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1  |  INTRODUCTION

Developmental research is resource-, personnel- and time-intensive. 
Researchers spend time and money establishing contact and rela-
tionships of trust with caregivers, who already have demands on 

their time and may not be able to commit to participating in research 
to the same extent as undergraduate students. Even when a sample 
of participants has been recruited for a study, the above average 
drop-out rates of such studies lead to many testing sessions yield-
ing little actual data for the study (Miller, 2012). As a consequence 
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Abstract
Developmental research, like many fields, is plagued by low sample sizes and incon-
clusive findings. The problem is amplified by the difficulties associated with recruiting 
infant participants for research as well as the increased variability in infant responses. 
With sequential testing designs providing a viable alternative to paradigms facing 
such issues, the current study implemented a Sequential Bayes Factor (SBF) design 
on three findings in the developmental literature. In particular, using the framework 
described by Schönbrödt and colleagues (2017), we examined infants’ sensitivity to 
mispronunciations of familiar words, their learning of novel word-object associations 
from cross-situational learning paradigms, and their assumption of mutual exclusiv-
ity in assigning novel labels to novel objects. We tested an initial sample of 20 par-
ticipants in each study, incrementally increasing sample size by one and computing a 
Bayes Factor with each additional participant. In one study, we were able to obtain 
moderate evidence for the alternate hypotheses despite testing less than half the 
number of participants as in the original study. We did not replicate the findings of the 
cross-situational learning study. Indeed, the data were five times more likely under 
the null hypothesis, allowing us to conclude that infants did not recognize the trained 
word-object associations presented in the task. We discuss these findings in light of 
the advantages and disadvantages of using a SBF design in developmental research 
while also providing researchers with an account of how we implemented this design 
across multiple studies.

K E Y WO RD S
cross-situational learning, effective research, informative research, mispronunciation task, 
mutual exclusivity, Sequential Bayes Factor
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perhaps, average sample sizes in developmental research are con-
siderably lower (Oakes, 2017) than what is typical in research with 
more accessible participant pools. Smaller sample sizes, in turn, lead 
to studies not having sufficient power to detect the effects under 
investigation and inconclusive or spurious findings driven by isolated 
participants. Issues of power are further amplified in developmental 
research due to the fact that studies with infants need to be shorter to 
maintain their attention throughout, leading to fewer trials per con-
dition and, consequently, greater variability in infant performance. 
Especially given the time and effort typically invested in recruiting 
and testing younger participants, inconclusive or spurious findings—
the infamous p = 0.08 (Schönbrodt et al., 2017)—are frustrating to 
say the least and deterring at worst. Against this background, the 
current study examines the practicability of using Sequential Bayes 
Factor design (SBF design, see Schönbrodt & Wagenmakers, 2018; 
Schönbrodt et al., 2017; Stefan et al., 2019 for easily accessible re-
views) in developmental research as a more “informative and effi-
cient” (Schönbrodt & Wagenmakers, 2018) alternative to other more 
commonly used design and analytic procedures.

Broadly speaking, following an SBF design (Schönbrodt et al., 
2017), researchers collect data from an initial pre-specified sample of 
participants and infer the probability that H1 is true (an effect exists 
in a given population or between populations) relative to the prob-
ability that H0 is true (the effect does not exist) given the observed 
data. This ratio, called the posterior odds, tells us how much more 
likely one hypothesis is relative to the other. For example, posterior 
odds of 10 tell us that, given the data, H1 is 10 times more likely to be 
true than H0. If the posterior odds exceed a pre-specified minimum 
level of evidence for the alternative or null hypothesis, known as the 
H1 boundary or the H0 boundary, then the researcher can choose to 
stop testing and draw their conclusions based on this initial sample. 
Critically, if the posterior odds do not cross the pre-specified thresh-
old, the researcher can continue testing participants until either the 
threshold for H1 or H0 is crossed. Once either threshold is crossed, 
the researcher can stop testing and draw their conclusions regarding 
the strength of the evidence for either hypothesis.

We can compute the posterior odds as follows:

Here, P(H1) and P(H0) are the prior probabilities we assign to H1 
and H0, and their ratio is called the prior odds. The prior odds indicate 
how probable we believe H1 to be relative to H0 before we have had 
a look at the data. Finally, P(D|H1) and P(D|H0) are the likelihood of 
obtaining the observed data if either H1 or H0 were true. Their ratio 
is called the Bayes Factor (BF). The BF quantifies the extent to which 
the data are more probable were H1 to be true relative to when H0 
were true. It serves as an updating factor that tells us how we must 
change our prior odds in the light of the data. Since we can only com-
pute the BF, but are ultimately interested in the posterior odds when 
making statements about the existence or absence of a particular 
effect, it is common to assume, for the sake of convenience, that H1 

and H0 are equally probable as priors, that is, to set the prior odds to 
1 (Schönbrodt et al., 2017). In this case, the BF equals the posterior 
odds, and we can interpret the relative likelihood of the data given 
both hypotheses as their relative probability of being true. For the 
purpose of this paper, we will only consider the case of equal prior 
odds and will, thus, treat the BF as the posterior odds, that is the 
probability that H1 is true relative to the probability that H0 is true, 
given the observed data.1

Following guidelines for accepted levels of evidence (Lee & 
Wagenmakers, 2013), BFs between 1 and 3 are considered anecdotal 
evidence, BFs between 3 and 10 moderate evidence, BFs between 10 
and 30 strong evidence and BFs over 30 very strong evidence for H1. 
The inverse is generally true for H0 (1/3 to 1—anecdotal evidence, 
1/10 to 1/3—moderate evidence, 1/30 to 1/10—strong evidence and 
under 1/30—very strong evidence). Moderate evidence is considered 
the lowest acceptable evidence threshold for accepting either H0 or 
H1. While at first glance, a BF of 3 (or 1/3) might not seem over-
whelming, even this relatively low evidence threshold is more con-
servative than using a p value of 0.05 (Wetzels et al., 2011). While 
most researchers use symmetric thresholds when testing hypothe-
ses using BFs (e.g., they decide to accept H1 if BF >3 and to accept 
H0 if BF <1/3), it is permissible to set an asymmetric threshold for 
H0, given that evidence for H0 accumulates at a much slower pace 
(Jeffreys, 1961; Schönbrodt & Wagenmakers, 2018, p. 133).

The critical difference to designs employing standard null hy-
pothesis significance testing (NHST) is that the researcher is not 
constrained by a pre-specified sample size whereupon they have 
to stop data collection. Rather, following the initial computation of 
BF, the researcher can either choose to stop data collection or con-
tinue collecting data (referred to as optional stopping) until they are 
convinced they have accumulated reliable evidence for either hy-
pothesis. Such optional stopping or continuation of data collection 
after testing the last planned participant (and the repeated statis-
tical significance testing that comes along with it) is not possible in 
the NHST paradigm due to issues of inflation of Type 1 error rates 
(Armitage et al., 1969). In contrast, in Bayesian hypothesis testing, 

P (H1 |D )

P (H0 |D )
=

P (D |H1 )

P (D |H0 )
×
P
(
H1

)

P
(
H0

) .

Research Highlights

•	 A Sequential Bayes Factor (SBF) design replication of 
three key developmental findings.

•	 We tested infant sensitivity to mispronunciations of 
words, cross situational word-object association learn-
ing and mutual exclusivity based learning.

•	 We replicate sensitivity to mispronunciations and mu-
tual exclusivity based learning but not cross-situational 
word-object association learning.

•	 SBF designs allow greater flexibility in developmental 
research allowing further testing in cases of inconclu-
sive findings.

•	 Advantages and issues associated with SBF designs.
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the pre-defined criterion for the BF can be chosen such that there 
is a high probability that evidence for the wrong hypothesis cannot 
be obtained (Edwards et al., 1963).2 Note that the initial sample 
size chosen in SBF designs for the first computation of the BF is a 
combination between a convenience sample (how many people can 
I reasonably test before I begin to compute sequential BF?) and a 
judgement of an adequate sample size that would reliably provide 
evidence of a given effect (how many people do I need to test before 
I can believe the evidence?). This is in contrast to justifications of 
sample sizes that are either based on analyses of the power to detect 
the effect under investigation or examples of prior studies on similar 
topics. SBF can also accommodate researchers who prefer to think 
about statistical inference in terms of type I and type II errors using 
a Bayes Factor design analysis (BFDA; Schönbrodt & Wagenmakers, 
2018). This entails a simulation that returns the expected type I and/
or type II error rates depending on the planned sample (this could 
either be a fixed sample size or, in the case of SBF, the planned min-
imal, incremental, or maximal sample size), the expected effect size, 
and the aspired BF thresholds. We include a design analysis for our 
own studies in Appendix A.

Note that a researcher can, in principle, choose to stop testing 
before a pre-specified inference threshold is crossed for monetary or 
organizational reasons. For instance, evidence for H0 typically accu-
mulates at a much slower pace which may necessitate testing to stop 
before the threshold for H0 is reached in some cases (Schönbrodt 
& Wagenmakers, 2018). Similarly, a researcher may choose to con-
tinue testing even after a particular threshold is crossed to increase 
their confidence in the stability of the effect given potential issues 
of false positive or false negative evidence. Such subjective deci-
sions with regards to optional stopping will obviously have implica-
tions for the researchers’ and readers’ confidence in their findings, 
therefore allowing researchers to stop testing earlier and reporting 
their reduced confidence in their findings or continuing testing until 
they are more confident in the stability of the effect or other factors 
intervene.

There are a number of obvious advantages as well as some dis-
advantages to SBF designs that are highlighted by Schönbrodt et al. 
(2017). With a focus on the additional difficulties associated with 
recruiting and testing infants, the flexibility with regards to optional 
stopping is a clear win. The authors note that SBF designs may be 
between 50% to 70% more efficient, allowing researchers to collect 
data from fewer infant participants when the effect is strong and to 
continue collecting data when the effect is weak.

Further flexibility is afforded by the fact that the stopping rule 
is “a suggestion, not a prescription” (Schönbrodt et al., 2017, p. 14). 
Thus, if it is important to a researcher to judge the strength or stabil-
ity of an effect, they can continue testing even after the threshold is 
crossed for information on long-term rates of false evidence. At the 
same time, the possibility of incremental testing until either thresh-
old is crossed allows the researcher more definitive evidence for or 
against an effect, so that resources are not unnecessarily wasted 
testing a pre-specified sample of infants to end up with an inconclu-
sive p = 0.06.

While Schönbrodt et al. (2017) also go into considerable detail 
about the disadvantages of such a design, we will focus here on one 
of the decisions that the researcher needs to take regarding the prior 
beliefs that they incorporate into the analyses. The Bayesian world is 
divided into objective Bayesians who recommend default prior dis-
tributions, for example, the recommendation made in Schönbrodt 
et al. (2017) for a Cauchy prior distribution (JZS prior, Schönbrodt 
et al., 2017), and subjective Bayesians, who recommend incorpo-
rating information of the effect sizes reported in previous studies 
into the analyses. The argument for defining subjective priors is they 
reflect a researcher's true belief in the size of an effect before they 
analyze their data. In some sense, using subjective priors aligns best 
with the core idea of Bayesian reasoning. While objective priors do 
not necessarily capture a researcher's true a-priori beliefs about the 
effect of interest, they help to navigate the problem that different 
researchers may hold different a-priori beliefs and, thus, also dif-
ferent posterior beliefs about an effect. A second important argu-
ment for objective priors is specific to using BFs as the inference 
criterion. As Gronau et al. (2020) point out, priors should meet two 
important criteria. The first is predictive matching, that is, if the data 
are completely uninformative, the BF should be 1. The second cri-
terion, information consistency, states that as the evidence for H1 
increases (to infinity) so should the BF. While some objective priors, 
such as those implemented as defaults for Bayesian t-tests, meet 
these criteria, subjective priors usually do not.3 Given this debate, 
we note that, following the recommendation made in Schönbrodt 
et al. (2017), we chose to report a sensitivity analysis here to ex-
amine how the strength of evidence for or against the effect varied 
across a range of priors.

1.1  |  The current study

Here, we test three oft-reported effects in the developmental lit-
erature using an SBF design (see Appendix B for details of studies 
replicating these effects, reported sample sizes and findings as well 
as BFs that we computed for each of these studies based on the 
details provided in the individual manuscripts). First, we examined 
children's sensitivity to mispronunciations of familiar words in an 
eye-tracking task (Swingley & Aslin, 2000). Children were presented 
with images of familiar objects side-by-side on a screen and heard 
either a correct or incorrect pronunciation of the label for one of 
these objects, for example, baby mispronounced as vaby. The find-
ing that children looked longer at the target when cued by a correct 
pronunciation relative to a mispronunciation of its label suggests 
that children were sensitive to mispronunciations of the words and 
represent words with adequate phonological detail even early in 
development.

Next, we examined children's learning of novel word-object as-
sociations via cross-situational statistics (Smith & Yu, 2008). Here, 
children were presented with trials where they saw two novel ob-
jects side-by-side on the screen and heard two novel labels without 
being told which of the two objects each of the labels referred to. 
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Across multiple such trials, children can infer the intended label-
object mappings based on the fact that every occurrence of a partic-
ular object is accompanied by a particular label. Children were then 
presented with two of the previously trained objects and the label 
for one of these objects. Children looked longer at the correct object 
when presented with the label for this object, suggesting that they 
can use cross-situational statistics to infer the intended referents of 
ambiguous words.

Finally, we examined children's assumption of mutual exclusivity 
in assigning labels to objects (Markman & Wachtel, 1988). According 
to the mutual exclusivity bias, children refrain from assigning an un-
familiar label to an object whose label they are familiar with. Rather, 
they ought to assign the unfamiliar label to an object whose label is 
unknown, that is, to an unfamiliar object. Here, children were pre-
sented with two objects, only one of which they already knew the 
label of, for example, a banana (familiar) and a cherry pitter (unfa-
miliar). Half of the children were assigned to the Novel label condi-
tion where they were asked to “Show me the x,” where x was an 
unfamiliar word, while the other half were assigned to the Control 
condition where they were asked to “Show me one.” Children chose 
the unfamiliar object, for example, the cherry pitter, significantly 
above chance only in the Novel label condition but not in the Control 
condition, suggesting that they responded in keeping with a mutual 
exclusivity bias.

We tested these hypotheses using default Bayesian t-tests as 
implemented in the BayesFactor package for R (Rouder et al., 2009). 
In the default settings, H0 is a point hypothesis, that is, under H0, 
the only possible value for the effect size d is zero, and the whole 
probability mass is concentrated at an effect size of zero. H1 entails 
all non-zero effect sizes but, as opposed to frequentist statistics, not 
all possible values of the effect size are deemed equally probable a 
priori. Instead, smaller effect sizes are a priori considered more prob-
able, and this default belief is modeled using an objective Cauchy 
prior on the effect size d with the default scaling factor of 

√
2∕2. The 

Cauchy distribution is a t-distribution with 1 df. It has a fixed shape 
and includes no parameters that would influence its shape. However, 
one can use the scaling factor to make the distribution wider/flatter 
or narrower/taller (greater values lead to wider and flatter distribu-
tions). The prior distribution of the effect size is the only difference 
between H1 and H0 in the default Bayesian t-test, that is, all other 
parameters such as the variance have the same priors. Therefore, 
computing the BF in a Bayesian t-test tells us how likely it is to ob-
tain the observed data given that the effect is zero (H0) or that any 
of the non-zero effect sizes is true (H1), all other things being equal. 
Figure 1 illustrates how the prior probability for the effect size looks 
under H0 and under H1 in the default Bayesian t-test.

Across all studies, we used an SBF design in keeping with the 
recommendations of Schönbrodt et al. (2017). The first recommen-
dation regards the choice of initial sample size where we, in keeping 
with Schönbrodt et al. (2017), chose an initial sample of 20 partici-
pants in each study and subsequently incrementally tested partic-
ipants (adding one participant at a time). We set our threshold for 
optional stopping at 1/5 < BF < 5. In other words, were the BF to 

drop to <1/5 or >5, we would stop testing. Schönbrodt et al. (2017) 
recommend this setting due to the lower rates of false positive 
and false negative evidence with this boundary. While we follow 
Schönbrodt et al's recommendations in the current study, we direct 
the reader to Schönbrodt et al. (2017) for details of expected stop-
ping-n across a range of SBF designs with different expected effect 
sizes and Bayes thresholds, which could be used to plan initial sam-
ple sizes and Bayes thresholds based on the expected effect sizes 
of planned studies. Thus, the researcher may want to plan a larger 
initial sample size for a study with a smaller expected effect size and 
a conservative BF threshold, or plan a smaller initial sample size (as 
chosen here) or less conservative Bayes threshold when replicating 
a known effect with a larger effect size.

2  | METHOD

We will report all methodological details for each replication indi-
vidually, beginning with the mispronunciation sensitivity replication 
(Swingley & Aslin, 2000), followed by the cross-situational learning 
(Smith & Yu, 2008), and finally the mutual exclusivity replication 
(Markman & Wachtel, 1988).

2.1  | Mispronunciation sensitivity task

2.1.1  |  Participants

We recruited 32 children for this study. 21 children aged between 18 
and 23 months (M = 21.14 m, range 18–23.24 m, 8 female) were in-
cluded in the final analyses (Swingley & Aslin, 2000). Three bilingual 
children were tested as pilot children and were excluded from the 
final analyses. In addition, the data from six children had to be ex-
cluded from the analyses due to technical issues caused by migration 

F IGURE  1 Prior probabilities of different values of the effect 
size d in the default Bayesian t-test of the BayesFactor package for 
R. The prior probability under H1 is a Cauchy distribution with the 
default scaling factor of 

√
2∕2

 14677687, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/desc.13097 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [02/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  5 of 12MANI et al.

of the laboratory to a new room prior to starting the experiment. 
Two additional children were invited to testing but did not want to 
participate upon arrival.

All children tested across all three studies reported here were 
recruited from the laboratory database. All children were born 
full-term, had normal hearing and vision, and were reported to be 
monolingual German learners. Children received a book in return for 
their participation in the study. The study received ethical approval 
from the Ethics committee of the Psychology department of the 
University (Number 190b).

2.1.2  |  Stimuli

Six colorful images of objects known to be familiar to 18-month-olds 
were chosen as the critical test stimuli for the study (apple, dig-
ger, ball, cookie, star, and teddy). The images were yoked together 
in pairs so that each image was always presented together with 
the other image in the pair. Each image, embedded in a gray back-
ground, spanned 480  ×  390 pixels and appeared to the left and 
right of the monitor separated by 400 pixels (see Figure 2). In ad-
dition, we presented filler trials containing images of four familiar 
objects (caterpillar, duck, car, and shoe) against a gray background. 
The images in filler trials were presented in the four quadrants 
of the screen (counterbalanced across trials) equidistant from the 
center of the screen.

A female native speaker of German recorded pairs of sentences 
containing the critical target words, either correctly or incorrectly 
pronounced. The first sentence was “Where is the X?” [Wo ist der 
X], where X was the label of the intended target, either correctly 
or incorrectly pronounced, followed by a further neutral sentence 
(e.g., “Can you find it?”/“Do you recognize it?”/“Do you see it?”). The 
mispronunciations of the words were as follows—Apfel–Opfel, Keks–
Teks, Stern–Storn, Bagger–Dagger, Ball–Gall, Teddy–Beddy.

2.1.3  |  Procedure

The experiment took place in an eye-tracking booth, where the 
child sat facing a 40 in screen (1920 × 1080) on which the stimuli 
were presented using Tobii Pro Studio (version 3.4). Participants 
were seated either on their caregiver's lap or in a car seat approxi-
mately 60 cm away from the screen. The auditory stimuli were pre-
sented via loudspeakers located above the screen to the left and 
right side of the screen. Eye movements and pupil diameter were 
captured using a Tobii X3-120 eye tracker with a gaze sampling 
rate of 120 Hz. We ran a 5-point calibration and the experiment 

only started when at least four of the five points were correctly 
calibrated.

Children were presented with 28 trials (24 test trials and 4 filler 
trials) across four blocks, where the order of the trials and the ap-
pearance of the target to the left and right side of the screen was 
counterbalanced across blocks. Each block included six test trials 
and one filler trial. Each image was the target four times (twice cor-
rect, twice mispronounced) and the distractor four times and ap-
peared to the left and right side of the screen an equal number of 
times. Each target was labelled only once in each block, either with a 
correct or an incorrect pronunciation.

Each trial began with the presentation of both images in si-
lence. The first sentence began 3 s into the trial and the trial ended 
6 s after the onset of the first sentence. Filler trials were presented 
in silence. Trials were separated by a black screen with a white 
cross in the middle and the next trial was only initiated when the 
participants were fixating the cross. The experiment took around 
5 min to complete.

2.1.4  |  Preprocessing

We aggregated gaze data into 40  ms bins offline and coded for 
whether the child was fixating the target or the distracter for each 
of the 40  ms bins. Area of Interests (AOIs) for the images were 
based on the dimensions of the image including a 50 pixel frame 
around the image. Data points where one or two of the eyes could 
not be tracked reliably (validity <2 on Tobii scale) and trials where 
more than 80% of the data could not be tracked were rejected (cf. 
Ackermann et al., 2020). Only fixations were retained for analysis 
(looks at a particular AOI more than 60 ms). We calculated the pro-
portion of target looking (PTL) as the total amount of time infants 
spent looking at the target divided by the total amount of time spent 
looking at the target and the distractor. The PTL was calculated indi-
vidually for each trial including all fixations that took place between 
360 ms after the onset of the target word in the trial until 2000 ms 
after the onset of the target word. The 360 ms cut-off ensured that 
we only considered eye movements that could reasonably be inter-
preted as a response to the auditory stimulus (Swingley et al., 1999).

2.2  |  Cross-situational learning task

2.2.1  |  Participants

Fifty-five children were recruited for this study. 43 children aged 
between 12 and 15  months (M  =  12.77  m, range 11.93–14.22  m, 

F IGURE  2 Images of objects used in 
the mispronunciation task
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21 female) were included in the final analyses (Smith & Yu, 2008). 
Four bilingual children were tested as pilot children and excluded 
from the final analyses. In addition, the data from five children had 
to be excluded from the analyses due to technical issues caused by 
migration of the laboratory to a new room prior to starting the ex-
periment. Three additional children were tested but excluded from 
further analyses for not providing data for at least two trials in the 
test phase.

2.2.2  |  Stimuli

Six images of objects (see Figure 3) unfamiliar to children were cho-
sen as novel objects for the current study such that each object was 
easily discriminable from the other objects and was of roughly the 
same size on screen. Each image embedded in a gray background 
spanned roughly 350 × 600 pixels and appeared to the left and right 
of the monitor. In addition, we presented attention getter trials con-
taining videos between trials to maintain children's interest in the 
experiment. These consisted, for, for example, of a rotating windmill, 
a parrot on a cycle, a Teletubby.

In addition, six bisyllabic non-words in keeping with the phono-
tactics of German “Akan,” “Upos,” “Basa,” “Modi,” “Sibu,” and “Isot” 
were chosen as the labels for the novel images. A female native 
speaker of German recorded isolated tokens of the individual words 
which were then spliced together differently for training and test 
trials.

2.2.3  |  Procedure

The experiment took place in an eye-tracking booth identical to 
that of the previous study. Children were assigned to one of six 
lists which counterbalanced, across children, the word-object 
pairings that were presented such that each object was labelled 
with different words across the six lists. In each list, children were 
presented with 30 training trials and 12 test trials. In each training 
trial, children were presented with two of the six objects to the 
left and right side of the screen and heard the two labels that had 
been assigned to both these objects in a pseudorandomized order. 
There were no cues provided within each trial as to the word-
object assignment. Each training trial lasted 4 s. The onset of the 
first label in a training trial was at 500 ms, while the second label 
began 500 ms after the offset of the first label. During training, 
children were presented with the correct label-object pairing 10 
times. Each object appeared five times to the left and five times to 
the right of the screen in a pseudorandomized order. We ensured 

that we never presented the same object across two immediately 
successive trials. Attention-getter trials were interspersed with 
training trials after the 2nd, 8th, 11th, 18th, 22nd, 26th, and 30th 
trial.

During test trials, children were presented with two images of 
two objects side-by-side on screen and heard the label of one of 
these objects, which was repeated three further times during the 
trial. The onset of the first label was at 500  ms with at least a 
500 ms pause between the offset of the first token and the onset 
of the second token. Each trial lasted 8 s. Across trials, each object 
appeared as target once on the left and once on the right hand 
side of the screen. The order of trials was pseudorandomized so 
that each object was the target object at least once before it was 
labelled a second time. Attention-getter trials were interspersed 
after each test trial. Both test and training trials were only initi-
ated once children fixated a white fixation cross in the middle of 
the screen.

2.2.4  |  Preprocessing

We aggregated gaze data into 40 ms bins offline and coded for 
whether the child was fixating the target or the distracter for each 
of the 40 ms bins. Following Smith and Yu (2008; who used manual 
coding of infant videos), we assigned looks to the left and right 
hand side of the screen with a 80 pixel gap between the left and 
right AOI, such that each AOI was 600 × 700 pixels. All other pre-
processing steps were identical to the first study. As in Smith and 
Yu (2008), we calculated the total amount of looking time at the 
target and distractor for each trial. This was calculated individu-
ally for each trial including all fixations that took place between 
360 ms after the onset of the target word in the trial until the end 
of the trial.

2.3  | Mutual exclusivity task

2.3.1  |  Participants

Twenty-two children were recruited for this study (Markman & 
Wachtel, 1988). A sample of 20 children aged between 3 and 4 years 
(M = 45.5 m, range 40.39–52.06 m) were included in the final analy-
ses. One child was tested as pilot child and was excluded from the 
final analyses. Another child was tested but excluded from the data-
set due to an experimenter error. Children were assigned to a famil-
iar label and a control condition in a pseudorandomized order while 
controlling for age and sex of the children.

F IGURE  3 Images of objects used in 
the cross-situational learning task
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    |  7 of 12MANI et al.

2.3.2  |  Stimuli

Six familiar (cup, cow, saw, banana, plate, spoon) and six unfamiliar 
objects (see Figure 4) were chosen as critical stimuli for the study. 
In addition, we selected six phonotactically legal German pseudow-
ords, “Mido,” “Grasch,” “Toma,” “Bex,” “Dofu,” and “Nohle” to be used 
as labels for the novel label condition.

2.3.3  |  Procedure

Each child was tested individually with the experimenter and the 
child sitting across from each other at a table. The experimenter 
introduced the child to a frog hand-puppet and asked children to 
point the frog to the things it was asking for. Importantly, chil-
dren were told that there was no right or wrong answer. In the 
novel label condition, children were presented with a familiar and 
a novel object and asked to identify the referent of the novel label. 
In the control condition, children were asked to show one of the 
two objects.

The objects were presented on identical trays located equidis-
tant from the child. For each condition, we created two lists with 
different pairings of objects and order of presentation of object pairs 
such that an equal number of children in both conditions saw objects 
paired together in exactly the same way and presented in the same 
order. Objects were presented side by side with paired objects being 
roughly the same size in each pair. The location of the novel object 
to the left or right side of the child was counterbalanced across trials 
within each child. We also controlled for the pseudowords that were 
presented with each pair, with the ordering of pseudowords in one 
list being the exact opposite of the ordering of pseudowords in the 
other list. Children were randomly assigned to one of the two lists, 
ensuring that an equal number of children in both conditions saw 
each list. The only difference between conditions was that children 
were asked to find the referent of a novel label in the novel label 
condition, for example, “Show me the Mido!”, and to select one of 
the objects in the control condition, for example, “Show me one!”. 

Importantly, we always asked children before the objects were 
placed on the table to ensure that they were attending to the ques-
tion and to ensure that children did not reach for an object before 
hearing what they were asked for.

2.3.4  |  Preprocessing

We coded the number of times that children chose the unfamiliar 
object separately for when they were asked to identify either the 
referent of a novel label or to select one of the two objects. As in the 
original study, we then compared the number of times (out of a total 
of six times) that children chose the unfamiliar object in the novel 
label and the control condition.

3  |  RESULTS

We preprocessed and analyzed the data using R (R Core Team, 
2020). We analyzed the data using Bayesian t-tests as imple-
mented in the BayesFactor package (Rouder et al., 2009). For 
the mispronunciation sensitivity task and the cross-situational 
learning task, we used paired-sample t-tests, whereas for the 
mutual exclusivity task, we used an independent samples t-test. 
The starting sample size was 20 participants (10 per condition in 
the mutual exclusivity task). We ran the first test after gathering 
the initial sample and stopped data collection if the BF exceeded 
the threshold for accepting H1 (BF >5) or fell below the threshold 
for accepting H0 (BF <1/5). If the result was still inconclusive, we 
planned to test one additional participant and to recompute the 
t-test until the result was conclusive (i.e., the BF exceeded 5 or 
fell below 1/5).

In case of the mispronunciation and mutual exclusivity tasks, 
the data were informative after collecting the initial sample. We 
note that we mistakenly tested 21 children in the initial sample 
in the mispronunciation task and therefore report the data with 
this sample of 21 children. In contrast, we tested 43 children in 

F IGURE  4 Unfamiliar objects used in the mutual exclusivity task
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8 of 12  |     MANI et al.

the cross-situational learning task. Technically, our final sample 
size for this task would have been 32 children because the BF fell 
below 1/5 after testing the 32nd child. However, given the ab-
sence of evidence for the H1, we continued testing to guard our-
selves against a false negative. We stopped data collection at 43 
participants due to the researcher in charge finishing her project 
and the BF remaining below 1/5. For each analysis, we not only re-
port the results of the t-test but also a point estimate of the effect 
size d as well as the corresponding 95% highest density interval 
(HDI). The HDI is based on the posterior distribution of the effect 
size and includes those 95% of the possible values for d that are 
the most probable given the data.

3.1  | Mispronunciation sensitivity task

As shown in Figure 5 (upper left panel), children looked longer at 
the target in correctly pronounced trials (M = 0.72, SD = 0.09) rel-
ative to mispronounced trials (M = 0.65, SD = 0.08), t(20) = 3.10, 
BF  =  8.13, d  =  0.61, 95% HDI [0.14, 1.07] (see Figure 6, upper 
right panel; Swingley & Aslin, 2000).4 As the BF of 8.13 indicates, 
H1 is about eight times more likely to be true than H0 given the 
data. Our robustness analysis shows that the evidence in favor of 
H1 is robust across a wide range of possible values for the scal-
ing factor of the JZS prior in the effect size (see Figure 5, lower 
panel).5

3.2  |  Cross-situational learning task

We found no reliable differences in children's looking time to the 
target (M = 2781 ms, SD = 791) and to the distractor (M = 2709 ms, 
SD = 718), t(42) = 0.43, BF = 0.18, d = 0.06, 95% HDI [−0.22, 0.35] 
(see also Figure 6, upper left panel; Smith & Yu, 2008). The BF indi-
cates that H0 is at least five times more likely than H1 given the data, 
and effect size of zero well within the 95% HDI (see Figure 6, upper 
right panel). The bottom left panel of Figure 6 shows the trajectory 
of the SBF following collection of the initial sample (n = 20). A ro-
bustness analysis showed that support for H0 is robust when the 
Cauchy prior on the effect size is wider than the default prior we 
used. As the prior becomes narrower, the evidence in favor of H0 
weakens. This is to be expected, though, because as the scaling fac-
tor r decreases, the Cauchy prior approximates a point distribution 
at zero (i.e., it approximates the point null hypothesis).6

3.3  | Mutual exclusivity task

As shown in Figure 7 (upper left panel), children chose the unfa-
miliar object more often when asked to identify the referent of a 
novel label (M = 5.1, SD = 1.10) compared to when they were asked 
to select one of the two objects (M = 2.2, SD = 1.68), t(18) = 4.55, 
BF = 93.34, d = 1.75, 95% HDI [0.62; 2.89] (see also Figure 7, upper 
right panel; Markman & Wachtel, 1988). The data show clear support 

F IGURE  5 Results of the sequential 
Bayesian analysis of the mispronunciation 
effect. The upper left panel shows the 
proportion of time looking at the target 
by pronunciation condition. The bold 
horizontal lines represent the mean, while 
the rectangular boxes denote the 95% 
highest density interval (HDI) around 
the mean. The width of the beans is 
in an indicator of the density with the 
dots representing individual data points. 
The upper right panel shows the prior 
and posterior distribution of the effect 
size d along with the posterior 95% 
HDI. The lower panel shows the results 
of the robustness analysis. The Bayes 
Factor (BF) is plotted as a function of the 
scaling factor of the prior on the effect 
size. Dashed gray lines mark different 
conventional evidence thresholds for 
accepting H1 and H0 while the bold gray 
lines represent the evidence thresholds of 
5 and 1/5 we chose for our analysis

 14677687, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/desc.13097 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [02/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  9 of 12MANI et al.

for a strong mutual exclusivity effect with H1 being almost 100 times 
more likely than H0. Not surprisingly, the support for H1 is highly 
robust even for very narrow priors on the effect size (see the lower 
panel of Figure 7).7

4  | DISCUSSION

Stefan et al. (2019) highlight the need for a balance between infor-
mativeness and efficiency in empirical research. As researchers, we 
aim to set up our studies in such a way as to obtain the maximum 
amount of information regarding the truth of the hypotheses under 
consideration whilst using our resources as efficiently as possible. 
Given that such studies are often financed by the tax payer or other 
charitable associations and that psychological research with human 
participants, especially with young infants and children, requires 
other individuals to invest time and effort in our research, the pur-
suit of informativeness and efficiency in study design ought to fea-
ture more in discussions of experiment design. Our findings contain 
demonstrations of both superior efficiency and informativeness of 
an SBF design.

We first address the issue of efficiency using our replication of 
the Swingley and Aslin (2000) study. The data were seven times 
more plausible under the alternative hypothesis compared to the 
null hypothesis, after testing only 21 participants. Compared to 
the 53 participants tested in the original study, this is a clear win in 

terms of efficiency. Since the BF of the default Bayesian t-test me-
anders towards infinity were the alternative hypothesis to be true 
(consistency, Morey & Rouder, 2011; Rouder et al., 2012), testing 
more children should yield BFs indicating stronger support of the 
hypothesis that children are sensitive to mispronunciations of fa-
miliar words. Were the hypothesis under consideration to be more 
critical to the purposes of the study, researchers would be free 
to either set a higher minimum sample size or to start off with a 
more conservative BF threshold from the beginning, or indeed, as 
we did in one of the studies reported here, continue testing until 
they received stronger evidence. Thus, the researcher has multiple 
avenues for flexibility in this approach, with regards to variation in 
initial sample size, or chosen Bayesian thresholds or indeed to con-
tinue testing past the threshold, depending on the expected ef-
fect sizes, the novelty of the paradigm, resources available and the 
ethical ramifications of potentially unnecessary testing. We could 
also imagine benefits in scenarios common to developmental re-
search where the first in a series of experiments aims to replicate 
a prior finding, while subsequent studies manipulate the primary 
finding. In this case, a researcher could set different BF criteria for 
different experiments, with the caveat that relative interpretation 
of the effects ought to be constrained by the strength of evidence 
obtained.

The results of the second experiment speak to the notion of 
informativeness. The original study (Smith & Yu, 2008) found that 
12- to 14-month-olds were able to learn one-to-one word-object 

F IGURE  6 Results of the sequential 
Bayesian analysis of the cross-situational 
learning task. The upper left panel shows 
the looking time by type of image. The 
bold horizontal lines represent the mean, 
while the rectangular boxes denote the 
95% highest density interval (HDI) around 
the mean. The width of the beans is in 
an indicator of the density with the dots 
representing individual data points. The 
upper right panel shows the prior and 
posterior distribution of the effect size 
d along with the posterior 95% HDI. The 
lower left panel shows the trajectory of 
the Bayes Factor (BF) in the sequential 
BF analysis. The bold gray line denotes 
the inference threshold for accepting H0 
(BF = 1/5). The lower right panel shows 
the results of the robustness analysis. 
The BF is plotted as a function of the 
scaling factor of the prior on the effect 
size. Dashed gray lines mark different 
conventional evidence thresholds for 
accepting H1 and H0 while the bold gray 
lines represent the evidence thresholds of 
5 and 1/5 we chose for our analysis

 14677687, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/desc.13097 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [02/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 of 12  |     MANI et al.

mappings when pairs of objects were introduced with two novel 
labels in each trial, so long as the word-object mappings were 
maintained consistent across trials. In contrast, we found that the 
initial BF crossed the threshold for the null hypothesis at 32 par-
ticipants (compared to 55 participants in the original study). At 
this point, we could have stopped testing since we had evidence 
that the data was five times more likely under the hypothesis that 
the effect was exactly zero than under the alternate hypothesis 
of a non-zero effect. Consider also that our BFDA showed very 
low false negative (i.e., type II error) rates even for relatively small 
effect sizes as well as acceptable true negatives rates in case of 
a true effect size of zero (see Appendix A). Nevertheless, we 
decided to continue testing further given that our results were 
contrary to previous studies finding evidence for H1 in such par-
adigms. At 43 participants, we stopped testing with the BF sup-
porting the null hypothesis. As opposed to frequentist analyses, 
the Bayesian analyses reported here quantified evidence for the 
null hypothesis. In other words, there was no effect of learning 
of the word-object associations. Quantifying evidence for the 
null is a known benefit of Bayesian analyses, but more so in SBF 
designs because of the flexibility in continuing testing until such 
evidence is obtained is a clear plus, in our opinion. We will not go 
into details with regards to potential reasons for not replicating 
this finding, but we suspect that the age of the participants may 
be crucial here since most replication attempts have tested older 
children (see Appendix B).

There were a number of advantages to using an SBF design 
with regards to this replication attempt. First, after testing our ini-
tial set of 20 participants, SBF allowed us to continue testing until 
we crossed the lower threshold rather than reporting an inconclu-
sive result. Thus, we were able to use the data collected from the 
first 20 participants towards a final result that could be interpreted, 
rather than ending up with an inconclusive result. In our opinion, 
this will lead to fewer datasets being relegated to the file-drawer if 
researchers are able to collect more data with the hope of a more 
interpretable result. Second, we allowed ourselves further flexibility 
in continuing testing even after we crossed the threshold, because 
it was important to us to ensure that the BF truly stayed past the 
threshold and that the evidence in favor of the null hypothesis was 
not a stray negative result (rare as they might be in the case of the 
design we chose). This is the true benefit of this design, because the 
BF under the null hypothesis meanders to zero with increasing sam-
ple size (consistency, Morey & Rouder, 2011; Rouder et al., 2012). 
Therefore, testing more participants would only provide stronger 
evidence for the null hypothesis, were this to be true.

Finally, we briefly examine our replication of the Markman 
and Wachtel (1988) study. First, we note that we found strong 
evidence (BF >10) in favor of the alternative hypothesis, that 
children chose the unfamiliar object more often when presented 
with an unfamiliar label relative to being asked to select one of 
the objects. However, we noticed as we wrote up the results that 
we had made an error in planning the study and only tested 20 

F IGURE  7 Results of the sequential 
Bayesian analysis of the mutual exclusivity 
task. The upper left panel shows the 
frequency of choosing the unfamiliar 
object depending on the condition. The 
bold horizontal lines represent the mean, 
while the rectangular boxes denote 
the 95% highest density interval (HDI) 
around the mean. The width of the beans 
is in an indicator of the density with the 
dots representing individual data points. 
The upper right panel shows the prior 
and posterior distribution of the effect 
size d along with the posterior 95% 
HDI. The lower panel shows the results 
of the robustness analysis. The Bayes 
Factor (BF) is plotted as a function of the 
scaling factor of the prior on the effect 
size. Dashed gray lines mark different 
conventional evidence thresholds for 
accepting H1 and H0 while the bold gray 
lines represent the evidence thresholds of 
5 and 1/5 we chose for our analysis
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    |  11 of 12MANI et al.

participants overall (i.e., 10 per condition, same n as the origi-
nal study), rather than testing 20 participants per cell as recom-
mended by Schönbrodt et al. (2017; although we note that we 
tested as many participants as the original study). We chose to re-
port the results of the study for several reasons. First, despite the 
small sample, the study contributes to the strength of evidence 
for the mutual exclusivity bias. Were it to be included in a meta-
analysis on the mutual exclusivity effect, it would still contribute 
to the estimation of the effect size (Fan et al., 2004; Schönbrodt 
et al., 2017). Second, the impact of the starting sample size on 
the frequency of false positives or false negatives is surprisingly 
small (Schönbrodt et al., 2017). In our case, a simulation yielded 
expected false positive rates of about 4% for a starting sample size 
of 10 per cell compared to a false positive rate of 3% when starting 
with a sample size of 20 per cell.8 Thus, we report these results 
with the caveat that the smaller initial sample size may have in-
flated the rate of false positive evidence.

We do, however, note difficulties with regards to planning 
testing sessions when participants are booked in advance. This 
might entail that additional children are booked in to participate 
in a study, despite the fact that the BF has already crossed the 
threshold. On the one hand, it would be ethical to cancel the visit 
of the planned participant since their resources are strictly not 
required for the study. On the other hand, caregivers may become 
frustrated with testing sessions that are repeatedly cancelled. An 
alternative approach would be to only book in participants when 
certain that more are required, but this would lead to unnecessary 
delays in testing. A further solution may be to choose an incre-
mental sample size >1 (or 1 per cell), so that the study still reaps 
the benefit of efficiency but does not need to send too many par-
ticipants home without testing.

Finally, we note that an SBF design may also yield an incon-
clusive result if other factors (personnel, funding, time) entail a 
maximum sample size. For instance, in Study 2, we ceased testing 
at 43 participants because the researcher in-charge of testing was 
no longer available. Had the BF in this study still been between 
the thresholds for the null and the alternative hypothesis (i.e., BF 
between 1/5 and 5) at this point, we would have been left with an 
inconclusive result. This is similar to the problems faced by fixed-n 
designs, with the difference being that the restriction on sample 
size is due to resource limitations. Nevertheless, we suggest that 
an inconclusive result in an SBF design is considerably more useful 
than inconclusive frequentist results when considered from the 
perspective of cumulative science. Specifically, we could have 
trained another experimenter and continued data collection at a 
later point. Alternatively, one could use the posterior of such an 
inconclusive result and use it to model an informed prior for a fol-
low-up study.

In conclusion, in the current study, we replicated using an SBF 
design two previously reported effects, namely the mispronun-
ciation effect (Swingley & Aslin, 2000) and the mutual exclusiv-
ity effect (Markman & Wachtel, 1988). We did not replicate the 
cross-situational learning effect in our sample of German 12- to 

14-month-olds (Smith & Yu, 2008). Across these replication at-
tempts, we see clear benefits of using an SBF design in develop-
mental research while acknowledging some minor issues that are yet 
to be resolved. The final results we report here upheld the criteria 
of informativeness and efficiency (Stefan et al., 2019). As we have 
argued above, informativeness and efficiency may be particularly 
important to developmental research, given the demands on already 
overworked caregivers to participate in our research as well as the 
time and effort required on the part of researchers. The efficiency 
of SBF designs—Schönbrodt et al. (2017) suggests such designs may 
be between 50% to 70% more efficient—may be particularly import-
ant to developmental research which is, as noted above, plagued by 
issues of smaller sample sizes and may be especially attractive to 
researchers with limited funding.
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ENDNOTES
	1	 Researchers who consider one hypothesis more likely, a priori, can 

easily adapt the methods described here. They can simply determine 
the BF required to reach the thresholds for accepting H1 and H0, re-
spectively, using the formula shown above. 

	2	 This dissociation may be better understood against the context of 
how inference criteria in frequentist and Bayesian statistics develop 
over time as a function of increasing sample size. If the alternative 
hypothesis is true, the Bayes Factor typically converges to infinity 
with increasing sample size. On the other hand, if the null hypothe-
sis is true, the Bayes Factor converges to zero with increasing sample 
size. Thus, increasing sample size can only strengthen evidence for 
the true hypothesis in Bayesian statistics, a property referred to as 
consistency (Morey & Rouder, 2011; Rouder et al., 2012). In contrast, 
in frequentist analyses, while the p value does converge to 0 were 
the alternative hypothesis to be true, it does not follow a systematic 
pattern were the null hypothesis to be true. In the latter case, the p 
value takes a random value between 0 and 1, such that were an in-
finite value of tests conducted, some of them would inevitably lead to 
false significant results. 

	3	 Note that Gronau et al. (2020) suggest a relatively simple approach 
to define subjective priors that allows quantifying the departure from 
predictive matching and information consistency. 

	4	 For consistency, we also report here the analyses with the reduced set 
of 20 children for consistency, t(19) = 3.49, BF = 17.01, d = 0.78, 95% 
HDI [0.22, 1.21]. 

	5	 A reviewer pointed out that it would have been justified to use one-
tailed tests when replicating previously published effects. We re-ran 
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the analysis using a one-tailed Bayesian t-test (the only difference to a 
two-tailed tests is that that the prior for the effect size under H1 is a so 
called half-Cauchy, that is, only positive values are allowed). Using the 
one-tailed test yielded evidence consistent with the two-tailed ver-
sion but the evidence for H1 was substantially stronger, t(20) = 3.10, 
BF = 16.19, d = 0.61, 95% HDI [0.15, 1.06]. 

	6	 We again ran a one-tailed version of our test. Had we used one-tailed 
t-tests, we would have stopped collecting data at a sample size of 33 
participants, t(32) = 0.06, BF = 0.195, d = 0.14, 95% HDI [0.00, 0.33]. 
Note that the estimate of the effect size seems larger than in the two-
tailed test because possible values for the effect size are restricted 
to be positive in the one-tailed test. For our final sample size, the 
one-tailed test would have been inconclusive, t(42) = 0.43, BF = 0.24, 
d = 0.14, 95% HDI [0.00, 0.33]. 

	7	 A one-tailed Bayesian t-test would have yielded even stronger support 
for H1, t(18) = 4.55, BF = 186.56, d = 1.76, 95% HDI [0.63; 2.91]. 

	8	 In this simulation, we used default Bayesian t-tests for independent 
samples. We generated data from normal distributions, assuming that 
H0 was true. Starting sample size was either 10 or 20 per cell, and this 
sample size was increased in increments of 5 up to a maximum of 50 
per cell or until the BF exceeded 5 or fell below 1/5. 
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