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Abstract With the Developmental Lexicon Project (DeveL),
we present a large-scale study that was conducted to collect
data on visual word recognition in German across the lifespan.
A total of 800 children from Grades 1 to 6, as well as two
groups of younger and older adults, participated in the study
and completed a lexical decision and a naming task. We pro-
vide a database for 1,152 German words, comprising behav-
ioral data from seven different stages of reading development,
along with sublexical and lexical characteristics for all stimuli.
The present article describes our motivation for this project,
explains the methods we used to collect the data, and reports
analyses on the reliability of our results. In addition, we ex-
plored developmental changes in three marker effects in psy-
cholinguistic research: word length, word frequency, and or-
thographic similarity. The database is available online.
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There is an extensive body of research on the visual word
recognition processes in skilled adults (e.g., Balota et al.,
2007). On the basis of this research, several computational
models have been developed that account for many of the
benchmark effects observed in word processing tasks such

as lexical decision (LD) or naming (e.g., Coltheart, Rastle,
Perry, Langdon, & Ziegler, 2001; Harm & Seidenberg,
2004; Perry, Ziegler, & Zorzi, 2007). Most of these models,
however, only aim at explaining the reading behavior of pro-
ficient adults who have already acquired the ability to read. In
recent years, some efforts have been made to bring interindi-
vidual differences into the picture (Andrews & Lo, 2012;
Adelman, Sabatos-DeVito, Marquis, & Estes, 2014;
Kuperman & van Dyke, 2013; Yap, Balota, Sibley, &
Ratcliff, 2012). Arguably, however, the most pronounced dif-
ferences between readers are intra-individual in nature:
Children are not born with the ability to read but need years
of extensive practice in order to learn it. And even during
adulthood, profound changes take place in lexical and
sublexical processing (Balota, Cortese, Sergent-Marshall,
Spieler, & Yap, 2004; Ratcliff, Perea, Colangelo, &
Buchanan, 2004). Yet, developmental models of the visual
word recognition process are still rather scarce (but see
Pritchard, Coltheart, Marinus, & Castles, 2016; Ziegler,
Bertrand, Lété, & Grainger, 2014). One of the main reasons
for this is that very few studies have been conducted that
investigate visual word recognition across the lifespan within
a coherent framework. Thus, at present, the empirical data that
are necessary to feed any computational modeling efforts are
missing.

The present article describes the Developmental Lexicon
Project (DeveL), which provides a linguistic database for
1,152 German words including behavioral measures of how
they are processed at different age groups across the lifespan.
Extending the logic and methodology of existingmega studies
on visual word recognition (Balota et al., 2007; Balota, Yap,
Hutchison, & Cortese, 2012; Ferrand et al., 2010; Keuleers,
Diependaele, & Brysbaert, 2010; Keuleers, Lacey, Rastle, &
Brysbaert, 2012; Yap, Liow, Jalil, & Faizal, 2010), we collect-
ed visual word-processing data in different age groups using
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an LD and a naming task. The resulting database
(https://www.mpib-berlin.mpg.de/en/research/max-planck-
research-groups/mprg-read) will hopefully help researchers to
advance theories and computational models of visual word
recognition that include a developmental perspective. In
addition, it will provide a valuable resource for virtual
exper imen t s on a la rge range of top ics wi th in
psycholinguistic research. Apart from the development of
linguistic marker effects on the lexical level, topics that
could be addressed include sublexical processing, and the
role of morphology, phonology, and semantics.

In this article, we describe how the data have been collected
and processed, discuss which linguistic measures are available
in the database, and investigate some methodological issues
that are relevant in a developmental context. In addition, we
will provide some preliminary results how three important
marker effects in psycholinguistic research (word length,
word frequency, and neighborhood size) change across the
lifespan.

Background and motivation

In recent years, several databases have been generated that are
specifically tailored for psycholinguistic needs. Lexicon pro-
jects collecting behavioral data for thousands of words have
been conducted in English (Balota et al., 2007), French
(Ferrand et al., 2010), Dutch (Keuleers, Diependaele, &
Brysbaert, 2010), Malay (Yap et al., 2010), British English
(Keuleers et al., 2012), and Chinese (Sze, Rickard Liow, &
Yap, 2014). The approach has also been used for research on
second language processing (Lemhöfer et al., 2008) and prim-
ing (Hutchinson et al., 2013; Adelman, Johnson, et al., 2014).
Yet, despite providing a vast supply of data, this approach
leaves a lack of information on the impact of non-item char-
acteristics on language processing. In particular, the impact of
differences on the person level is usually neglected. Although
Adelman and colleagues (2014) have broken ground by inves-
tigating inter-individual differences in reading aloud, such
studies are still rare (but see, e.g., Yap et al., 2012; Ziegler
et al., 2008). Probably the most informative of all differences
on the person level is age, or, in other words, the stage of
reading development.

As Rueckl (2016) has recently argued, developing compu-
tational models that incorporate empirically plausible learning
mechanisms is one of the most important challenges in the
field of visual word recognition.Without such a learning com-
ponent, the scope of these models is inherently incomplete.
Although models have been developed that incorporate learn-
ing (Plaut, McClelland, Seidenberg, & Patterson, 1996;
Ziegler et al., 2014; Pritchard et al., 2016), they usually focus
exclusively on explaining a restricted range of phenomena
such as the acqu i s i t i on o f g rapheme-phoneme

correspondences or the impact of the age of acquisition of a
word on model performance (Zevin & Seidenberg, 2002).
What is still missing is a complete description of the develop-
ment of important marker effects such as the effects of word
length, word frequency, and orthographic neighborhood size
across the lifespan. The main reason for this is that the neces-
sary data for this effort are still lacking. Computational models
are usually evaluated by comparing their performance with
available visual word recognition data such as LD or naming
latencies (see, for example, Spieler & Balota, 1997; Perry
et al., 2007). Most approaches focus on explaining item ef-
fects; that is, they compare the model’s predictions for a spe-
cific set of items with averaged item means. Usually, response
latency is the main criterion with response accuracy as a sec-
ondary variable. At present, however, all available data were
generated by experiments that assessed only a restricted age
range (usually university students but sometimes also older
adults, see Spieler & Balota, 2000). This is not surprising
because the pragmatic and organizational efforts necessary
to collect data of sufficient reliability are substantial. To ad-
vance the construction of developmental computational
models, therefore, we consider it crucial to extent the presently
available knowledge base by providing data on how the same
set of items are processed at different points throughout the
lifespan. The data base comprises the corresponding item pa-
rameters for each age group that can be used to evaluate dif-
ferent computational approaches.

The general objective of this article is to introduce the
DeveL), which aims at exploring developmental changes in
visual word recognition processes across the lifespan. We will
explain how the data have been collected, describe the
resulting database, and discuss the linguistic characteristics
of the words used in the project. Especially when working
with children, who vary greatly in their development with
age, such a project poses special methodological problems,
which we will address in the following.

Methodological aims of the present study

Given that most mega studies are based on only one or two
groups of participants, the probably biggest obstacle in the
present study was to obtain a sufficient number of data points
in all age groups. Especially when working with younger chil-
dren, it is not feasible to collect a large number of responses.
We thus adopted a matrix sampling approach. Similar to the
English or French Lexicon Project, we used a relatively large
sample of participants, but each participant worked only on a
small subset of the words. The number of subsets that was
presented to participants, in turn, varied between age groups.
Based on our experience from pilot studies, we decided that
sessions for children should not last longer than one school
lesson. For that reason, we also varied the number of blocks
and trials between age groups.

2184 Behav Res (2017) 49:2183–2203

https://www.mpib-berlin.mpg.de/en/research/max-planck-research-groups/mprg-read
https://www.mpib-berlin.mpg.de/en/research/max-planck-research-groups/mprg-read


Because different groups of participants work on different
sets of items, person and item variance are confounded in this
approach (Keuleers, Diependaele, & Brysbaert, 2010): If a
relatively long response time is observed on a specific trial,
it is unclear whether this is due to the fact that the person
generating the response has poor reading skills or whether
the item is particularly difficult. However, because multiple
responses are collected from each participant and there are
multiple observations for each item, it is possible to tease apart
person and item effects statistically. Such methods have a long
history in educational testing (such as item–response theory;
Embretson & Reise, 2000) and are also commonly used in the
psycholinguistics (Baayen, Davidson, & Bates, 2008). The
central idea of these models is that a behavioral response Xij
by participant i and on item j is decomposed into

X i j ¼ μþ ai þ bj þ ei j; ð1Þ

where μ is the grand mean, αi is the effect of participant i, βj
the effect of item j, and εij is a random noise variable. In the
psycholinguistic literature, both α and β are usually treated as
random variables (Baayen et al., 2008), whereas in the educa-
tional testing literature, β is typically treated as a fixed effect
(but see, e.g., de Boeck, 2008). In both cases, it is possible to
estimate the item effect β independently of the participant
effectα. A first methodological aim of this article is to provide
estimates for the item effects in different age groups and to
describe how they change across the lifespan.

A crucial assumption of the model described above is that
participant and item effects are combined additively. Although
this assumption is commonly made both in the educational
and cognitive literature, it is an empirical question whether it
holds true for a specific data set. Fortunately, Courrieu, Brand-
D’Abrescia, Peereman, Spieler, and Rey (2011) have devel-
oped a procedure to test whether the assumption is warranted,
called the Bexpected correlation validation test^ (ECVT).
Although Courrieu and his colleagues (2011) have provided
evidence that the additivity assumption holds true for typical
visual word recognition studies, it is unclear whether this ob-
servation also generalizes to developmental studies. A second
methodological aim of this article is thus to test whether the
additivity assumption holds true for different age groups.

Another important issue that is relevant in developmental
studies is whether reliability differs between age groups. To
evaluate the reliability of item effects, different approaches
have been used (see Adelman, Marquis, Sabatos-DeVito, &
Estes, 2013, for a discussion). A more traditional method is to
compute split-half correlations (see, e.g., Ferrand et al., 2010;
Keuleers, Diependaele, & Brysbaert, 2010; Keuleers et al.,
2012). Here, the data are split by some criterion (e.g., an
odd–even split) and the correlation between the item effects
in both subsamples serves as an estimate for the reliability of
the effects. In the context of the additive-decomposition model

described above, there are other and more formal ways to
estimate the reliability of item effects. As was elaborated by
Rey, Courrieu, Schmidt-Weigand, and Jacobs (2009), the re-
liability of the item parameters is determined by the item intra-
class correlation coefficient (ICC), which is defined as

ICC ¼ σ2
β

σ2
β þ

σ2
ε

n

ð2Þ

where n is the number of participants in a sample and σβ
2 and

σε
2 are estimates of the item and residual variance, respectively.

There are several methods to estimate the two variances, in-
cluding traditional analysis-of-variance (ANOVA) approaches
(McGraw & Wong, 1996) and more advanced resampling
methods (Courrieu et al., 2011). The ICC is important because
it can be used to evaluate item-specific reliabilities. As can be
seen in Eq. 2, the ICC depends on the number of observations
n that contribute to an item. This allows to determine how
many observations are needed in order to obtain a desired
level of reliability for an item (see Rey et al., 2009). A third
methodological aim of the present article is thus to provide
estimates for the reliabilities and ICCs in the different age
groups.

A final issue is whether and how RTs should be standard-
ized. This question is particularly relevant for studies compar-
ing data from different age groups because there are large
changes in overall response speed across the lifespan (Kail
& Hall, 1994). In addition, response latencies usually show
strong interindividual variability that compromise the reliabil-
ity of the item estimates. A common approach to deal with this
problem is to z-transform responses for each participant prior
to the analysis, thereby eliminating all differences between
participants (Faust, Balota, Spieler, & Ferraro, 1999;
Zoccolotti, De Luca, Di Filippo, Judica, & Martelli, 2008).
However, a problematic assumption of this approach is that
all participants have the same amount of variability. This is
rather unlikely in developmental studies in which changes in
variability are well documented and of theoretical interest by
themselves. The decomposition of participant and item effects
is an alternative way to deal with this problem, which avoids
the assumption of homogeneous variances. Thus, a final meth-
odological aim of the present article is to evaluate whether
both methods are similarly effective.

Theoretical aims of the present study

Next to these methodological aims, the present article also
addresses important theoretical questions. First, we will pro-
vide some preliminary findings on how three important mark-
er effects in psycholinguistic research (word length, word fre-
quency, and neighborhood size) change across the lifespan. To
this end, we will investigate the correlations of these three
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variables with participants’ lexical decision performance in
Grades 2–6 and in young adults. For comparison, we will also
provide corresponding results from three existing non-
developmental databases for (young) adults: the Dutch
Lexicon Project (DLP; Keuleers, Diependaele, & Brysbaert,
2010), the British Lexicon Project (BLP; Keuleers et al.,
2012), and the English Lexicon Project (ELP; Balota et al.,
2007). Finally, we will compare the correlations between the
RTs in different age groups and various frequency estimates
derived from German corpora for adults (SUBTLEX-DE; see
Brysbaert et al., 2011; CELEX, see Baayen, Piepenbrock, &
Gulikers, 1995; and DWDS, see Geyken, 2007) and children
(childLex; see Schroeder, Würzner, Heister, Geyken, &
Kliegl, 2015).

Method

Participants

Overall, 800 children from seven elementary schools in Berlin
participated in the project. We investigated children from
Grade 1 to 4 and Grade 6, for whom parental consent was
provided. In Grade 1, testing took place at the end of the
school year. In all other grades, approximately half of the
children were tested at the beginning and the other half at
the end of the school year. On the basis of their performance
during the experiment, they received a varying amount of
chocolate for their participation.

Younger (20–30 years) and older (65–75 years) adults were
recruited using the database of the Max Planck Institute of
Human Development or via mailing lists at the Freie
Universität Berlin. All adults reported to be German native
speakers and no history of reading or language difficulties.
Testing took place in one single session that lasted approxi-
mately 2 h. Participants received course credit or €20 for their
participation.

All participants also completed a nonverbal intelligence
test (the matrix subtest from the CFT 1 for Grade 1 and the
matrix subtest from the CFT-20R for Grades 2–6 and for
adults; Cattell, Weiß, & Osterland, 1997; Weiß, 2006), a vo-
cabulary test (the semantics subtext from the MSVK in Grade
1 and the vocabulary subtest of the CFT-20R for Grades 2–6
and adults; Elben & Lohaus, 2000; Weiß, 2006), a reading
fluency test (the SLS 1–4 in Grades 1–4 and the SLS 5–8 in
Grade 6 and in adults; norms for adults were derived from
norm data for Grade 8; Auer, Gruber, Mayringer, &
Wimmer, 2005; Mayringer & Wimmer, 2003), and a general
socio-demographic questionnaire including language back-
ground information. Younger and older adults were also tested
for visual acuity and general processing speed, and completed
a shortened version of the Mini-Mental State Examination
(Folstein, Folstein, & McHugh, 1975).

In all, 99 participants (38 in Grade 1, 27 in Grade 2, 25 in
Grade 3, 17 in Grade 4, 15 in Grade 6, five young adults, and
seven older adults) were removed from all analyses because
they reported having poor vision, had acquired German after
the age of 6 years, scored two SDs below their age norms in
the standardized reading fluency test, showed high error rates
in one of the visual word recognition tasks, performed two
SDs below their age mean in one of the two tasks, or did not
complete at least 50% of the experiment. Due to a technical
error, naming data for some participants were not recorded
with sufficient quality for further analyses. Subsample sizes
and important person characteristics are reported in Table 1.

Stimuli

The stimulus set consisted of 1,152 (576 for Grade 1) German
words and pseudowords. Initial sampling was based on the
PONS dictionary for German elementary school children
(Bohn, Fitz, & Weber, 2009)—a comprehensive list of ap-
proximately 12,000 words that are likely to be relevant for
children in Grades 1–4. We selected only content words
(i.e., nouns, verbs, and adjectives). Loan words, which are rare
in German and usually do not adhere to typical grapheme-
phoneme regularities, were excluded. Only base forms were
used (i.e., infinitives instead of inflected forms), which ranged
in length from three to 12 letters.

At the time the project was initiated, no reliable frequency
norms for German children were available. To ensure that all
words are known even by children in Grade 2, we intention-
ally did not select words with very low frequencies (by
inspecting corresponding adult norms), proper names, and
words that are very specialized. After data collection, we com-
pared the words in the DeveL sample to the frequencies of the
childLex corpus (Schroeder et al., 2015). Results showed that
we were successful in selecting words that were appropriate
for primary school children, but not too infrequent: Overall,
only three words of the DeveL subset were not included in
childLex and only 11 words had normalized frequency values
below 1/million.

Because children at the very beginning of reading acquisi-
tion take disproportionally longer to decode letter strings than
do the rest of the sample, for Grade 1 the stimulus set was
downsized to 576 words. Main selection criteria for words
were their linguistic complexity and accuracy scores of
existing behavioral data on children. Included were only
nouns of less than ten letters in length, with low numbers of
syllables, phonemes, and orthographic neighbors.

Pseudowords were generated using the multilingual
pseudoword generator Wuggy (Keuleers & Brysbaert,
2010), which is based on an algorithm that replaces
subsyllabic elements (i.e., onset, nucleus, or coda) of words
with equivalent elements from other words of the same lan-
guage. To avoid homophones and existing words in other
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languages, we had the program generate ten close-matching
pseudowords per word, from which we hand-picked the most
optimal one. All pseudowords were pronounceable and
matched the target word on length and capitalization (as in
German nouns are always capitalized). Due to a matching
error, three pseudowords were duplicated.

Linguistic variables

Frequency characteristics

Normalized type frequency refers to the number of occur-
rences of a type—that is, a distinct word form in a corpus,
per million tokens. We included frequency norms of both the
childLex (version 0.16, December 2015; see Schroeder,
Würzner, Heister, Geyken, & Kliegl, 2015) and the DWDS
corpus (DigitalesWörterbuch Deutscher Sprache, version 0.4,
January 2014; see Geyken, 2007). childLex norms are derived
from a set of ten million tokens drawn from 500 of the most
popular German children’s books. The DWDS corpus is based
on 120million tokens extracted from various books and news-
papers for adults.

Lemma frequency is the total number of occurrences of a
distinct word stem (lemma) per million words (i.e., NAME for
NAMEN, NAMENS, etc.). Again, we included lemma fre-
quency norms of both the childLex and the DWDS corpus.

Subjective frequency refers to the rated frequency of words
in spoken and written German. Norms are derived from a
rating study conducted with 100 German university students,

who rated the use and occurrence of a word on a seven-point
Likert scale ranging from 1 (never) to 7 (several times a day).

Age of acquisition is the estimated mean age in years at
which a word was acquired. Data was provided by 100
German university students, who were asked to write down
at which age they believed to have heard or used a word for
the first time.

Orthographic characteristics

Length is the (integer) number of letters in a word.
Unigram frequency is the summed unigram frequency of

each letter in a word based on the childLex unigram type
frequencies.

Bigram frequency refers to the summed bigram frequency
based on type bigram frequencies in the childLex corpus.
Here, bigram is defined as a sequence of two letters within a
word. The summed bigram frequency of a word (e.g., NAME)
is the sum of the frequencies of its successive bigrams, with
the beginning and ending of a word also being treated as
letters (e.g., $N & NA & AM & ME & E$).

Trigram frequency, which is also based on childLex type
frequencies, is the sum of the frequencies of a sequence of
three letters within a word (again treating the beginning and
ending of a word as separate letters—e.g., $NA & NAM &
AME & ME$).

N refers to Coltheart’sN, which is the number of words that
are obtainedwhen changing one letter in a wordwhile keeping
the identity and positions of the other letters constant

Table 1 Sample sizes and person characteristics in different subsamples of the Developmental Lexicon Project

Age Group

Grade 1 Grade 2 Grade 3 Grade 4 Grade 6 Young Adults Older Adults

n 114 189 151 127 117 43 41

n Naming 111 109 145 65 78 43 37

% Tested end of school year 100.0 77.3 41.1 55.1 52.1 – –

Age (years) 6.5 (0.5) 7.4 (0.7) 8.1 (0.6) 9.2 (0.7) 11.1 (0.5) 24.9 (3.3) 69.2 (3.4)

% female 49.1 51.3 50.3 51.2 59.0 53.5 43.9

% L1 65.4 65.1 74.2 80.3 61.5 100.0 100.0

Nonverbal intelligencea 7.4 (3.2) 4.5 (2.3) 4.9 (2.5) 6.1 (2.2) 6.1 (2.3) 8.2 (2.0) 5.7 (2.1)

Vocabularyb 15.6 (5.1) 7.2 (4.1) 12.2 (5.1) 16.2 (5.2) 20.7 (4.6) 27.8 (2.2) 27.9 (2.5)

Reading fluencyc 32.0 (12.9) 97.8 (16.3) 96.1 (16.2) 98.4 (15.8) 101.3 (14.3) 120.4 (21.4) 108.2 (19.3)

Reading speedd – – – – – 128.8 (14.0) 111.9 (13.9)

Processing speede – – – – – 631 (111) 939 (166)

Visual acuityf – – – – – 4.4 (0.6) 3.3 (0.7)

MMSEe – – – – – 29.1 (1.3) 29.1 (1.5)

Standard deviations are provided in parentheses. a CFT 1 in Grade 1 (0–12 points) and CFT 2 in Grade 2—older adults (0–12 points). bMSVK subtest
PW in Grade 1 (0–24 points), CFT-20R vocabulary test in Grade 2—older adults (0–30 points). cWLLP in Grade 1 (0–140 points), SLS 1–4 in Grades 2
to 4, SLS 5–8 in Grade 6—older adults, normalized values (M = 100, SD = 15). d SLRT II (number of correct words per minute). e RTs in ms in a letter
search task. f Number of completed lines in a standard eye chart (3 = 20/40 vision, 4 = 20/20 vision, 5 = 20/10 vision), g Mini-Mental States Examination
for adults (0–31 points).
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(Coltheart, Davelaar, Jonasson, & Besner, 1977). Because
NAME, for example, can be changed into DAME, NAHE,
and NASE, the number of its orthographic neighbors is 3.
Reported values are based on both the childLex and the
DWDS corpus.

OLD20 is the mean Levenshtein distance from a word to its
20 closest orthographic neighbors. The Levenshtein distance
is a measure for the distance between letter strings as a func-
tion of the minimum number of changes—that is, substitu-
tions, additions, and deletions—that are required to generate
one word from another. For NAME, the Levenshtein distance
to NAHEwould be 1 (for the substitution ofM and H), where-
as to NARBE it would be 2 (for the substitution of M and R,
and the addition of B). Because OLD20 does not require all
neighbors to have the same length, it enables a larger range of
orthographic variability than does Coltheart’s N. OLD20 was
computed according to the procedure introduced by Yarkoni,
Balota, and Yap (2008) and as implemented in vwr package in
R (Keuleers, 2015) using down-cased types as the reference
lexicon. Again, we included values from both the childLex
and the DWDS corpus.

Phonological characteristics

Phonological transcriptions for most of the words were taken
from the CELEX corpus (Baayen et al., 1995). Ten words,
which were not included in the CELEX database, were tran-
scribed manually.

Phonetic transcription is the visual representation of
speech sounds through a phonetic script. Here, the DISC for-
mat was used—a machine-readable phonetic alphabet based
on the International Phonetic Alphabet.

Number of phonemes refers to the sum of all contrastive
phonological units in a word. Because NAME, for example,
consists of the phonological units /n/, /a/, and /m/ / /, the num-
ber of its phonemes is 4.

Number of syllables refers to the sum of all uninterrupted
units of speech sound in a word.

Syllable structure shows the composition of each syllable
in a word by denoting the presence and sequence of its vowels
(V) and consonants (C). The syllable structure of NAME, for
example, is [CV][CV].

Syllable parse shows the decomposition of a word into its
syllables separated by a hyphen.

Morphological characteristics

Part of speech specifies the syntactic function of the word.
Here, a simplified version of the Stuttgart–Tübingen-Tagset
(STTS) was used distinguishing between nouns (N), verbs
(V), and adjectives/adverbs (A), which are the only parts of
speech that were used in the project.

Morpheme parse shows the decomposition of a word into
its morphological constituents through distinct separators. We
transcribed words manually and used # for a boundary be-
tween two stems, + for a boundary between a prefix and a
stem, and ~ for a boundary between a suffix and a stem.
Rounded brackets {} indicate inflection.

Number of morphemes refers to the sum of all morphemes
in a word (not including inflection). Whereas NAME only
consists of one morpheme, VORNAME has two (VOR +
NAME).

Morphological status refers to the composition of the word
according to its meaning-carrying constituents. M denotes
mono-morphemic status (e.g., NAME), C a compound (e.g.,
SPITZ|NAME, engl. nick name), and D a derivation (e.g.,
VOR|NAME, engl. prename).

Morphological segmentation refers to the composition of
the word according to the sequence of stem (S) and present
affixes (A). S denotes a stem, and A an affix.

Semantic characteristics

Imageability refers to the mean degree of how easy a word
elicits mental images. Values are derived from a rating study
conducted with 100 German university students, who were
asked to indicate how easily they could think of an image
given a single word. They rated imageability on a seven-
point Likert scale ranging from 1 (hard to imagine) to 7 (easy
to imagine).

Valence refers to the mean degree of how much emotional
valence a word carries, extending from attractiveness (positive
valence) to aversiveness (negative valence). Data was provid-
ed by 100 German university students, who rated emotional
valence using Self-Assessment-Manikins (SAMs; Lang,
1980) on a seven-point Likert scale ranging from –3 (very
negative) through 0 (neutral) to +3 (very positive).

Arousal refers to the mean degree of how much alertness a
word provokes. Values are derived from a rating study, in
which SAMs were used for depicting increasing degrees of
arousal. 100 German university students rated arousal on a 5-
point Likert scale ranging from 1 (low arousal) to 5 (high
arousal).

Distributions and representativeness of the variables

Descriptive statistics for all linguistic variables are provided in
Table 2. In addition, we compared the characteristics of the
words in DeveL with those of the childLex corpus in order to
assess the representativeness of our sample. Overall, the
DeveL word set consists of 66.7% nouns, 24.4% verbs, and
10.0% adjectives. Thus, the distribution of syntactic catego-
ries is very similar to the corresponding distribution in the
childLex corpus (with 56.9% nouns, 19.8% verbs, and
18.8% adjectives). Figure 1 displays the distributions for three
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of the most important variables in visual word recognition
research: word length, word frequency, and neighborhood
size. The top row of the figure shows the density plots for
the three variables in DeveL (dark continuous line) compared
with the corresponding density plots of the type (light contin-
uous line) and token (light dashed line) distributions in
childLex.

To quantify the similarity between DeveL and the
childLex, we computed the overlap between the type distribu-
tions of the three variables. The range of values covering the
1%–99% percentiles in DeveL is provided in Table 2. Typical
words in DeveL are between three and ten letters long and
have normalized lemma frequencies between about 1 and
1,400/million, and OLD20 values between 1.0 and 3.6. The
words in DeveL cover the 1%–54% percentiles of the word
length distribution, the 57%–99% percentiles of the frequency
distribution, and the 1%–62% percentiles of the OLD20 dis-
tribution in childLex. Thus, words in DeveL are generally
shorter, more frequent, and have fewer orthographic neighbors
than all types combined in childLex. However, the words in
DeveL were intentionally selected not to include very low-
frequency words (i.e., words with normalized frequencies be-
low 1/million) and function words. If those words were also
excluded from childLex too, the overlap was substantial for
the type distribution (length: 1%–68% percentile, frequency:
1%–99% percentile, OLD20: 1%–85% percentile) and even

more pronounced for the token distribution, that is, the distri-
bution of words as they actually appear in texts (length, 1%–
93%; frequency, 1%–71%; OLD20, 1%–97%).

In addition, the bottom two rows of Fig. 1 show the
pairwise bivariate distributions between the three variables.
Word forms in the childLex corpus are marked with light gray
dots, and the DeveL subset with dark gray dots. The corre-
sponding r values are provided in the same colors. As can be
seen, the words in the DeveL sample cover the most densely
populated ranges of the distributions, and the relationships
between them are generally similar to their correlations in
the complete childLex corpus.

Apparatus

The experimental software and testing apparatus were identi-
cal in each age group. Stimuli were presented on a 15-in. TFT
monitor (60 Hz refresh rate, resolution 1,028 × 768 pixels,
placed at a distance of about 60 cm from the participants) on
a Windows-compatible laptop (Intel Pentium, dual core 2.x
GHz) running Inquisit 3.0. Manual responses were collected
using the laptop’s keyboard. Naming data were collected
using a headset microphone (Sennheiser) that was connected
to an audio mixer (Xenyx). At the beginning of each trial, an
audio trigger (100-Hz square wave for 100 ms) was sent from
the laptop to the mixer. Trigger and naming response were

Table 2 Descriptive statistics for the words used in the Developmental Lexicon Project (frequency estimates based on the childLex corpus)

M SD Min 1% 25% 50% 75% 99% Max

Frequency characteristics

Normalized type frequency 56.27 101.48 0.10 .40 7.69 21.58 59.17 570.96 1,045.00

Lemma frequency 127.50 312.27 0.10 .75 14.78 43.19 114.58 1,377.73 6,451.00

Subjective frequency 4.27 1.17 1.52 2.12 3.38 4.20 5.12 6.61 6.96

Age of acquisition 4.77 1.32 2.09 2.65 3.80 4.56 5.50 8.39 12.32

Orthographic characteristics

Length 6.00 1.81 3.00 3.00 5.00 6.00 7.00 10.00 12.00

Unigram frequency 457,700 190,864 70,880 121,927 308,950 443,702 584,833 916,831 1,072,000

Bigram frequency 104,000 66,000 5,245 10,819 49,657 89,825 150,664 276,801 362,600

Trigram frequency 22,450 23,185 73 414 4,059 11,330 45,057 81,940 105,700

N 5.62 5.94 0.00 0.00 1.00 4.00 9.00 24.00 32.00

OLD20 1.77 0.58 1.00 1.00 1.40 1.70 1.90 3.62 4.55

Phonological characteristics

Number of phonemes 5.19 1.65 2.00 2.00 4.00 5.00 6.00 9.00 12.00

Number of syllables 1.89 0.72 1.00 1.00 1.00 2.00 2.00 4.00 5.00

Morphological characteristics

Number of morphemes 1.18 0.40 1.00 1.00 1.00 1.00 1.00 2.00 3.00

Semantic characteristics

Imageability 5.10 1.44 1.56 2.04 3.84 5.44 6.44 6.92 8.04

Valence 0.35 1.02 -2.92 -2.30 -0.12 0.40 1.04 2.43 3.24

Arousal 1.97 0.61 1.12 1.20 1.52 1.80 2.28 3.86 4.42
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merged and saved on the laptop’s hard drive for future offline
analyses of the naming data.

Design

First, stimuli were randomly divided into lists that differed in
their number between age groups. We used two lists each
containing 576 words for adults, four lists with 288 words
for Grade 6, six lists with 192 words for Grade 4 and Grade
3 (at the end of the school year), eight lists with 144 words for
Grade 2 and Grade 3 (at the beginning of the school year), and
six lists with 96 words for Grade 1. List assignment was
counterbalanced between participants according to the order
of appearance at the test session. Second, each list was divided
into three subsets of equal size. One subset was used in the
naming task, one as the word list in the LD task, and
pseudowords generated from the third subset as pseudowords
in the LD task. Again, assignment of each subset to tasks was
counterbalanced across participants by the order of their ap-
pearance. Third, stimuli of each subset were assigned to
blocks that differed in their size and number between age

groups. One block encompassed 96 trials for adults and chil-
dren in Grade 6, 64 trials for children in Grade 4 and Grade 3
(at the end of the school year), 48 trials for children in Grade 2
and Grade 3 (at the beginning of the school year), and 32 trials
for children in Grade 1. As in the LD task, half of the trials in
each block included pseudowords, the number of blocks was
doubled. Adults were presented with six blocks for the naming
task and 12 blocks for the LD task. Except for Grade 1, chil-
dren completed the naming task with three blocks and the LD
task with six blocks. In Grade 1, naming was conducted with
two blocks and LD with four blocks. Within each subset, the
assignment of stimuli to blocks as well as their order within
each block was randomized for every participant.

Procedure

Children were tested at school and in two different sessions
each lasting one school lesson. In the class session, which was
moderated by an experimenter, 15–25 children worked on a
test booklet that included tasks in the following order: reading
fluency, vocabulary, nonverbal intelligence, and a

Fig. 1 Pairwise bivariate distributions (top two rows) and density plots (bottom row) of word length, word frequency, and orthographic neighborhood
size in the deveL subset (dark gray) and the childLex corpus (light gray)
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questionnaire on socio-demographic background. In the fol-
lowing, every child took part in a computerized single session,
in which visual word recognition data were assessed. The
tasks were presented in the following order: LD Block 1–3
(1–2 for Grade 1), naming, LD Block 4–6 (3–4 for Grade 1).

Adults completed the experiment in a single lab session,
which was supervised by an experimenter at all times. The
order of tasks was as follows: questionnaire on socio-
demographic background, visual acuity test, processing
speed, LD Blocks 1–3, vocabulary, LD Blocks 4–6, Naming
Blocks 1–3, reading fluency, Naming Blocks 4–6, LD Blocks
7–9, nonverbal intelligence, LD Blocks 10–12, reading speed,
questionnaire on mental state. Between tasks and blocks, par-
ticipants were able to take a break and continue the experiment
by pressing the space bar.

For each task, participants completed a practice block with
four items. Depending on its location within the experiment,
every block included either six or two buffer items. Each LD
trial began with the presentation of a fixation cross for 500 ms
in the center of the screen. After 500 ms, the target item ap-
peared in the same place and remained on screen until the
participant had responded. There was an interstimulus interval
of 500 ms after the response was given. For the naming task,
the sequence of events for each trial was the same, except that
the target word remained on screen until the experimenter
decided whether the word was read out loud correctly or not
by pressing the respective button on the mouse. For both tasks,
participants were instructed to perform as quickly and accu-
rately as possible.

Analysis

All analyses were conducted using a two-step procedure.
First, separate models were estimated for each age group in
order to derive item parameters that are independent from each
other. Data were analyzed using (generalized) linear mixed-
effects models in R with the lme4 package (version 1.1-10).
Only responses to words were included in the analysis. For
response accuracy, a generalized mixed-effects model using a
logit link and a binomial error distribution was used. For re-
sponse latency, linear mixed-effects models were estimated on
log-transformed RTs in order to take into account the skew of
RT distributions and to normalize the residuals. Each model
comprised random intercepts for each participant and item as
well as the intercept representing the grand mean in each age
group. In a second step, the random item effects from each
age-specific model were extracted and used for further analy-
ses. These comprised (by-items) ANOVAs and correlations in
order to compare item parameters between age groups and
relate them to item characteristics (such as word length, fre-
quency, and neighborhood size).

ICCs based on the ANOVA method as well as the ECVT
(using the CRARI imputation method for missing data) were

computed for the RTmodels using the algorithms provided by
Courrieu and Rey (2011).

Results

Lexical decision

Coverage

Table 3 provides an overview over the coverage rates in the
LD task separately for response accuracy and latency. For
response accuracy (top section), we collected approximately
20 data points for each word, with mean coverage rates vary-
ing between n = 18.4 (Grade 1) and n = 29.1 (Grade 6).
Because words were presented using different lists in each
age group, however, the number of data points varied slightly
between words and grades. For each age group, Table 3 also
provides the minimum and maximum numbers of data points
for each word and each age group, as well as the correspond-
ing values for the 10th, 25th, 75th, and 90th percentiles. The
value for the 10th percentile represents the minimum number
of data points that was available for 90% of the words in each
age group and varied between 15 (Grade 1) and 28 (Grade 6).

Response accuracy

Differences between age groups Table 4 shows the mean
error rates and the results of the generalized linear mixed-
effects models fitted separately for each age group. The inter-
cepts of these models provide estimates (and standard errors)
of mean response accuracy on the logit scale. Error rates gen-
erally declined between age groups from 16.8% in Grade 1 to
1.6% in older adults. A by-items ANOVA using the (logit-
transformed) item parameters from each age group as the out-
come variable and Age Group as a within-item factor showed
a strong main effect of age group, F(6, 3450) = 2,511, p <
.001. Post-hoc contrasts revealed that all age groups differed
from each other, all ts (1151) > 4, all ps < .001.

In all age groups, response accuracy was high and differed
significantly from chance performance (i.e., 50%, which cor-
responds to a value of 0 on the logit scale), all ts > 20, all ps <
.0001. Notably, this did also hold for Grade 1, t = 20.85, p <
.0001. Thus, German children are able to provide stable data
on the LD task at the end of Grade 1 after only 1 year of formal
reading instruction. After this, response accuracy steadily in-
creased throughout elementary school. Younger adults
showed typical response behavior with approximately 95%
correct responses. In older adults, response accuracy was par-
ticularly high, with over 98% correct. Thus, adults knew most
of the words in our sample and, as a consequence, showed
strong ceiling effects and reduced variability.
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Turning to the random effects of the models, the results
showed that the variance components for the random item
effects were consistently higher than the variance components
for the random participant effects. Indeed, the percentage of
variance related to differences between items (ICCitem) gener-
ally increased across age groups from 14.4% in Grade 1 to
31.1% for older adults. In contrast, the percentage of variance
related to differences between participants (ICCpartic) did not
change consistently with age and varied between 8.3% (Grade
4) and 15.6% (Grade 2). Thus, response accuracy was more
strongly influenced by item than by participant characteristics
and this relationship increased across age groups.

Reliability In a next step, we assessed the reliability of
the item estimates in the different age groups.
Traditional split-half reliabilities (using odd-/even-num-
bered participants as the split criterion) are presented in
the first row of Table 5 for each age group, respective-
ly. For children, reliabilities were rather high, r > .7,
only the estimates for Grade 1 were slightly lower, r ≈
.6. In contrast, the reliabilities for adults were substan-
tially lower, with r ≈ .5 for younger adults and r ≈ .2
for older adults. As we elaborated above, adults showed
ceiling effects, and as a consequence, less variability
could be replicated.

Table 3 Lexical decision task:
Coverage Age Group

Grade 1 Grade 2 Grade 3 Grade 4 Grade 6 Young Adults Older Adults

n words 576 1,152 1,152 1,152 1,152 1,152 1,152

Accuracy

M 18.4 22.1 21.4 21.0 29.1 21.5 20.5

SD 1.9 2.0 1.1 1.4 1.2 0.5 0.5

Min 14 16 19 19 28 21 20

10% 15 20 20 19 28 21 20

25% 17 20 21 20 28 21 20

75% 20 24 22 22 30 22 21

90% 21 25 23 23 31 22 21

Max 22 26 23 23 31 22 21

RT

M 14.8 18.5 18.9 19.1 26.9 20.4 20.0

SD 3.1 3.4 2.7 2.4 2.7 1.4 0.8

Min 4 4 5 4 3 9 13

10% 11 14 16 17 24 19 19

25% 13 17 18 18 26 20 20

75% 17 21 21 21 29 21 20

90% 19 23 22 22 30 22 21

Max 22 26 23 23 31 22 21

Table 4 Lexical decision task
accuracies: Effects Age Group

Grade 1 Grade 2 Grade 3 Grade 4 Grade 6 Young Adults Older Adults

M% error 16.9 13.4 9.2 6.2 6.0 4.3 1.6

SD% error 10.1 10.3 5.9 4.0 4.5 4.4 4.1

Fixed Effects

Intercept 1.939 2.442 2.860 3.333 3.423 3.795 5.016

SE 0.082 0.075 0.067 0.071 0.076 0.134 0.156

Random Effects

σ2participants 0.540 0.792 0.424 0.391 0.447 0.667 0.678

σ2items 0.646 1.005 1.062 1.055 1.125 0.825 1.788
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In addition, we used a similar procedure to estimate the
reliability of the item parameters using the item effects from
the mixed-effects model. Here, two separate mixed-effects
models were fitted for odd- and even-numbered groups of
participants. The random item effects from these models were
extracted and correlated with each other, which served as an
alternative estimate of the reliability. The results from this
approach are displayed in the second row of Table 5.
Generally, the estimates were very similar to the raw reliability
estimates (all differences < |.1|). This fits well with the obser-
vation made above that the amount of participant-specific var-
iance generally was rather low (only approx. 10%). As a con-
sequence, removing participant effects did not greatly affect
reliability estimates for item parameters.

In sum, the results from the response accuracy analysis
showed that accuracy generally increased across age groups
and reached ceiling in both adult groups. Reliabilities of the
item parameters for the children groups were intermediate to
high (rs ≈ .6–.7), but substantially lower for adults (rs ≈ .2–.5).
This implies that the item parameters for response accuracy in
the LD task can safely be used for children, but should be
treated with some caution for adults.

Response latency

Prior to the analysis, all incorrect responses (7.3% overall)
were removed. In addition, all log-transformed RTs that devi-
ated more than 2.5 SD from their participant and item mean
were discarded (2.4% overall, ranging from 4.4% in Grade 2
to 0.7% in young adults).

Differences between age groups Table 6 shows the mean raw
RTs and the results of linear mixed-effects models fitted to
log-transformed RTs for each age group separately. RTs gen-
erally declined between age groups from over 3,000 ms in
Grade 1 to approximately 600 ms in young adults, and then
slightly increased again, to approximately 700 ms, in older
adults. A by-items ANOVA using the (log-transformed) item
parameters from each age group as the outcome variable and
Age Group as a within-item factor showed a strong main
effect of age group, F(6, 3450) = 30,040, p < .001. Post-hoc
contrasts revealed that all age groups differed from each other,
all ts (1151) > 60, all ps < .001.

Turning to the random effects of the models, results
showed that—in contrast to response accuracy—variance
components for the random participant effects were consis-
tently higher than the variance components for the random
item effects. Indeed, the percentage of variance related to dif-
ferences between items (ICCitem) varied only between 10%–
16% of the total variance in all age groups. In contrast, the
percentage of variance related to differences between partici-
pants (ICCpartic) was substantially larger, varying between
18%–63% of the total variance in all age groups and decreas-
ing steadily across age groups. Thus, response latencies be-
came more homogeneous across reading development, but
showed a large amount of variability that was related to
inter-individual differences between participants.

ReliabilityTo evaluate the reliability of the responses we
first computed traditional split-half reliabilities of the
item effects using odd- and even-numbered participants
as a split criterion. The reliabilities for the participants’
raw RTs are displayed in the first row of Table 7. These
reliabilities ranged between r = .6 and .8, and were thus
ra ther low, especial ly in younger age groups.
Apparently, inter-individual variability is compromising
the item estimates here. Next, we computed split-half
reliabilities using participants’ log-transformed RTs (see
the second row of Table 7). Although slightly higher,
the values were similar to the reliabilities obtained for
raw RTs. Thus, the log transformation itself is not able
to remove the effect of interindividual differences. Next,
split-half reliabilities based on RTs that have been z-
transformed for each participant are given in the third
row of Table 7. As expected, the values are much
higher here, ranging between r = .7 and .9. This indi-
cates that removing interindividual differences between
participants increases the reliability of item estimates. In
the fourth row of Table 7, model-based split-half reli-
abilities are provided that were estimated by fitting sep-
arate mixed-effects models to odd- and even-numbered
participants and correlating the random item effects of
both models. The reliabilities for these estimates are
similarly high, or even higher, than in the z-score anal-
ysis. This indicates that this method is similarly effec-
tive in removing interindividual differences from item
estimates.

Table 5 Lexical decision task
accuracies: Reliability Age Group

Grade 1 Grade 2 Grade 3 Grade 4 Grade 6 Young Adults Older Adults

Raw .56 .70 .71 .69 .75 .50 .20

Model .59 .68 .66 .59 .67 .47 .18

Split-half correlations corrected using the Spearman–Brown formula.

Behav Res (2017) 49:2183–2203 2193



In a next step, reliabilities were estimated directly using
ICCs. The middle section of Table 7 provides the ICCs esti-
mated by using the ANOVA method, described by Courrieu
and Rey (2011), as well as by using the estimates of the var-
iance components from the mixed-effects models (see
Table 5). As can be seen, the values are nearly identical and
very close to the model-based split-half reliabilities reported
above.

On the basis of these values, the ICCs for item effects in
Grade 4, which are based on responses from n = 5, 10, 15, 20,
and 25 participants, are .68, .81, .86, .89, and .91, respectively.
Thus, if a reliability of at least .70 is required, items with more
than n = 6 observations should be selected. However, if item
reliability should be at least .80, n = 10 observations are
needed.

Additivity assumption Finally, we tested the additivity as-
sumption underlying the decomposition of participant and
item parameters using the ECVT method proposed by
Courrieu et al. (2011). The rationale of this test is a compari-
son of the expected relationship between the ICC and n and
the observed relationship in a specific dataset. The expected
relationship under the additivity assumption is specified by the
definition of the ICC provided above. The observed
relationship between the reliabilities of the item parameters
and n is obtained using a permutation resampling procedure.
Using different group sizes of n = 5, 10 . . . , the predicted and
observed ICCs as a function of group size can be compared
with each other using a χ2 difference test. If the χ2 value is not
significant, this indicates that the additivity assumption cannot
be rejected. Because the resampling algorithm is sensitive to

Table 7 Lexical decision task RTs: Reliability

Age Group

Grade 1 Grade 2 Grade 3 Grade 4 Grade 6 Young Adults Older Adults

ra

Raw .64 .65 .78 .72 .80 .75 .61

Log .67 .74 .79 .73 .82 .76 .62

z .81 .89 .86 .84 .85 .75 .71

Model .85 .90 .87 .83 .84 .75 .70

ICC

ANOVAb .87 .91 .89 .85 .84 .75 .73

Model .86 .91 .89 .85 .85 .75 .73

ECVTc

χ2 10.1 (3.4) 11.2 (3.1) 11.8 (6.2) 12.9 (4.3) 8.0 (4.3) 10.1 (4.5) 9.1 (4.6)

df 11 13 12 12 11 10 10

p .52 .60 .46 .38 .71 .43 .52

a Corrected using the Spearman–Brown formula. b Computed using the ANOVA method (Courrieu et al., 2011). cWith CRARI imputation (using z-
transformed data and ICC without correction for missingness). Averaged over ten cross-validation runs.

Table 6 Lexical decision task RTs: Effects

Age Group

Grade 1 Grade 2 Grade 3 Grade 4 Grade 6 Young Adults Older Adults

M latency (ms) 3437 2239 1422 1122 822 586 695

SD latency (ms) 1182 1135 460 290 170 61 62

Fixed Effects

Intercept 8.035 7.552 7.166 6.947 6.661 6.349 6.522

SE 0.035 0.034 0.024 0.022 0.017 0.015 0.014

Random Effects

σ2partic 0.128 0.215 0.085 0.056 0.033 0.009 0.007

σ2items 0.034 0.044 0.032 0.022 0.012 0.005 0.004

σ2residual 0.080 0.084 0.079 0.075 0.058 0.034 0.031
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missing data, which are an inherent feature of a matrix design,
Courrieu and Rey (2011) developed amissing-data imputation
procedure (column and row adjusted random imputation
method; CRARI) that allows to obtain corrected ICC values
and ECVT test statistics.

The final section in Table 7 provides the χ2 values of the
ECVT test using the CRARI correction for the RT data (aver-
aged over ten cross-validation runs), the degrees of freedom of
the test (which correspond to the number of different group
sizes used for the computation of the ICCs), and the respective
p values. As can be seen, all χ2 values were rather low and
p values were above .30, indicating that the additivity assump-
tion is valid for this measure.

Naming

Coverage

Table 8 provides an overview of the coverage rates in the
naming task separately for response accuracy (top section)
and latency measures (bottom section). For response accuracy,
we collected approximately 18 data points for each word, with
mean coverage rates varying between n = 10.8 (Grade 4) and n
= 21.5 (young adults).

Preprocessing

First, naming responses were coded offline for accuracy. For
sixth graders and adults, onset time was estimated using
SayWhen (Jansen & Watter, 2008). Here, the onset of the
pronunciation is detected on the basis of the integral of the
amplitude curve. If the area under the amplitude curve exceeds
a specific threshold value—that is, if enough acoustic evi-
dence has been accumulated, the response is triggered. For
children, pronunciation onset and duration have been shown
to be sensitive for the effects of different linguistic character-
istics (Martelli et al., 2014). For this reason, we decided to
measure onset and offset of the vocal responses manually.
The onset time (OT) was the time between the onset of the
stimulus and the onset of the vocal response. The duration
time (DT) was the time between the vocal onset and the end
of the child’s utterance.

Response accuracy

Differences between age groups Table 9 shows the mean
error rates in the naming task and the results of a generalized
linear mixed-effects model fitted separately for each age
group. Error rates were generally low, particularly in adults.
Error rates declined between age groups from 16.4% in Grade
1 to 0.1% in older adults. A by-items ANOVA using (logit-
transformed) item parameters from each age group as the out-
come variable and Age Group as a within-item factor showed

a strong main effect of age group, F(6, 3450) = 4,009, p <
.001. Post-hoc contrasts revealed that all age groups differed
from each other, all ts (1151) > 5, all ps < .001. In all age
groups, response accuracy differed significantly from chance
performance, all ts > 17, all ps < .0001.

Similar to the LD task, the variance components for the
random item effects were generally higher than the variance
components for the random participant effects—that is, re-
sponse accuracy was more strongly influenced by item than
by participant characteristics. Notably, this pattern did not
hold for Grade 1 and Grade 2, in which participant effects
were larger than item effects. This indicates substantial indi-
vidual differences in participants’ initial naming accuracies,
which continuously decrease across the lifespan.

Reliability Split-half correlations based on aggregated item
means are presented in the first row of Table 10 for each age
group, respectively. For children, reliability was generally
moderate, ranging between r = .4 and .7, and substantially
lower for adults due to ceiling effects. Essentially the same
pattern emerged in the model-based split-half reliabilities,
which are displayed in the second row of Table 10.

In sum, naming accuracy was high in all age groups, but it
increased consistently across the lifespan. Although there
were some interindividual differences in naming accuracy in
Grades 1 and 2, these declined rapidly, whereas adults’ nam-
ing accuracy was rather uniform and solely driven by item
characteristics. Reliabilities for the item parameters were gen-
erally moderate due to the fact that reading aloud is an ex-
tremely easy task in a transparent orthography such as
German. This implies that generally little item variance can
be explained.

Response latency

Invalid trials due to technical failures or mispronunciations
accounted for 0.1% (Grade 4)–2.0% (Grade 1) of all trials.
Invalid trials and errors were discarded from all analyses. In
addition, responses deviating more than 2.5 SDs from their
log-transformed participant and item mean were discarded
(OT: 2.8% overall, ranging from 1.4% in young adults to
5.7% in Grade 2; DT: 3.3% overall, ranging from 1.6% in
Grade 4 to 5.9% in Grade 1). In the following, results for
OT and DT (in Grades 1–4) are discussed separately.

Differences between age groups For OTs, Table 11 shows
the mean raw OTs and the results of a linear mixed-effects
model fitted to log-transformed OTs for each age group sepa-
rately. OTs generally declined between age groups from
1,200 ms in Grade 1 to approximately 400 ms in young adults
and then slightly increased again in older adults. A by-items
ANOVA using the (log-transformed) item parameters for each
age group as the outcome variable and Age Group as a within-
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item factor showed a strong main effect of age group, F(6,
3450) = 29,843, p < .001. Post-hoc contrasts revealed that all
age groups differed from each other, all ts (1151) > 40, all ps <
.001.

For DT, Table 11 shows the mean raw DTs and the results
of a linear mixed-effects model fitted to log-transformed DTs
for each age group separately. DTs strongly declined from
over 1,500 ms in Grade 1 to approximately 600 ms in Grade
4. A by-items ANOVA using the (log-transformed) item pa-
rameters from each age group as the outcome variable and
Age Group as a within-item factor showed a strong main
effect of age group, F(3, 1725) = 9198, p < .001. Post-hoc

contrasts revealed that all age groups differed from each other,
all ts (1151) > 5, all ps < .001.

For both OTs and DTs, the variance components for the
random participant effects were consistently higher than the
variance components for the random item effects. This pattern
was particularly pronounced for OT and in Grades 1 and 2.

In sum, OT showed the usual developmental pattern with
decreasing latencies during childhood and adolescence and a
slight increase in old adulthood. In contrast, DT decreased
strongly during early reading development and reached a sta-
ble asymptote from Grade 3 onward. In all age groups, inter-
individual differences in RTs were very strong.

Table 8 Naming task: Coverage
Age Group

Grade 1 Grade 2 Grade 3 Grade 4 Grade 6 Young Adults Older Adults

n words 576 1,152 1,152 1,152 1,152 1,152 1,152

Accuracy

M 18.2 13.4 21.3 10.8 19.5 21.5 18.5

SD 1.6 2.2 1.1 1.3 0.5 0.5 0.5

Min 14 9 19 9 19 20 18

10% 15 10 20 9 19 21 18

25% 18 11 21 10 19 21 18

75% 19 15 22 12 20 22 19

90% 19 16 23 13 20 22 19

Max 20 16 23 13 21 22 19

RT

M 14.3 11.0 19.5 10.2 18.7 20.8 18.0

SD 2.8 2.6 2.2 1.6 1.3 1.1 0.9

Min 5 2 7 4 7 8 13

10% 10 8 17 8 17 20 17

25% 12 9 18 9 18 20 18

75% 16 13 21 11 20 21 19

90% 18 14 22 13 20 22 19

Max 20 16 23 13 21 22 19

Table 9 Naming task accuracies: Effects

Age Group

Grade 1 Grade 2 Grade 3 Grade 4 Grade 6 Young Adults Older Adults

M% error 16.5 12.3 5.5 2.9 1.6 0.5 0.1

SD% error 13.3 12.3 5.7 3.7 2.3 0.6 0.2

Fixed Effects

Intercept 2.079 2.710 3.742 4.713 6.275 10.286 13.222

SE 0.107 0.131 0.093 0.147 0.151 0.501 1.454

Random Effects

σ2partic 1.039 1.650 0.897 0.915 0.699 0.685 2.737

σ2items 0.565 0.700 1.215 1.620 4.066 29.943 60.131
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Reliability Item- and model-based split-half correlations for
both OTs and DTs are displayed in the upper part of Table 12.
For OT, split-half reliabilities based on raw or log-transformed
latencies aggregated over items were low tomoderate, ranging
between r = .3 and .7, indicating that interindividual differ-
ences are affecting item estimates. However, both z-trans-
formed and model-based split-half correlations were substan-
tially higher, ranging between r = .7 and .9. This indicates that
both methods are similarly effective in removing inter-
individual differences from the item estimates. Moreover,
the ICCs estimated by the ANOVA method and by using the
variance components of the model directly were similarly
high. Using these estimates, the ICC values corresponding to
n = 5, 10, 15, 20, and 25 participants in Grade 4 are .60, .75,
.82, .85, and .88, respectively. Thus, in order to ensure item-
specific reliabilities of at least .80, items with more than n = 15
responses should be selected.

For DTs, in contrast, reliabilities were generally high, irre-
spective of whether raw or log-transformed average item esti-
mates are used, with split-half correlations ranging between r
= .6 and .8. Removing inter-individual differences by using
either z-transformation or by using model-based estimates in-
creased the reliability in all age groups, all rs > .9. The ICCs
were also very high. Using these estimates, the item-specific

reliabilities based on n = 5, 10, 15, 20, and 25 participants
were .84, .91, .94, .95, and .96, respectively, in Grade 4.

Additivity assumption Finally, the test of the additivity as-
sumption using the ECVT method showed that this assump-
tion is valid for both OT and DT (see the final section of
Table 12). All χ2 values were rather low and p values above
.30, indicating that the additivity assumption cannot be
rejected.

Generalizability to adult databases

To investigate whether the reported findings generalize to oth-
er databases that have used a matrix sampling approach, we
calculated reliability estimates (split-half correlation based on
an odd-even split of participants) for the RT data of the ELP
(Balota et al., 2007). In line with the results presented above,
item effects based on both raw and log-transformed RTs were
generally lower (LD: r = .83, naming: r = .88) than corre-
sponding estimates based on z-transformed RTs (LD: r =
.89; naming: r = .92), which indicates that it is important to
remove participant-specific variance from the item estimates.
Most importantly, the reliability of item effects that were de-
rived from a linear mixed-effect model using log-transformed

Table 11 Naming task RTs: Effects

Age Group

Grade 1 Grade 2 Grade 3 Grade 4 Grade 6 Young Old

Onset Duration Onset Duration Onset Duration Onset Duration Onset Onset Onset

RT (ms)

M 1,199 1,512 1,052 984 797 628 718 626 600 397 473

SD 552 1105 670 828 378 273 298 237 182 69 101

Fixed Effects

Intercept 7.049 7.176 6.910 6.783 6.642 6.400 6.538 6.385 6.362 5.971 6.137

SE 0.028 0.049 0.042 0.046 0.025 0.018 0.031 0.022 0.025 0.015 0.022

Random Effects

σ2partic 0.086 0.250 0.193 0.227 0.095 0.044 0.061 0.028 0.047 0.010 0.018

σ2items 0.012 0.093 0.012 0.071 0.014 0.051 0.010 0.043 0.005 0.002 0.003

σ2residual 0.052 0.085 0.049 0.068 0.039 0.044 0.035 0.041 0.029 0.015 0.022

Table 10 Naming task accuracies: Reliability

Age Group

Grade 1 Grade 2 Grade 3 Grade 4 Grade 6 Young Adults Older Adults

Raw .54 .50 .56 .42 .66 .59 .32

Model .57 .49 .53 .39 .45 .33 .30

Split-half correlations corrected using the Spearman–Brown formula.
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RT as the outcome variable and random intercepts for partic-
ipants and items were similarly high or even higher than the
reliabilities based on z-transformed RTs (LD: r = .91; naming:
r = .92). This indicates that decomposing participant and item
effects using linear mixed-effects models is generally a valid
approach to analyze data from multi-matrix designs and also
useful for the analysis of non-developmental datasets.

Effects of word length, word frequency, and neighborhood
size

Finally, we calculated the amount of explained variance (R2 ×
100) that was explained by word length, word frequency, and
OLD20 in participants’ LD performance in Grades 1 to 6 and
young adults. In addition, we also computed the correspond-
ing amount of explained variance accounted for by the same
variables for three databases for (young) adults: the DLP
(Keuleers, Diependaele, & Brysbaert, 2010), the BLP
(Keuleers et al., 2012), and the ELP (Balota et al., 2007).
Because both the DLP and BLP comprise only mono- and
disyllabic words, we also selected all words with one or two
syllables from DeveL (n = 952) and the ELP (n = 17,824).
Item effects were estimated using the same procedure as de-
scribed in this article (i.e., using mixed-effects models with
random participant and item effects and using logit-
transformed response accuracy or log-transformed RT as out-
come variables). To use comparable frequency and OLD20
estimates, frequency norms and OLD20 values were derived
from the SUBTLEX databases for the three languages
(German: Brysbaert et al., 2011; Dutch: Keuleers et al.,
2010; English: Brysbaert, New, & Keuleers, 2012).

The results for DeveL are provided in the left section of
Table 13. For response accuracy, the results showed that re-
sponses in DeveL were only minimally affected by ortho-
graphic characteristics (word length and OLD20) with R2

values generally below .02. By contrast, (log-transformed)
type frequency correlated substantially with response accura-
cy with R2 values between .05–.15 without any consistent
developmental trend. For RT, results showed very strong cor-
relations between both word length and OLD20, which de-
creased across the life span (from R2 ≈ .40 in Grade 2 to R2 ≈
.08 in young adults). By contrast, correlations with word fre-
quency increased continuously with age (from R2 = .06 in
Grade 2 to R2 = .25 in young adults).

The corresponding values for the three adult databases are
provided on the right side of Table 13 (in the BUnrestricted^
column). For response accuracy, correlations with word length
and OLD20 were rather small (R2 = .01–.02), whereas corre-
lations with word frequency were substantially larger (R2 =
.24–36). For RTs, correlations with orthographic characteris-
tics (word length and OLD20) were also rather low (R2 < .10)
and much lower than the effects of word frequency (R2 =
.40–.50). Overall, the patterns of effects in the young adult
group in DeveL and the three adult databases were very sim-
ilar. The main difference was that correlations with word fre-
quency were substantially higher in the DLP, BLB, and ELP.
However, as explained above, due to the developmental na-
ture of the project, DeveL mainly comprises words with fre-
quencies above 1/million, whereas the adult databases are
substantially larger and also comprise many words with very
low frequencies. If the adult databases were restricted to a
similar frequency range as used in DeveL (in the

Table 12 Naming task RTs: Reliability

Age Group

Grade 1 Grade 2 Grade 3 Grade 4 Grade 6 Young Old

Onset Duration Onset Duration Onset Duration Onset Duration Onset Onset Onset

ra

Raw .44 .74 .36 .63 .52 .88 .27 .83 .61 .68 .70

Log .58 .82 .46 .76 .57 .91 .37 .87 .59 .72 .69

z .74 .91 .68 .90 .87 .94 .73 .89 .76 .71 .70

Model .76 .93 .71 .91 .87 .95 .71 .90 .74 .71 .65

ICC

ANOVA .76 .93 .74 .92 .87 .95 .74 .91 .76 .76 .74

Model .76 .94 .74 .92 .87 .96 .75 .92 .76 .76 .70

ECVTc

χ2e 8.8 (2.9) 10.1 (4.2) 12.2 (3.4) 12.4 (5.3) 10.2 (3.5) 10.1 (3.2) 16.0 (4.2) 13.5 14.6 7.8 (3.4) 16.2

df 11 11 13 13 12 12 16 16 13 10 18

p .64 .52 .51 .50 .60 .60 .45 .63 .33 .65 .58

a Corrected using the Spearman–Brown formula. b Computed using the ANOVA method (Courrieu et al., 2011). cWith CRARI imputation (using z-
transformed data and ICC without correction for missingness). Averaged over ten cross-validation runs.
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BRestricted^ column), R2 values for the three values were very
similar as for the young adult group in DeveL. In particular,
there is a close correspondence between the ELP and DeveL.

Differences between adult and child frequency norms

A related question is which frequency norms should be used
to compute frequency effects in the different age groups—
frequencies for children and/or for adults? Table 14 shows
the percentages of variance accounted for by different fre-
quency norms in RTs for the mono- and disyllabic words in
the DeveL study. In the first two rows, results for the DWDS
and the CELEX corpus (Baayen et al., 1995) are provided—
two German corpora that are based on adult sources. Although
the values are consistently higher for DWDS than for CELEX,
the amount of variance explained by word frequency consis-
tently increases across age groups fromR2 = .10 to .24 for both
corpora. By contrasts, correlations with the childLex frequen-
cy norms (overall norms, and separate norms for the age
groups 6–8, 9–10, and 11–12 years; see the bottom section
of Table 14) show a rather different pattern: Here, values are
consistently higher (R2 around .30) in all groups of children
and show a decreasing developmental pattern with the lowest
correlations for young adults. Even in young adults, however,
the amount of explained variance by the childLex norms is
higher than those by the adult corpora.

In addition, in the lower half of Table 14, the absolute size
of the frequency effect (i.e., the difference between words 1
SD above and below the mean) is provided in back-
transformed raw units (ΔRT in milliseconds) for the same
corpora. For each corpus, the frequency effect decreased sub-
stantially across development. Most importantly, however,
frequency effects based on the childLex corpus were consis-
tently higher than frequency effects for all adult corpora and

these differences were particularly pronounced in younger age
groups.

Discussion

Conducting the Developmental Lexicon Project, our aim was
to provide data on the development of word recognition in
German and across the lifespan. To this end, we collected data
for a set of 1,152 words in seven different age groups and two

Table 13 Percentages of variance accounted for by word length, word frequency, and orthographic similarity in mono- and disyllabic words

DeveL Adult Databases

Unrestricted Restricteda

Grade 2 Grade 3 Grade 4 Grade 6 Young Adults DLP BLP ELP DLP BLP ELP

Accuracy

Word length 0.3 0.1 0.5 0.9 1.8 2.2 0.4 0.6 6.0 3.8 1.8

Log word frequency 10.7 12.9 6.8 10.4 7.2 24.0 36.0 29.4 5.2 7.1 7.9

OLD20 0.1 0.1 0.5 0.2 0.9 0.2 0.5 0.2 1.9 1.2 0.3

RT

Word length 39.3 33.2 23.1 13.0 8.2 2.7 5.9 9.2 1.2 4.0 8.2

Log word frequency 13.4 15.8 18.4 23.7 25.2 39.4 46.5 48.5 24.0 28.9 29.6

OLD20 6.3 4.0 1.6 0.8 0.2 3.0 8.4 13.9 1.1 4.3 9.3

a Restricted: Excluding items with normalized frequencies below 1/million. DLP: n = 13,008/7,583, BLP: n = 24,534/9,316, ELP: n = 17,824/8,872
(number of words in the unrestricted and restricted sample, respectively).

Table 14 Percentages of variance accounted for by word frequency
and size of the frequency effect in RT

DeveL

Grade 2 Grade 3 Grade 4 Grade 6 Young Adults

R2

DWDS 9.5 10.9 11.6 18.3 23.9

CELEX 7.6 8.7 8.6 13.9 17.5

childLex

overall 27.4 27.1 27.4 30.6 25.1

6–8 years 29.4 28.5 29.0 29.4 20.8

9–10 years 26.8 26.4 26.3 29.5 23.7

11–12 years 19.8 19.7 21.4 25.4 22.3

Frequency Effect (RT)

DWDS 185 112 75 53 28

CELEX 144 87 56 40 21

childLex

overall 344 194 126 75 31

6–8 years 370 205 134 76 29

9–10 years 346 194 125 75 31

11–12 years 262 149 100 61 27

n = 952 words.
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visual word recognition paradigms. The main objective of this
article was to describe the resulting database and the linguistic
characteristics for the words included in it. In addition, we
addressed several questions that are relevant for the develop-
mental nature of the project.

First, our results show that participant and item effects can
successfully be dissociated using an additive-decomposition
model. This is particularly important because we used a multi-
matrix design for data collection in our study, in which differ-
ent groups of participants received different sets of items.
Results from the ECVT test showed that the additivity as-
sumption holds for all age groups and all continuous mea-
sures. In addition, it is not necessary to use z-transformation
in order to successfully remove inter-individual differences
from RTs: Results for both split-half reliabilities and ICCs
showed that the additive-decomposition procedure is similarly
effective in removing interindividual differences from the item
estimates. Additional analyses using data from the ELP con-
firmed this finding and demonstrate that the procedure used in
the DeveL project might also be useful for nondevelopmental
datasets that have used a matrix sampling approach (see also
Courrieu & Rey, 2011).

Second, as expected, there were strong developmental dif-
ferences between age groups in response accuracies and RTs.
In both the LD and the naming task, accuracy increased con-
stantly across the lifespan. However, accuracy scores were
generally high and essentially at ceiling from Grade 4 on-
wards. Given that German has a rather shallow orthography,
this is not surprising. RTs in the LD task showed the usual
developmental pattern: RTs decreased strongly during child-
hood and adolescence, reached a minimum in young adults,
and then slowly increased again in later adulthood. The same
pattern was apparent in onset latencies in the naming task. In
contrast, naming duration decreased strongly during the first
two grades, but was constant from Grade 3 onward. Thus,
developmental differences were huge and point to substantial
changes in visual word recognition performance across the
lifespan.

Third, the reliability of the item effects was generally high.
For RTs in both the LD and the Naming task, reliabilities
ranged between r = .8 and .9 for children and between r = .7
and .8 for adults. As compared to the RT measures, reliabil-
ities for response accuracy were generally lower. For children,
reliabilities ranged between r = 6 and .7 in the LD task and
between r = .4 and .6 in the naming task. For adults, reliabil-
ities were even lower (<.5 in the LD task and <.4 in the nam-
ing task). Thus, item effects for response accuracy should be
used with some caution, especially for adults.

Generally, the fact that German has a rather shallow orthog-
raphy restricts the value of accuracy scores to evaluate com-
putational models of visual word recognition. Given that the
language is so easy to decode, reading errors are rather rare.
Accordingly, finding the correct pronunciation for a word is

not a very challenging task for a cognitive model. Indeed,
Ziegler, Perry, and Coltheart (2000) found that only 1.1% of
words were read incorrectly in the German version of the
DRC. However, both humans and cognitive models might
differ strongly in the time they need to produce the correct
pronunciation. As a consequence, reading latency is generally
considered more important than response accuracy in
German. In line with this view, our results show that reading
latency show strong developmental effects and high
reliability.

Next to these methodological considerations, the present
article also adds to the knowledge about reading development
on a theoretical level. In particular, we analyzed the correla-
tions between three important linguistic marker effects—word
length, word frequency, and neighborhood size—and partici-
pants’ response behavior in different age groups. For response
accuracy, results showed that responses were only minimally
affected by orthographic characteristics in all age groups.
Instead, the main predictor for response accuracy was word
frequency. For RT, results showed that children’s responses at
the beginning of reading instruction were heavily affected by
word length, which predicted about 40% of the variance. This
percentage decreased steadily during development to a value
of about 8% in younger adults. OLD20 showed a similar de-
velopmental trend, but values were generally much smaller.

For word frequency, an important finding of the present
study is that the frequency norms used to compute frequency
effects is of crucial importance. Frequencies based on adult
corpora (SUBTLEX, DWDS, CELEX) generally showed an
increasing developmental pattern from about 13% in Grade 2,
to 25% explained variance in young adults. By contrasts, fre-
quencies derived from children’s books—which were gener-
ally much higher and explained about 30% of the variance—
showed a decreasing developmental pattern. For young
adults, interestingly, child frequencies performed similarly
well or even better than frequencies from adult corpora
(SUBTLEX and DWDS).

We also compared the results from the DeveL project with
those from three existing databases for (young) adults: the
DLP, the BLP, and the ELP. We found that the pattern of
effects for the young adult group in DeveL was very similar
to those from the other databases. For both response accuracy
and RT, the most important predictor was word frequency
with smaller contributions of word length and OLD20. The
main difference between DeveL and the other databases was
that frequency effects in DeveL were much smaller. If, how-
ever, these databases were restricted to the same frequency
range as covered in DeveL (i.e., only words with frequencies
above 1/million), these differences disappeared completely.

Together, our findings demonstrate that orthographic and
lexical information is used differentially by children and by
adults. Children are initially extremely sensitive to ortho-
graphic information, but this reliance decreases continuously
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during reading development. Further research is needed to
determine whether this developmental trend is driven by an
increased use of lexical information, increasing efficiency in
sublexical decoding, or some common processing stage that
precedes both sublexical and lexical processing (see
Zoccolotti et al., 2008, for a discussion).With regard to lexical
processing, it seems to be important to differentiate between
two different mechanisms that are associated with different
developmental patterns. On the one hand, children might be-
come increasingly more familiar with different reading mate-
rials. This, in turn, might increase their sensitivity to frequency
information. This view is supported by the finding that the
amount of variance explained by word frequency based on
adult materials increased during reading development. On
the other hand, the lexical system might become less sensitive
to lexical information during reading development because
frequency effects levels-off with increasing (cumulative) fre-
quency (Plaut & Booth, 2000). This view is supported by the
fact that the amount of variance explained by word frequency
based on child frequencies decreased across development. In
line with this, the absolute size of the frequency effect also
decreased across development. Again, further research is
needed to differentiate between the two accounts.

The relationship between sublexical and lexical processing
during reading development is only one example for the the-
oretical questions that can potentially be addressed by the
DeveL project. Other questions include the development of
sensitivity to morphology information (see, e.g., Hasenäcker,
Schröter, & Schroeder, 2016), the status of the regularity of
grapheme–phoneme correspondences during reading devel-
opment (see, e.g., Pritchard et al., 2016), or the role of seman-
tic information during visual word recognition (see, e.g.,
Nation, 2009, for a review).

Themost important limitation of the DeveL project is that it
does not cover the complete range of frequency that is ob-
served in natural language. One important feature of the
DeveL project is that it provides behavioral data for the same
set of words in different age groups. To ensure that the same
words could be used with young children, we excluded words
with very low frequencies (i.e., words with frequencies below
1/million). Frequencies in DeveL still range from about 1–
1,000/million, which is a frequency range similar to the one
of the Brown corpus (Kučera & Francis, 1967). The restricted
range of frequencies has to be taken into account if DeveL is
compared with other, more extensive databases.

Accessibility and structure of the database

We generated a database that is available for free to the scien-
tific community and can be downloaded as an electronic sup-
plement to this article. The database provides item effects for
the 1,152 words in all age groups and for all response vari-
ables as well as accompanying linguistic characteristics. Data

are provided as an R data file (DeveL.RData). The file has the
following structure: There are five different data frames, each
corresponding to one of the dependent variables discussed in
this article (LD accuracy, ld.acc; LD RT, ld.rt; naming accu-
racy, nam.acc; naming OT, nam.on; naming DT, nam.dur). In
each data frame, data for the seven age groups (Grade 1, g1;
Grade 2, g2; Grade 3, g3; Grade 14 g4; Grade 6, g6; young
adults, ya; old adults, oa) are represented by a set of three
columns each. The first column (n) represents the number of
data points on which the item effect in a group is based. The
second column (m) provides the estimated item effect for each
word in this age group. Item effects were estimated using the
random effects (based on best linear unbiased predictors; see
Bates et al., 2016) from the mixed-effects model that was
fitted for each age group separately and added to the overall
intercept of that group. To ease interpretation, responses were
back-transformed from the logit scale to proportion correct for
the accuracy measures and from the log scale to milliseconds
for all RT measures. The last column (se) for each age group
represents the standard error of the item effect. It combines the
uncertainty about the random item effect and the uncertainty
of the overall group intercept. Finally, a sixth data frame (item)
provides important linguistic characteristics for all words in-
cluded in the database. All string variables are encoded using
UTF-8. The names and order of the variables in this data frame
correspond to their presentation in the Method section of this
article. All data frames can easily be combined using word as a
linking variable. Further questions regarding the database
should be directed at the corresponding author of this article.
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