
predictive probability. However, the upward trends in the diagnos-
tic conditions are consistent with the predictions of the structure
induction model, which takes into account uncertainty about the
presence of a causal relation as a mitigating factor. The analogous
analysis of the predictive judgments also refutes other theories,
such as the conversion fallacy. Participants’ diagnostic inferences
were overall sensitive to the diagnostic probability across constant
levels of predictive probability. Moreover, we generally obtained
clear asymmetries between predictive and diagnostic judgments,
which speaks against the idea that people do not distinguish
appropriately between these two inferences. Similar results have
been obtained in other experimental studies, demonstrating the
robustness of this finding under a variety of conditions (see Ex-
periments 2 and 3 in Meder, Mayrhofer, & Waldmann, 2009).

These results are also interesting in light of the findings of
Fernbach and colleagues (2011), who reported that people’s pre-
dictive inferences resembled estimates of causal power rather than
conditional probability. In the data sets used here, the causal power
of the target cause, wc, increases within a given level of the
predictive probability. For instance, for the three data sets in which
P(e |c) � .6, the power PC estimates of causal strength, wc, are .33,
.5, and .6 (see Table 1). Despite this strong variation, participants’
predictive inferences did not vary across these data sets. As the
predictive probability was constant across the different causal
strength levels due to the variation of the strength of the alternative
background cause, wa, these findings indicate that participants
were able to appropriately take into account alternative causes and
distinguish between conditional probability and causal power,
possibly because learning data were available.

Alternative Causal Inference Models of
Diagnostic Reasoning

The results of Experiment 1 are at variance with the simple
Bayes account, power PC theory, and basic causal Bayes net
models, but are consistent with our structure induction model. Are

there alternative approaches predicting similar trends to those of
the structure induction model? We examined four further compu-
tational models: two Bayesian variants of the power PC model (Lu
et al., 2008) and two variants of a causal attribution model (Cheng
& Novick, 2005; Holyoak et al., 2010). The first two models are
Bayesian interpretations of power PC theory that incorporate the
notion of parameter uncertainty. The latter type of model assumes
that in diagnostic reasoning people do not aim to estimate the
probability of a cause given an effect but attempt to estimate a
conceptually different quantity, causal responsibility. Although
these models have not yet been directly tested empirically as
models of diagnostic reasoning (but see Holyoak et al., 2010, for
using such a model within a theory of analogical inference),
theoretically they could provide an account of how people gener-
ally make diagnostic inferences when asked to infer the probability
of cause given effect.

In the following sections, we will first describe these alternative
models in the context of the key question of whether they predict
qualitatively similar trends to those of the structure induction
model. A quantitative model comparison (including the data of
both Experiments 1 and 2) will be presented after Experiment 2.

Bayesian Variants of the Power PC Model of
Diagnostic Reasoning: Uniform Versus Sparse
and Strong Priors

In its original formulation (Cheng, 1997), the power PC model
uses maximum likelihood point estimates to parameterize causal
structure S1 (see Figure 2). An extension of the power PC model
incorporates parameter uncertainty by using distributions over
parameters (Holyoak et al., 2010; Lu et al., 2008).

To test the influence of parameter uncertainty with respect to
diagnostic inferences, we implemented two Bayesian versions of
the power PC model, differing in the prior distributions of the
causal structure’s parameters. Both models operate on a single
causal structure, S1, which is the default structure of power PC
theory. For the first variant, we derived model predictions using
uniform priors over parameters bc, wc, and wa. This choice facil-
itates the comparison with the structure induction model, which
also uses uniform priors. Using flat priors also conforms to the
instructions, which informed participants that the causal relation
between cause and effect could range from zero to perfect.

We also derived diagnostic probabilities using the sparse and
strong (SS) prior suggested by Lu and colleagues (2008). Applied
to structure S1, this constitutes the SS power model. This account
is based on the idea that causal learning and inference are guided
by general systematic assumptions about the structure of the
(causal) environment, which entails a preference for fewer
(“sparse”) and stronger causes.2 The SS prior is defined as a joint
prior distribution over parameters wa and wc of structure S1, using
exponential functions (see Appendix B for details). Following Lu
et al. (2008), we derived model predictions for the strength-
estimate version of the model by setting the free parameter � � 5

2 Note that the term “sparse” does not refer to the assumption that causes
are rare in the sense that they have a low base rate, which would refer to
a nonuniform prior over the base rate parameter, bc. Rather, the claim is
that people prefer causal parsimony in the sense of the assumption that E
is caused either by C or by the alternative background cause A.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

287STRUCTURE INDUCTION IN DIAGNOSTIC REASONING



(see Lu et al., 2008, for details).3 The two peaks of this joint prior
are at wc � 1 and wa � 0 and, conversely, wc � 0 and wa � 1. The
key question here is whether such a priori assumptions about the
causal strength parameters of structure S1 would also account for
our empirical findings.

The third row of Figure 5 shows the predictions of the two
Bayesian variants of power PC theory for the nine data sets used
in Experiment 1. The left panel shows the diagnostic probabilities
derived from the power PC model with uniform priors (see also
Table 1). For the three data sets in which P(c |e) � .6, this account
entails a weak downward trend when the predictive probability,
P(e |c), increases, contrary to what we observed in Experiment 1.
For the intermediate level of P(c |e) � .75, no influence of pre-
dictive probability is predicted, which is also inconsistent with our
empirical findings. The only pattern that is qualitatively accounted
for are the data sets in which P(c |e) � 1; here, the model entails
an upward trend. Taken together, the predictions of power PC
theory using uniform priors are inconsistent for two of the three
levels of the diagnostic probability considered here (see below for
quantitative model fits).

The diagnostic probabilities derived from the SS power model
are similarly inconsistent with the results of Experiment 1. Again,
when P(c |e) � .6, this account predicts a downward trend, and no
influence of predictive probability is entailed when P(c |e) � .75.
For both scenarios, participants’ judgments showed an upward
trend when P(e |c) increases. Similar to the power model with
uniform priors, the SS power model does predict an upward trend
when P(c |e) � 1, which is consistent with the empirical findings.

Taken together, the predictions of both Bayesian variants of the
power PC model are to a large extent inconsistent with subjects’
diagnostic inferences, regardless of whether uniform priors are
used or an SS prior that incorporates generic assumptions about
causal strength.4

Diagnostic Reasoning as Causal Attribution

A different theoretical approach that might be applied to our
task are models of causal attribution. Typically, diagnostic infer-
ences are assumed to provide an estimate of the probability of
cause given effect, P(c |e). However, a causal inference framework
also allows for modeling other types of diagnostic queries, such as
estimates of how likely it is that the observed effect was indeed
produced by candidate cause C. Reinterpreting the test question
this way means that responses should be modeled by measures of

causal responsibility, rather than diagnostic conditional probabil-
ity (Cheng & Novick, 2005; Holyoak et al., 2010). As with the
Bayesian variants of power PC theory, we first present the alter-
native models of causal attribution in the context of our task. A
quantitative test of the appropriateness of the models for our
findings is presented after Experiment 2.

Let c ¡ e denote that effect E is produced by cause C. Then, the
question of whether the occurrence of effect E can be attributed to
the occurrence of C translates into determining the conditional
probability P(c ¡ e |e), which is different from the diagnostic
probability P(c |e). When E can be independently produced by C,
by A, or by both C and A, these possibilities entail that when C is
a probabilistic cause of E (i.e., wc � 1), there are always some
instances in which C and E have co-occurred, but E is in fact
produced by A. By “partialing out” the influence of A, we can
derive P(c ¡ e |e), the probability that C caused E given the
occurrence of the effect (for details, see Appendix C and Cheng &
Novick, 2005).

We consider two variants of a causal attribution model. In the
model’s original form, inferences were modeled within the stan-
dard maximum likelihood power PC theory framework, which
uses the default common-effect structure S1 and maximum likeli-
hood estimates (Cheng & Novick, 2005). Holyoak and colleagues
(2010; see also Lu et al., 2008) extended this approach to include
parameter uncertainty, using distributions over parameter esti-
mates (i.e., using the power PC model with uniform priors, dis-
cussed above).

In general, like the structure induction account, models of causal
attribution also entail different diagnostic judgments within a
given level of P(c |e), as the causal strength of target cause C (wc)
and background cause A (wa) are not invariant across these data
sets. The relative size of these parameters determines the estimate

3 We also examined the structure version of the SS power model (with
� � 5 and � � 20, as proposed by Lu et al., 2008). Since this model
achieved a worse fit than all other models in the model comparisons, we do
not discuss this account further.

4 We also explored the influence of a “sufficiency” prior over the causal
strength parameter wc (Mayrhofer & Waldmann, 2011; Yeung & Griffiths,
2011). This prior expresses that people may have a tendency to assume that
causal relations are (quasi-)deterministic, even when the observed learning
data are probabilistic (Goldvarg & Johnson-Laird, 2001; Griffiths & Te-
nenbaum, 2009). Regarding our task, this prior yields similar predictions to
those of the power PC model with either uniform or SS priors.
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Figure 6. Predictive judgments (M � 95% CI) from cause to effect in Experiment 1 and model predictions.
Judgments were given on a scale from 0 to 7. Exp. � experiment; MLE � maximum likelihood estimate.
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of P(c ¡ e |e) (see Equation C1 in Appendix C). The last row of
Figure 5 shows the predictions of the two causal attribution models
for the nine data sets used in Experiment 1 (see Table 1 for details).
An inspection of the models’ predictions shows that for the data
sets in which P(c |e) was fixed to .6 and .75, respectively, both
accounts entail an upward trend when the predictive probability
increases, although quantitatively the strength and absolute level of
the trends vary across the models. The two models make diverging
predictions for the data sets in which the cause is necessary and,
therefore, P(c |e) � 1. Whereas the Bayesian variant using uniform
prior distributions predicts an upward trend for these data sets, the
basic maximum likelihood power PC does not, with its predictions
corresponding to the simple Bayes account. There is no trend for
the latter model because in these conditions the effect only occurs
in the presence of the cause, and since maximum likelihood point
estimates are used (i.e., wa � 0), the model infers that the target
cause C necessarily generated E.

While these models of causal attribution often generate quali-
tatively similar trends to those of our structure induction model, a
crucial difference concerns the absolute values of the derived
estimates of P(c ¡ e |e), which are usually lower than the esti-
mates of P(c |e) derived from the structure induction model. In
particular, estimates of causal responsibility can be lower than the
base rate of the cause, as the instances in which C occurred but did
not cause E are partialed out (see Equation C1 in Appendix C). By
contrast, the base rate of the cause, P(c), provides the lower
boundary for estimates derived from the structure induction model
(which, for instance, happens when structure S0 gains all the
posterior probability mass; in this case the account predicts that
P(c |e) � P(c)).

With respect to our empirical findings, the attribution models
need to make the assumption that our participants generally inter-
preted the diagnostic test question as asking for the probability that
the occurrence of E was caused by C. Instead of trying to come up
with an estimate of the probability of cause given effect, as
requested, participants needed to interpret the diagnostic test ques-
tion as referring to an estimate of causal responsibility.5 While this
is certainly a possibility, this explanation raises the question of
how our participants interpreted the predictive query. The equiv-
alent here would be that participants gave judgments of causal
responsibility in the predictive direction as well, which simply
means providing an estimate of the causal power of C (i.e., wc; as
proposed by Fernbach et al., 2010, 2011). The finding that partic-
ipants’ predictive judgments were invariant against variations of
causal power within a given level of the predictive probability
speaks against the claim that participants conceptually misinter-
preted the highly parallelized diagnostic inference questions. In
sum, the causal attribution account requires the additional assump-
tion that our diagnostic test questions were interpreted differently
from intended, namely, as referring to causal responsibility rather
than conditional probability, while the similar predictive questions
were actually understood as intended, namely, as referring to the
conditional probability of effect given cause. Nevertheless, it can-
not be ruled out at this point that our participants specifically
misinterpreted the diagnostic inference question and provided an
estimate of causal responsibility, rather than conditional probabil-
ity. We therefore addressed this possibility in Experiment 2, which
was designed to allow for a quantitative comparison of the alter-
native computational models.

Experiment 2

Experiment 1 demonstrated that our participants’ diagnostic
inferences were at variance with the simple Bayes and the power
PC model using maximum likelihood point estimates (cf. Meder,
Mayrhofer, & Waldmann, 2009). However, the Bayesian variants
of the power PC model and the two attribution models also predict an
influence of the predictive probability on diagnostic judgments. The
attribution models in particular predict similar trends to those of
our structure induction model and may, with some additional
assumptions, therefore also account for the results of Experi-
ment 1.

To provide stronger evidence for the structure induction model,
the main goal of Experiment 2 was to conduct a quantitative model
comparison to see which model explains human diagnostic judg-
ments best. Although the structure induction model and the attri-
bution models differ in terms of the predictions of the absolute
values, the choice of a confidence scale in Experiment 1 did not
allow us to test rigorously for these predicted differences. In
Experiment 2, we therefore used a probability scale that allowed us
to also interpret the absolute values and assess deviations from the
predicted absolute values in our model fit analyses (using the
root-mean-square error, RMSE).

One other difference between the structure induction model and
the attribution models is the different assumptions they make about
the interpretation of the test question. Since the main goal of our
research is to explore diagnostic judgments (as opposed to causal
responsibility assessments), we attempted to make sure in Exper-
iment 2 that participants correctly interpreted the test question. We
therefore added an instruction test phase prior to the actual exper-
iment to clarify the requested diagnostic inference (see below).

Finally, an argument that could be raised against the findings of
Experiment 1 is that we may only have found influences of
predictive probability on diagnostic judgments because our proce-
dure of requesting both predictive and diagnostic judgments sug-
gested to participants that they should keep track of both diagnos-
tic and predictive probability, which may have influenced their
diagnostic judgments. Thus, to provide stronger evidence for our
model, in Experiment 2 we requested only diagnostic judgments.

Method

Participants and design. Forty-nine students from the Uni-
versity of Göttingen (Mage � 23.1 years; 71% female) participated
as part of a series of various unrelated computer-based experi-
ments. They either received course credit or were paid €8 per hour.
We used the same nine data sets as in Experiment 1. The factors
level of diagnostic probability P(c |e) � {.6 vs. .75 vs. 1} and level
of predictive probability P(e |c) � {.3 vs. .6 vs. .9} were varied

5 Note that estimates of causal responsibility can also be derived from
the structure induction model. Thus, even if participants aimed to provide
an estimate of causal attribution, this does not exclude that they are
sensitive to causal structure uncertainty. The basic rationale of such a
model is the same as with deriving conditional probabilities; that is,
estimates of P(c ¡ e |e) are derived separately under structures S0 and S1,
which are then integrated out using Bayesian model averaging (see Ap-
pendix C). Since this model yields similar predictions to those of the two
other attribution models, we do not discuss the model in detail here.
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within subject, yielding a 3 � 3 within-subject design with diag-
nostic judgments as dependent measure.

Materials and procedure. We used the same materials as in
Experiment 1 in a computer-based experiment. After reading the
instructions, participants were informed that they would be asked
to make a diagnostic judgment after being presented with each data
set. The judgment would require them to estimate the probability
that a novel patient has the disease given that she has the substance
in her blood.

Before proceeding to the actual experiment, participants were
requested to answer various multiple-choice questions to ensure
that they correctly understood the symbols used, the experimental
procedure, and the task. One of the multiple-choice questions was
specifically designed to minimize possible confusion regarding the
requested diagnostic judgment; the goal was to ensure that partic-
ipants would attempt to estimate the diagnostic probability of
cause given effect. The diagnostic test question requested subjects
to estimate how probable it is that a novel patient (from the same
population from which the data sample was obtained) has the
disease given the substance: “Imagine that you examine another
person and notice that the person has the substance in her blood.
How probable is it that this person has the disease?”

To make sure that subjects understood the test question, the
corresponding multiple-choice question had four answer op-
tions: (a) estimate how probable it is that the disease generated
the substance, (b) estimate how probable it is that causes other
than the target disease generated the substance, (c) estimate
how probable it is that only the disease and no other causes
generated the substance, and (d) estimate how probable it is that
the person has the disease. The first three options correspond to
different types of attribution questions (see Cheng & Novick,
2005), whereas the last option corresponds to assessing the
conditional probability of cause given effect. This option,
which we counted as the correct response, corresponded to the
instructions participants had read previously.

If any of the questions in the multiple-choice test were answered
incorrectly, participants were asked to re-read the instructions and
take the test again until they had committed zero errors or had gone
through the instructions three times.6 After the comprehension test,
participants were presented with the 40 cases of each data set, ran-
domly arranged on the computer screen in an eight-columns-by-five-
rows grid. They could inspect each data set for as long as they wanted
(for a minimum of 30 s). The data were removed before participants
made the diagnostic judgment. For each data set, participants esti-
mated the probability that a novel patient with the substance in his
blood has the disease. The 11-point probability rating scale ranged
from 0 (The patient definitely does not have the disease) to 100 (The
patient definitely does have the disease). After making the diagnostic
judgment, participants proceeded to the next disease–substance com-
bination. The order of the data sets was randomized.

Results

Of the 49 participants, 15 failed to answer all the multiple-
choice questions of the instruction test correctly after three itera-
tions. These participants were excluded from the following anal-
yses, leaving 34 valid participants (Mage � 22.9 years, 76%
female).

Figure 5 (top right) shows the results of Experiment 2. As in
Experiment 1, within each level of the diagnostic probability,
participants’ judgments varied systematically as a function of the
strength of the predictive probability, resulting in higher diagnostic
judgments when P(e |c) increased. The results also disambiguate
one finding from Experiment 1 in which only a weak upward trend
was observed when P(c |e) � 1; this time, a strong upward trend
was observed for this level of the diagnostic probability, too.

An ANOVA with level of diagnostic probability and level of
predictive probability as within-subject factors revealed a main
effect of level of diagnostic probability, F(2, 66) � 234.4, p �
.0001, �2 � .64, and a main effect of predictive probability, F(2,
66) � 16.7, p � .0001, �2 � .34 (the interaction was not signif-
icant, F � 1).7 Thus, as in Experiment 1, we observed that
people’s diagnostic judgments varied as a function of the predic-
tive probability of effect given cause across data sets in which the
diagnostic probability of cause given effect was held constant.8

Model Comparison

How well can the different computational models of diagnostic
inference account for the empirical data? A successful model
should account for three aspects of the data: the overall influence
of the three different levels of P(c |e), the upward trends within
each level of the diagnostic probability as a function of P(e |c), and
the absolute values of participants’ judgments.

We therefore report three types of fit measures, each of which
specifically addresses one aspect of the data. First, we evaluated
the alternative models with respect to how well they capture the
overall trends in the data, based on the overall correlation between
the mean human judgments and the models’ predictions (hence-
forth denoted roverall). The informativeness of this measure, how-
ever, is somewhat limited as it reflects both the models’ capacity
to account for the variation in diagnostic judgments resulting from
manipulating the level of the diagnostic probability across the data
sets (i.e., fixing P(c |e) to values of .6, .75, and 1, respectively) and
the variation within each level of the diagnostic probability (i.e.,

6 Participants who failed to answer all questions correctly in the third
iteration were allowed to proceed with the experiment but were excluded
from our analyses.

7 Given that the diagnostic judgments for P(c |e) � .6 and P(c |e) � .75
are fairly close to each other (see Figure 5, top right) we conducted
analogous ANOVAs including only these two levels of P(c |e). This
analysis yielded a main effect of diagnostic probability, F(1, 70) � 14.7,
p � .001, �2 � .31, and a main effect of level of P(e |c), F(2, 70) � 15.7,
p � .0001, �2 � .32 (the interaction was not significant, p � .66). The
comparison of P(c |e) � .75 with P(c |e) � 1 gave a similar result:
Diagnostic judgments were influenced by the level of P(c |e), F(1, 70) �
33.8, p � .0001, �2 � .51, but also by the predictive probability P(e |c),
F(2, 70) � 14.9, p � .0001, �2 � .31; again, the interaction was not
significant (p � .65).

8 One reviewer raised the question of interindividual differences or
possible aggregation artifacts. To address this concern, we ran cluster
analyses for both Experiments 1 and 2. If, for instance, only a certain
proportion of subjects generated upward trends but others gave identical
judgments for a given level of the diagnostic probability, this analysis
should yield two clusters of subjects. However, these analyses did not
reveal particular clusters among participants. As a further check, we
generated P-P plots to examine the distribution of errors (deviations from
the means) on a subject-wise basis. If there were subgroups with specific
inference patterns, these plots should reveal visual clusters of participants.
The plots also did not indicate the existence of specific subgroups.
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the upward trends resulting from varying the predictive probabil-
ity, P(e |c), when the diagnostic probability, P(c |e), is fixed). For
instance, although the simple Bayes model entails that there should
be no influence of predictive probability when the diagnostic
probability is fixed, it will nevertheless account for the variation
resulting from the three different levels of the diagnostic proba-
bility across the data sets.

To specifically test how well the different models capture the
observed upward trends within each level of P(c |e), we computed
the correlation of the models’ predictions separately for each of the
three levels of the diagnostic probability and report the mean of
these three correlations (henceforth denoted rtrends).

9

Finally, and most importantly, we evaluated the models with
respect to their capacity to account for the absolute judgments. We
therefore report the RMSE for each model, which provides a
measure of the absolute deviation between the models’ predictions
and participants’ diagnostic judgments (see Lu et al.’s, 2008,
model comparison for an analogous analysis). This analysis is
particularly informative regarding the comparison of the structure
induction model and the attribution models, as the latter predict
similar upward trends but very different absolute judgments. For
instance, for the data sets in which the diagnostic probability was
fixed to .6, the two attribution models predict diagnostic judgments
below or equal to the base rate of the cause, P(c) � .5, whereas the
diagnostic probabilities derived from the structure induction can
never be smaller than the base rate of the cause (see Figure 4 and
Table 1).

Model Comparison: Experiment 2

We first report the model comparison for Experiment 2 because
in this study we used a probability scale that allows for the
comparison of participants’ absolute judgments with the models’
predictions. The results of the model comparison for Experiment 2
are shown in Figure 5, separately for each model (in the bottom
right corner of each graph; see also Table 2). The structure induc-
tion model produced a better fit of the human data than the other
models, on each of the three measures: It had the highest overall
correlation (.957), the highest trend correlation (.977), and the
lowest RMSE (.047). The two Bayesian variants of power PC
theory achieved a considerable overall correlation (.872 for the
model with the uniform priors and .856 for the SS power model),
but a comparison with the simple Bayes account shows that this
measure is not particularly informative: Although simple Bayes
does not predict the observed upward trends when P(c |e) is fixed,
it achieved a correlation of .859, as it does account for the overall
variation resulting from manipulating the diagnostic probability
across the data sets. The more informative rtrends of the Bayesian
variants of power PC theory were .282 and .318, respectively,
which are very low compared to the structure induction model.
Both models also had a poorer fit than the structure induction
model in terms of RMSE, indicating that the models’ predictions
substantially deviated from the actual responses of our partici-
pants. These analyses refute the two Bayesian variants of Power
PC theory and suggest that incorporating parameter uncertainty or
generic priors is not sufficient to account for the obtained pattern
of judgments.10

The attribution models performed better than the Bayesian vari-
ants of power PC theory but could also not reach the fits of the

structure induction model. The attribution model with maximum
likelihood point estimates (MLE attribution model) and its Bayes-
ian variant with uniform priors achieved an overall correlation of
.920 and .953, respectively. The MLE attribution model performed
poorly in terms of its capacity to account for the specific trends,
with rtrends � .620. This relatively low correlation results from the
model predicting no trend when P(c |e) � 1, which is inconsistent
with the empirical results. The Bayesian attribution model was
better able to account for the specific trends with rtrends � .897 but
still had a lower fit than the structure induction model.

While the correlations suggest that the attribution models can
account qualitatively for the trends, their RMSE values reveal the
strong discrepancy between the models’ predictions and the abso-
lute responses: Both models had a much higher RMSE than the
structure induction model (0.153 and 0.135, respectively, vs.
0.047). In fact, of all the models the two attribution models had the
highest RMSE. Both models predict judgments that are too low for
the data sets in which P(c |e) � .3. Moreover, the attribution model
that uses point estimates additionally fails to capture the observed
trend when P(c |e) � 1.

In sum, the model comparison shows that the structure induction
model was most successful in accounting for participants’ diag-
nostic judgments. The model predicts the overall influence of the
different levels of P(c |e) across the different data sets, the upward
trends within each level of the diagnostic probability as a function
of P(e |c), and the absolute size of participants’ judgments. The
Bayesian variants of power PC theory and the attribution models
can each account for aspects of the data, but none was able to fully
capture participants’ diagnostic judgments.

Model Comparison: Reanalysis of Experiment 1

We conducted the same model comparisons for Experiment 1.
Recall that in this study diagnostic judgments had been expressed
on a confidence scale from 0 to 7, which makes it difficult to
directly interpret the absolute values and compare them to the
models’ predictions. To compute the RMSE, we therefore trans-
formed the human judgments by dividing them by 7, the maximum
of the confidence scale used. (Note that the correlations are in-
variant against this transformation, as they involve a linear trans-
formation of the data.) As we did for Experiment 2, we computed
roverall, rtrends, and RMSE for participants’ diagnostic judgments.

The results of this analysis were consistent with the results of
the model comparison for Experiment 2, with the structure induc-
tion model achieving the highest fit on all three measures (see
Table 2). As in Experiment 2, the other models captured aspects of
the data but did not reach the fit of the structure induction model.

9 If the model predicts no variation within a given level of P(c |e) (i.e.,
simple Bayes), the correlation is not defined; in this case we set it to zero.

10 We also examined the fits of the SS power model for a wider range of
values for the � parameter. Lu et al. (2008) set � � 5; when � � 0, the SS
power model reduces to the power PC model with uniform priors. We
varied the � parameter between 1 and 10 in steps of 1. No model variant
achieved the fit of the structure induction model. For instance, the highest
rtrends in Experiment 1 was .19 (as opposed to .788 for the structure
induction model), which was obtained with � � 1. In Experiment 2, the
highest fit was obtained with � � 3 (rtrends � .325, as opposed to .977 for
the structure induction model). Overall, the model fits tend to get worse
when � increases (which expresses growing strength of the “strong and
sparse” prior).
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For instance, the Bayesian variants of power PC theory did well in
terms of the overall correlation, as they also entail that partici-
pants’ diagnostic judgments should vary across the different levels
of P(c |e). However, the low mean trend correlations (.203 and
.111, respectively) weaken these accounts, and their RMSE was
also much higher than the RMSE of the structure induction model.

Conversely, the attribution models achieved a good fit in terms
of rtrends, as they also predict qualitative upward trends within each
level of P(c |e). However, the very high RMSE compared to the
structure induction model (.140 and .121, respectively, vs. .055)
shows that the attribution models fail to capture the absolute levels
of judgments. In summary, the model comparisons for the diag-
nostic judgments obtained in Experiment 1 are consistent with the
model comparisons for Experiment 2, which together provide
strong support for the structure induction model.

Model Comparison: Bootstrap Analysis of
Experiments 1 and 2

The model comparisons showed that the structure induction
model is superior to all other models on all three fit measures.
However, the fact that a model entails a higher correlation or a
lower RMSE than other models in a specific experiment might
be just a coincidence. To provide an idea of the reliability of the
relative model fits, we ran a bootstrap analysis for both exper-
iments. For this analysis, we drew 10,000 random bootstrap
samples from the empirical data (subject-wise, with replace-
ment) of size n � 36 (for Experiment 1) and n � 34 (for
Experiment 2), respectively. For each sample we computed the
models’ roverall, rtrends, and RMSE and kept a count of the
winning model, that is, the model that achieved the best fit on
each of the three criteria for each of the 10,000 bootstrap
replications. This simulation provides a measure of replicabil-
ity, that is, the expected probability that a model turns out to be
the best-fitting model when replicating the experiment under
the exact same conditions. (Note that none of the models have
free parameters; therefore, we did not have to deal with the
problem of overfitting.)

Table 3 shows the results of this analysis. Consistent with the
results of the fit analyses, the structure induction model best
accounted for the results on all three measures, for both experi-

ments across the majority of the bootstrap replications. Particularly
striking is the good fit in terms of RMSE: For Experiment 1, the
structure induction model had a lower RMSE than all other models
in 99.9% of the replications, and in Experiment 2 it had a lower
RMSE in 100% of the replications. These findings provide further
evidence for the descriptive validity of the structure induction
model and the theoretical claim that people take into account
uncertainty about the existence of a causal link in the generating
causal structure.

General Discussion

The long-standing normative benchmark for diagnostic reason-
ing has been the simple Bayes model, according to which diag-
nostic judgments are determined by the empirical probability of
cause given effect in the data sample. We have argued that this
norm is myopic, as it does not distinguish between the data and the
causal level; it lacks the representational power to take into ac-
count alternative causal structures that may underlie the data. At
the psychological level, sensitivity to the generating causal models
is important because the distal goal of cognitive systems is to
represent the world in terms of stable causal relations, rather than
arbitrary statistical associations that may be distorted by noise
(Krynski & Tenenbaum, 2007; Waldmann & Hagmayer, 2013;
Waldmann et al., 2006, 2008).

Modeling diagnostic reasoning from the perspective of causal
inference does not necessarily lead to different predictions from
those obtained by a purely statistical approach. The standard
power PC model (Cheng, 1997) and basic variants of causal
Bayes nets (Fernbach et al., 2011) predict identical diagnostic
probabilities to those of the simple Bayes model, which does
not distinguish between observable contingencies and unob-
servable causal relations. However, a causal inference approach
can also be constructed that is sensitive to the inherent uncer-
tainty of data as evidence for an underlying causal structure.
Our structure induction model formalizes the intuition that
diagnostic reasoning should be sensitive to the question of
whether the sample data warrant the existence of a causal
relation between the candidate cause and the effect (Anderson,
1990; Griffiths & Tenenbaum, 2005, 2009). The key prediction
of this model is that diagnostic judgments not only should vary

Table 2
Comparison of Computational Models of Diagnostic Reasoning for Experiments 1 and 2

Experiment
Fit

measure

Simple Bayes /
power PC

(MLE)
Structure induction

(uniform priors)
Bayesian power PC

(uniform priors)
Bayesian power PC

(SS priors)
Causal attribution

(MLE)

Bayesian causal
attribution

(uniform priors)

1 roverall .919 .962 .910 .890 .954 .958
rtrends .000 .788 .203 .111 .619 .762
RMSE 0.126 0.055 0.092 0.110 0.140 0.121

2 roverall .859 .957 .872 .856 .920 .953
rtrends .000 .977 .282 .318 .620 .897
RMSE 0.124 0.047 0.088 0.103 0.153 0.135

Note. Boldface indicates highest correlation and lowest root-mean-square error (RMSE), respectively, in each row. In Experiment 1, diagnostic judgments
were given on a scale ranging from 0 to 7; these were transformed to a probability scale by dividing by 7. Experiment 2 used a probability scale ranging
from 0 to 100 (transformed to a 0–1 scale). MLE � maximum likelihood estimate; SS priors � sparse and strong priors (Lu et al., 2008); roverall � overall
correlation between a model’s predictions and the mean human judgments; rtrends � mean of the correlations computed separately for each of the three levels
of the diagnostic probability P(c |e).
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as a function of the observed probability of cause given effect,
but should depend on the plausibility of a causal relation from
C to E.

We tested this prediction in two experiments and observed that
participants’ diagnostic judgments systematically varied within a
given level of P(c |e), a finding that is at variance with simple
Bayes and power PC theory (including corresponding causal
Bayes net models) but consistent with the structure induction
model. The observed asymmetry between diagnostic and predic-
tive inferences (Experiment 1) also refutes the idea that people do
not appropriately distinguish between predictive and diagnostic
inferences (i.e., conversion fallacy).

Diagnostic Probability Versus Causal Attribution

The focus of our analyses and experiments was on modeling
estimation of the conditional probability of cause given effect.
In this context, we also discussed models of causal attribution
(Cheng & Novick, 2005), which provide an estimate of how
likely it is that an observed effect was indeed produced by the
target cause, P(c ¡ e | e). We carefully instructed our subjects
about the intended meaning of the test question (especially in
Experiment 2), which led to results that can be better explained
by the structure induction model than by causal attribution
theories. However, we believe that in other contexts causal
attribution theories may better account for inferences from
effects to causes (e.g., Holyoak et al., 2010).

For instance, in many real-world situations of diagnostic
reasoning, such as in medical settings, estimates of causal
responsibility are what we are interested in (see also Gersten-
berg & Lagnado, 2010). Imagine a doctor examining a patient
whose symptoms indicate that she is likely to suffer from
inflammation of the peritoneum, which may require medication
and/or immediate surgery. The problem faced by the doctor is
that there are several possible causes, including perforation of a
hollow organ through previous surgery, inflammation of the
appendix, and tumors. Since each of these causes requires a
different treatment, in this case a diagnostic judgment should
primarily be concerned with causal responsibility. For example,
the mere presence of a tumor may be irrelevant at this point in
time if it is not the cause of the inflammation, since immediate

treatment requires determining which event is causally respon-
sible for the production of the effect. Key questions for future
research include to what extent people are indeed sensitive to
the notion of causal responsibility, and whether they are capable
of distinguishing between estimates of conditional probability
and estimates of causal responsibility.

Beyond the Sample

The most striking result of our experiments is that subjects’
diagnostic inferences deviated from the conditional probability
of the cause given effect in the observed data samples, even
though the data were presented in a frequency format, and
extensive instructions (in Experiment 2) were provided to make
sure that subjects correctly understood the diagnostic test ques-
tion. This finding seems to be at odds with the many demon-
strations of accurate diagnostic judgments when given natural
frequency data and test questions requesting estimates of con-
ditional frequencies (see Gigerenzer & Hoffrage, 1995; Barbey
& Sloman, 2007). Conditional frequency judgments have often
been deemed superior on the grounds of the frequentist philo-
sophical view of probability, which argues that it does not make
sense to request a probability estimate for a single case (see
Hacking, 2001). We have no doubt that with the right instruc-
tions subjects can be nudged to use a counting strategy that
leads to a correct conditional frequency judgment. What we
were interested in finding out, however, was how subjects
process learning data to arrive at an inductive diagnostic infer-
ence about a novel case. The results of the experiments clearly
show that our subjects had no difficulties answering questions
about the probability of a disease in a single fictitious patient.
According to a Bayesian perspective, probability judgments
reflect degrees of beliefs, which can, as our experiments show,
be influenced by observed conditional frequencies. Thus, in our
view, the deviations of the diagnostic inferences from the
conditional frequencies in the sample do not result from a
misrepresentation of the test question. Rather, they reflect an
attempt to make a diagnostic conditional probability judgment
on the level of the underlying causal model. Given that the
generating causal structure is unobservable, the judgment must

Table 3
Comparison of Computational Models of Diagnostic Reasoning Based on Bootstrap Analysis of Diagnostic Judgments in Experiments
1 and 2

Experiment
Fit

measure

Simple Bayes /
power PC

(MLE)
Structure
induction

Bayesian power PC
(uniform priors)

Bayesian power PC
(SS priors)

Causal attribution
(MLE)

Bayesian causal
attribution

(uniform priors)

1 roverall 0.4% 52.1% 0.0% 0.0% 29.9% 17.6%
rtrends 0.0% 62.0% 0.2% 0.0% 17.9% 19.8%
RMSE 0.0% 99.9% 0.0% 0.0% 0.0% 0.1%

2 roverall 0.0% 68.2% 0.0% 0.0% 0.5% 31.3%
rtrends 0.0% 97.3% 0.0% 0.0% 0.0% 2.6%
RMSE 0.0% 100.0% 0.0% 0.0% 0.0% 0.0%

Note. The percentages indicate the proportion of times a model had the best fit on the respective criterion out of 10,000 bootstrap replications. Boldface
indicates highest percentage in each row. MLE � maximum likelihood estimate; SS priors � sparse and strong priors (Lu et al., 2008); roverall � overall
correlation between a model’s predictions and the mean human judgments; rtrends � mean of the correlations computed separately for each of the three levels
of the diagnostic probability P(c |e); RMSE � root-mean-square error.
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take into account the inherent uncertainty in making inferences
from the observed sample to the causal model.

Our finding that subjects are sensitive to uncertainty when
making causal inferences adds to a growing body of related
findings (e.g., Griffiths & Tenenbaum, 2005; Lu et al., 2008).
Interestingly, there is a tension between these demonstrations of
sensitivity to uncertainty and studies showing that judgmental
biases can often be explained by statistical distortions in the
observed sample (see Fiedler & Juslin, 2006, for an overview).
According to the information sampling view, people are myopic
and to a large extent unable to look beyond the sample. They
often lack the necessary metacognitive knowledge to rectify
biases caused by statistical distortions in the data sample
(Fiedler, 2012). These results are not inconsistent with our
findings, given that our task did not require any awareness of
possible distortions in the sample. However, what we have
shown is that, at least in the context of causal induction, people
are sensitive to the fact that samples carry some degree of
uncertainty. Thus, subjects are not entirely myopic; they are
capable of looking beyond the sample.

Structure Induction and Sample Size

How do variations in sample size affect the predictions of the
structure induction model? In the limit when N ¡ 	, the diagnostic
probability derived from the structure induction model will con-
verge toward the maximum likelihood estimate, yielding the same
predictions as the simple Bayes account. This happens because in
the long run the posterior probability of S1 approximates 1 and the
posterior probability of S0 converges toward zero (as long as
causal strength is stable and greater than zero).

However, the convergence of the structure induction model on
the maximum likelihood value of P(c |e) can be fairly slow, as S0

can receive substantial posterior probability even for relatively
large sample sizes. Figure 7 illustrates this fact with two of the data
sets used in our experiments. In one data set, the diagnostic
probability P(c |e) � .75 (see Figure 7, left column); in the other
data set, P(c |e) � .6 (see Figure 7, right column). To show the
differential influence of sample size on the predictions of the
structure induction model, the contingency table (i.e., N � 40
cases) is multiplied by 5 and 10, respectively, yielding sample
sizes of N � 200 and N � 400. This increase in sample size does
not affect the maximum likelihood estimates derived from the
simple Bayes and standard power PC model, which are insensitive
to the uncertainty of parameter estimates (i.e., these models
make identical predictions regardless of sample size). In contrast,
the structure induction model makes differential predictions for the
two scenarios.

When the objective diagnostic probability is relatively strong,
P(c |e) � .75, the diagnostic probability derived from the structure
induction model converges relatively fast toward the maximum
likelihood estimate when sample size increases (see Figure 7, left
column). The right-hand side of Figure 7 shows that this is not
generally true, however. When the objective diagnostic probability
is slightly weaker, P(c |e) � .6, the derived diagnostic probability
is much less affected by the increase in sample size. Even with a
sample size of N � 400 cases, the posterior probability of structure
S0 is still .33; accordingly, the diagnostic probability derived from
the structure induction model differs from the maximum likelihood

estimate. The reason for this lower sensitivity to sample size is that
in this data set the cause is fairly weak (the maximum likelihood
estimate of causal strength is wc � .12). Therefore a large sample
size is needed to refute the possibility that the co-occurrence
between C and E is merely coincidental. Thus, the exact influence
of sample size on the predictions of the structure induction model
crucially depends on an interaction of various factors, such as the
size of the sample and the strength of the causal relation (cf.
Griffiths & Tenenbaum, 2005).

In sum, whereas models operating with maximum likelihood
point estimates inferred directly from the sample data (e.g., the
simple Bayes and standard power PC model) are insensitive to
variations in sample size, the structure induction model is sensitive
to sample size (as are Bayesian models in general), as this influ-
ences the parameter estimates and posterior probability of structure
S0 and S1. This is consistent with research showing that people are,
at least to some extent, sensitive to the size of the data set on which
causal inferences are based (Griffiths & Tenenbaum, 2005; Lu et
al., 2008; see also Sedlmeier & Gigerenzer, 1997).

The exact influence of sample size on people’s diagnostic in-
ference is an issue for future research. One hypothesis is that large
samples substantially reduce people’s uncertainty about parameter
estimates and the existence of a causal relation between C and E.
In this case, people’s diagnostic inferences may approximate the
observed conditional probability of cause given effect (at least in
situations with relatively strong causes or weak background
causes). On the other hand, memory limitations may place limits
on sample size sensitivity. For instance, working memory capacity
may constrain the number of observations that are actually con-
sidered when making an inference (e.g., Kareev, 2000) or result in
a temporal weighing of information in diagnostic reasoning
(Meder & Mayrhofer, 2013). In this case, uncertainty in diagnostic
reasoning would not result from limited sample data but from the
bounded rationality of the reasoner.

Computational Versus Process Models
of Diagnostic Reasoning

The present work is concerned with the normative and descrip-
tive adequacy of alternative models of elemental diagnostic rea-
soning. We focused on computational-level models that help us to
understand why specific behaviors are observed by specifying the
cognitive task being solved, the information involved in solving it,
and the logic by which it can be solved (Anderson, 1990; Chater
& Oaksford, 1999, 2008; Marr, 1982; for critical reviews, see
Brighton & Gigerenzer, 2012; Jones & Love, 2011). These ac-
counts are less interested in pinpointing the actual cognitive pro-
cesses underlying the behavior and more concerned with providing
an explanation of observed behavior in relation to the goals of the
reasoner and the structure of the environment. In the case of
diagnostic reasoning, we have observed a pattern of judgments that
looks irrational from the perspective of the classical norm of
diagnostic reasoning, the simple Bayes model, but can be ex-
plained by the structure induction model, which formalizes an
inference strategy that takes into account uncertainty regarding the
causal structure of the environment.

While a computational-level description does not necessarily pre-
clude the possibility that the mind somehow implicitly carries out the
involved computations, in the spirit of “man as intuitive statistician”
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(Peterson & Beach, 1967), we agree with the view that this kind of
model is primarily a “rational description” rather than a “rational
calculation” (Chater, Oaksford, Nakisa, & Redington, 2003). There-
fore, an interesting follow-up to the present research would be to
explore algorithmic-level models that specify the actual processes and
inferential steps by which people arrive at their diagnostic judgments.
Such an account should be constrained by the predictions of the
structure induction model and the obtained empirical findings, but at
the same time it will provide a computationally simpler approach.

The crucial task for such a model would be to specify how to come
up with an estimate of the probability that there exists a causal relation
between C and E without using the full machinery of Bayesian
inference. One possibility would be to resort to some proxy that tends
to correlate with the presence of a causal link but is easier to compute,
for instance the contingency 
P (Ward & Jenkins, 1965), some
measure of the covariation of C and E (Hattori & Oaksford, 2007) or,
even simpler, the observed predictive probability of effect given
cause, P(e |c) (cf. Meder, Gerstenberg, Hagmayer, & Waldmann,
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Figure 7. Differential influence of sample size on diagnostic probabilities derived from the structure induction
model. Left: Three data sets with identical predictive and diagnostic probability (P(e |c) � .3 and P(c |e) � .75)
but different sample size N (40, 200, 400). Increasing the sample size strongly influences the posterior
probability of structure S0 (middle left). As a consequence, the diagnostic probability derived from the structure
induction model approximates the empirical diagnostic probability when N increases (bottom left). Right: Three
data sets with identical predictive and diagnostic probability (P(e |c) � .3 and P(c |e) � .6) but different sample
size N (40, 200, 400). Increasing the sample size has a moderate influence on the posterior probability of S0, and
the difference between the empirical probability and the diagnostic probability derived from the structure
induction model remains largely unaffected.
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2010). Using the observed conditional diagnostic probability as an
anchor that is adjusted in the directions provided by the proxy might
be one possible implementation of a heuristic that could be tested in
future research.

Extensions and Limitations of the Structure
Induction Model

While the focus of the present work was on diagnostic infer-
ences from effect to cause, the structure induction model can also
be used to model other types of causal inferences. The basic
rationale is identical, namely, deriving the quantity of interest
separately under each causal structure and then integrating them
out to obtain a single estimate that reflects the associated structure
uncertainty. One example was already given above: modeling
predictive inferences (see Figure 6 and Appendix A). Another
example is inferring estimates of causal responsibility, P(c ¡ e |e),
which then would yield a structure induction model of causal
attribution (see Appendix C). Thus, the structure induction model
is not restricted to diagnostic inferences but provides a principled
method for taking into account causal structure uncertainty, offer-
ing a link to the existing literature on the consideration of structure
in causal learning, reasoning, and decision making (Anderson,
1990; Griffiths & Tenenbaum, 2005; Hagmayer & Meder, 2013;
Lagnado, Waldmann, Hagmayer, & Sloman, 2007; Meder et al.,
2008; Waldmann & Hagmayer, 2013; Waldmann & Holyoak,
1992).

Another issue for future research concerns the generation of the
space of possible causal structures. We focused here on the two
elementary structures S0 and S1, which are particularly relevant in the
context of elemental causal induction, as S1 is the default structure in
power PC theory and S0 formalizes the hypothesis that there is no
causal relation between C and E. In line with other researchers
(Anderson, 1990; Griffiths & Tenenbaum, 2005), we consider the
question of whether the data provide sufficient evidence for the
existence of a causal link as the most elemental type of structure
uncertainty that a rational agent should take into account. However,
depending on the computational complexity of the task, domain-
specific knowledge and other cues to causal structure, the hypothesis
space may differ.

Meder, Mayrhofer, and Waldmann (2009) used a variant of the
structure induction model that included a third possible structure, one
in which the effect is exclusively generated by the cause (i.e., wa is
fixed to 0). In many scenarios, this structure will receive zero posterior
probability, because a single case in which the effect occurs in the
absence of the cause will render the posterior probability of this
structure minimal. Therefore, including this structure will not affect
the model’s predictions in such cases. However, an extended model
might be necessary when prior knowledge or the observed data
strongly suggest necessary causal relations. The studies in Meder,
Mayrhofer, and Waldmann (2009) also explored a wider range of
experimental conditions, such as a between-subjects design and sce-
narios in which the base rate of the cause was varied. The results of
these studies provide further evidence for the robustness of our find-
ings.

More generally, an issue for further research will be to explore a
greater variety of tasks and domains in which there might be different
prior assumptions about the relative plausibility of the different causal
structures. Formally, such prior knowledge can be incorporated by

using a non-uniform prior over the space of causal structure hypoth-
eses. For instance, consider a scenario in which participants are
presented with the same data sets but the candidate cause is not a virus
but the zodiac sign of the patients. Such a context would probably
induce a higher prior on S0 (i.e., absence of a causal link) and not a
uniform prior over the causal structures.

This issue leads to the more general question of how the structure
induction model could be scaled up to situations involving multiple
variables and more complex causal networks. One possibility is that
the hypothesis space could consist of all possible causal structures
containing the considered variables (e.g., Steyvers et al., 2003). This
approach, however, does not scale, as the number of possible causal
structures grows exponentially with the number of variables. One way
to address this problem is to consider the role of additional informa-
tion that constrains the space of possible causal models, such as prior
knowledge or temporal information (Buehner & May, 2003; Gopnik
& Meltzoff, 1997; Hagmayer & Waldmann, 2002; Keil, 1989, 2003;
Lagnado & Sloman, 2006; Lagnado et al., 2007; Murphy & Medin,
1985; Waldmann, 1996).

Griffiths and Tenenbaum (2009) have developed a general com-
putational framework that uses prior knowledge as a constraint on the
causal models under consideration. This knowledge is more general
and at a higher level of abstraction than a specific causal hypothesis
(Griffiths & Tenenbaum, 2007; Tenenbaum, Griffiths, & Niyogi,
2007). Their “causal grammar,” which is implemented as a hierarchi-
cal Bayesian model, specifies the variables that form the causal
structure, the considered relations between them, and the functional
form of these relations. Importantly, it generates and constrains the
space of plausible causal models, thereby addressing the problem of
combinatorial explosion. Integrating our model with this framework
would allow for scaling the approach to more complex scenarios and
would provide a generic way to include prior knowledge.

Concluding Remarks

The goal of the present work was to examine the normative and
descriptive validity of different computational models of elemental
causal diagnostic reasoning. The intuition behind our theoretical anal-
yses was that it is important to distinguish between the (observable)
data level and the (unobservable) causal level and to take into account
alternative causal structures that may have generated the observed
contingencies. We have argued that a purely statistical model of
diagnostic reasoning is inadequate from a normative perspective.
Moreover, our empirical studies reveal the descriptive inadequacy of
such an account. In fact, although participants’ behavior in our studies
looks flawed and biased from the perspective of the simple Bayes
model, our analyses show that the judgment patterns should instead be
considered as resulting from a causal inference strategy that is well
adapted to the uncertainties of the world.
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Appendix A

Structure Induction Model

The structure induction model considers two causal structures
that may underlie the observed joint distribution of target cause C
and effect E, structures S0 and S1 (Figure 2). Associated with each
structure is a set of parameters �, which for structure S1 consists of
the base rate (bc) and causal strength (wc) of target cause C, and the
influence of the background cause A (wa). Structure S0 has only
two parameters, bc and wa (i.e., wc is fixed to 0). The posterior
probability distributions of a structure’s parameters conditional on
the data, P(� |D; Si), is given by

P(� |D; Si) �
P(D |�; Si)P(� |Si)

P(D |Si)
, (A1)

where P(D |�; Si) is the likelihood of the data given the parameter
values (see Equations A2 and A3, respectively), P(� |Si) refers to
the prior probabilities of the parameters, which we set to indepen-
dent Beta(1, 1) distributions (i.e., flat priors), and P(D|Si) is a
normalizing constant.

Under a noisy-OR parameterization (Pearl, 1988), for which
Cheng’s (1997) causal power measure is the maximum likelihood
estimate (Griffiths & Tenenbaum, 2005), the likelihood functions
P(D |�; Si) are given by

P(D |�; S0) � [(1 � bc)(1 � wa)]
N(¬c,¬e) · [(1 � bc)wa]

N(¬c,e)·

[bc(1 � wa)]
N(c,¬e) · [bcwa]

N(c,e) (A2)

for structure S0 and

P(D |�; S1) � [(1 � bc)(1 � wa)]
N(¬c,¬e) · [(1 � bc)wa]

N(¬c,e) ·

[bc(1 � wc)(1 � wa)]
N(c,¬e) · [bc(wc � wa � wcwa)]

N(c,e)
(A3)

for structure S1.
The parameters’ posteriors are derived separately for each of

the two causal structures S0 and S1 (see Figure 2). Under
structure S0, the parameter wc � 0; thus, the likelihood function
simplifies accordingly (see Equation A2 vs. A3).

Causal Structure Posteriors

The posterior probability of the causal structures S0 and S1 is
given by

P(Si |D) �
P(D |Si)P(Si)

P(D)
with P(D) � �

i��0,1�

P(D |Si)P(Si), (A4)

where P(D |Si) denotes the likelihood of the data given the struc-
ture (see Equation A5), P(Si) denotes the prior probability of

structure Si (which was set to .5 for both structures, i.e., a uniform
prior), and P(D) is a normalizing constant.

The likelihood of the data given structure Si, P(D |Si), is the
integral over the likelihood functions of the parameters (see Equa-
tions A2 and A3) under structure Si:

P(D |Si) � ��� P(D |�; Si)P(� |Si)d� with � � (bc, wc, wa),

(A5)

where P(� |Si) denotes the joint prior probability over the struc-
tures’ parameters, which we set to independent Beta(1, 1) distri-
butions (i.e., flat priors) for all parameters within each structure.

Modeling Diagnostic Inferences

The diagnostic probability of cause given effect is derived
separately for each parameterized causal structure (S0 and S1)
by integrating over the parameters’ values weighted by their
posterior probability:

P(c |e; D, Si) � ��� P(c |e; �, Si)P(� |D; Si)d�

� ��� P(c |e; �, Si)
P(D |�; Si)

P(D |Si)
P(� |Si)d�

(A6)

with

P(c |e;�, S0) � bc (A7)

and

P(c |e; �, S1) �
(wc � wa � wcwa)bc

(wc � wa � wcwa)bc � wa(1 � bc)
. (A8)

The same procedure can be used to model predictive inferences
(i.e., for deriving an estimate of the probability of effect given
cause, P(e |c); see Equation 3). The result is an estimate of the
diagnostic (or predictive) probability under each of the two (pa-
rameterized) causal structures.

Integrating Out the Causal Structures

The final step is to integrate out the two alternative causal
structures to obtain a single value for the diagnostic probability
P(c |e) that takes into account uncertainty about the underlying
generative causal structure. This is done by summing over the
values of P(c |e) derived under structures S0 and S1 (see Equation
A6), with each value being weighted by the posterior probability of
the respective structure (see Equation A4):

(Appendices continue)
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P(c |e; D) � �
i��0,1�

P(c |e; D, Si) · P(Si |D). (A9)

The result of this Bayesian model averaging is a single value for
the diagnostic probability P(c |e) that takes into account uncer-
tainty about the causal structures and about the associated param-
eter values. The same procedure can be used to obtain an estimate
of the predictive probability of effect given cause, P(e |c), or an
estimate of causal responsibility (see Appendix C).

Implementation of the Structure Induction Model

R code that implements the structure induction model is
available in the online supplemental materials (http://dx.doi.org/
10.1037/a0035944.supp). The R code uses Monte-Carlo simu-
lations to evaluate the integrals (see Equations A5 and A6) by
drawing m � 1,000,000 independent samples of parameters bc,

wc, and wa from a uniform Beta(1, 1) distribution on the interval
[0, 1] (i.e., flat prior; cf. Griffiths & Tenenbaum, 2005).

Accordingly, Equation A5 is approximated by

P(D |Si) �
1

m�
k�1

m

P(D |�k; Si) with �k � �bc
k, wc

k, wa
k� (A10)

and Equation A6 by

P(c |e; Si) �
1

m�
k�1

m

P(c |e; �k, Si)
P(D |�k; Si)

P(D |Si)

with �k � �bc
k, wc

k, wa
k� (A11)

with �k being one sample from three independent Beta(1, 1)
distributions. Note that for structure S0 the parameter set �k con-
sists of only two parameters, bc and wa.

Appendix B

Bayesian Power PC Model of Diagnostic Reasoning

The standard power PC model (Cheng, 1997) uses maximum
likelihood point estimates to parameterize the default causal structure
S1 (Figure 2). Here we consider two Bayesian variants of the model, one
with uniform priors over the parameters bc, wc, and wa, and one using the
sparse and strong (SS) prior suggested by Lu et al. (2008).

Power PC Model With Uniform Priors

For the power PC model with uniform priors, the parameters of
structure S1 (bc, wc, and wa) were set to independent Beta(1, 1)
distributions. The parameters’ posterior distributions were derived
using Equations A1 and A3 (Appendix A). As in the structure induc-
tion model, the parameters are then integrated out (see Equation A5),
and the diagnostic probability of cause given effect is computed (see
Equations A6 and A8). The implementation is analogous to that of the
structure induction model, that is, the likelihood function and the
diagnostic probability of cause given effect are approximated through
Monte-Carlo simulations (see Equations A10 and A11). The derived
diagnostic probability takes into account uncertainty regarding param-
eter estimates, but does not consider uncertainty regarding alternative
causal structures that may have generated the observed data.

Power PC Model With Sparse and Strong (SS) Priors

The SS power model was originally developed to account for
structure and strength judgments based on contingency data (Lu et al.,
2008).B1 However, the idea that people bring generic assumptions
about causal systems to the task can also be applied to diagnostic

inferences. Lu et al. (2008) implemented the SS power model as a
Bayesian inference over structure S1 with specific (i.e., sparse and
strong) priors over the structure’s parameters wc and wa (see also
Equation 10 in Lu et al., 2008):

P(wc, wa) � e��wa��(1�wc) � e��(1�wa)��wc, (B1)

where � is a free parameter controlling a reasoner’s preference
for sparse and strong causes. Following Lu et al. (2008), we set
� � 5.

Since the SS power model does not make assumptions about
the base rate of the cause (as it does not matter for strength
judgments), we assumed a flat prior for bc. With these prior
assumptions, the same logic as for structure S1 in the structure
induction model can be applied to compute the diagnostic
probability within the SS power model:

P(c |e; D) � ��� P(c |e; �)P(� |D)d� with � � (bc, wc, wa)

(B2)

with P(c |e; �) as described in Equation A8 and P(� |D) as de-
scribed in Equation A1 for structure S1 within the structure induc-
tion model (see Appendix A).

B1 We use the strength-estimate version of the model’s prior here; the
structure version of the SS power model employs additional assumptions about
wc. Since the structure version of the SS power model achieved worse fits than
the strength version, we do not discuss this model variant further.

(Appendices continue)
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Implementation of the SS Power Model of
Diagnostic Reasoning

As for the structure induction model, we evaluated the inte-
gral given in Equation B2 with a Monte-Carlo simulation by
drawing m � 1,000,000 independent samples from the respec-
tive prior distributions:

P(c |e) �
1

m�
k�1

m

P(c |e; �k)
P(D |�k)

P(D)
with �k � �bc

k, wc
k, wa

k�

(B3)

with (wc, wa) drawn from the joint SS prior distribution (see
Equation B1) and bc drawn from a Beta(1, 1) distribution.

Appendix C

Causal Attribution Models

A causal inference framework allows us to model different types of
diagnostic quantities beyond the conditional probability of cause
given effect, such as estimates of how likely it is that the observed
effect was indeed produced by candidate cause C. This constitutes a
measure of causal responsibility, rather than diagnostic conditional
probability (Cheng & Novick, 2005; Holyoak et al., 2010). Different
implementations of a causal attribution model are possible that differ
in the degree to which they take into account uncertainty regarding the
parameter estimates and the underlying causal structure.

Power PC Model of Causal Attribution

Let c ¡ e denote that effect E is produced by cause C (Cheng &
Novick, 2005). Whether the occurrence of effect E can be attributed
to the occurrence of C translates to determining the conditional
probability P(c ¡ e |e). If “C caused E” holds, it is necessarily the
case that E occurred, therefore P(e |c ¡ e) � 1. According to Bayes’
rule,

P(c¡ e |e) �
P(e |c¡ e) · P(c¡ e)

P(e)
�

P(c¡ e)

P(e)

�
bcwc

bcwc � wa � bcwcwa
.

(C1)

Equation C1 allows for deriving estimates of causal responsibility
under causal power assumptions. Note that all parameters involved
in these computations can be inferred from observable contingency
data. In the standard power PC model, the parameters are maxi-
mum likelihood point estimates directly derived from the data.

These derivations also reveal that typically P(c ¡ e |e) � P(c |e).
The reason for the smaller values is that estimates of causal respon-
sibility partial out cases in which the effect was caused by the
background event A. Only when there are no alternative causes (i.e.,
P(e |¬c) � wa � 0), it holds that P(c ¡ e |e) � P(c |e). Conversely,
the maximal difference is obtained when C and E are independent,
that is, when wc � 0. In this case, P(c ¡ e |e) � 0, as the lack of a
causal relation between C and E entails that C cannot be responsible
for the occurrence of E, whereas P(c |e) � P(c).

Bayesian Power PC Model of Causal Attribution

Holyoak et al. (2010) used a Bayesian variant of power PC theory
to infer estimates of causal responsibility that take parameter uncer-
tainty into account (Holyoak et al., 2010; see also Lu et al., 2008). The
parameters of structure S1 are represented by uniform prior probability
distributions, and the posteriors are estimated using Bayesian infer-
ence (see Equation A1). The key difference from the standard power
PC model with uniform priors (see Appendix B) is that not the
conditional probability of cause given effect (see Equation A8) but an
estimate of causal responsibility, P(c ¡ e |e) (i.e., Equation C1), is
derived. As with the other Bayesian models, Monte-Carlo simulations
were used to implement the model (see Equations A10 and A11).

Structure Induction Model of Causal Attribution

The derivation of an estimate of causal responsibility in the struc-
ture induction model is analogous to deriving diagnostic or predictive
probabilities (see Appendix A). As before, the posterior parameter
distributions of the two structures S0 and S1 are derived, and a
posterior over the structure space is computed. The conceptual dif-
ference is that instead of deriving a conditional probability, an esti-
mate of causal responsibility under each structure is obtained. Struc-
ture S0 states that there is no causal relation between C and E, and
therefore this structure entails that P(c ¡ e |e) � 0. Note the differ-
ence from the diagnostic probability of cause given effect under S0,
which can never be lower than the base rate of the cause (see the
corresponding Equation A7). Under structure S1, Equation C1 is used
to derive an estimate of causal responsibility instead of Equation A8.

As before, when the structures are integrated out, the resulting
estimate of P(c ¡ e |e) depends on the relative posterior probabilities
of the structures. For instance, since structure S0 entails that P(c ¡

e |e) � 0, the higher the posterior of S0, the more closely the final
estimate approximates zero. We used Monte-Carlo simulations to
implement the model (see Appendix A for details).
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