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A B S T R A C T   

Avoiding stimuli that were previously associated with threat is essential for adaptive functioning, but excessive 
avoidance that persists in the absence of threat can turn dysfunctional and results in severe impairments. Fear 
and avoidance conditioning models have substantially contributed to the understanding of safety behaviors 
towards learnt fear stimuli. Safety behaviors are executed in the presence of a feared stimulus to prevent the 
upcoming threat and are well-established in laboratory models. Avoidance of learnt fear, i.e., avoidance of the 
feared stimulus itself, is typically initiated before the onset of a feared stimulus: individuals oftentimes avoid fear 
stimuli to prevent negative emotions evoked by them or ultimately the associated threat. Avoidance of learnt fear 
is surprisingly understudied despite its prevalence in pathological anxiety. The current overview proposes po-
tential behavioral mechanisms and neural circuits of avoidance of learnt fear in humans, and discusses findings 
and paradigms suitable for examining it. Specifically, higher-order conditioning, decision making paradigms, and 
context-cue conditioning investigate distinct forms of avoidance of learnt fear. We also discuss the clinical 
prospects and future directions of research in avoidance of learnt fear.   

1. Introduction 

1.1. Defensive behavior 

Fear or anxiety is triggered by situations or stimuli that signal threat 
and in turn motivate different defensive behaviors. Defensive behaviors 
are typically adaptive responses that prevent imminent threat (see 
LeDoux & Daw, 2018; Pittig, Wong, Glück, & Boschet, 2020). However, 
when defensive behaviors become excessive, persist in the absence of 
threat, or generalize to non-threatening situations or stimuli, such be-
haviors may become maladaptive. Indeed, maladaptive defensive be-
haviors are a major pathological feature of anxiety-related disorders 
(American Psychiatric Association, 2013). 

Defensive behaviors have been studied extensively in the past de-
cades. One of the most influential laboratory model for defensive 
behavior is the fear and instrumental conditioning framework. This 
framework has been suggested to be a valid laboratory model for the 
study of functional and dysfunctional fear and defensive behavior 
acquisition (Beckers, Krypotos, Boddez, Effting, & Kindt, 2013; 

Krypotos, Vervliet, & Engelhard, 2018). In this framework, a formerly 
neutral conditioned stimulus (CS) is repeatedly paired with an aversive 
unconditioned stimulus (US). Consequently, the CS comes to signal 
threat and thus evokes conditioned fear. In a following instrumental 
learning phase, performing a designated response prevents or terminates 
the US. Depending on how the response effects the status of the US or the 
CS, defensive behaviors can be classified as escape or avoidance. The 
terminology of these responses may seem overlapping, thus it is vital to 
establish distinct terminology for each response. We therefore highlight 
the differences between the different types of responses. 

1.2. Escape 

Escape is defined as responses that terminate exposure to an ongoing 
US (US-escape1) or terminate exposure to an ongoing CS which in turn 
prevent an upcoming US (CS-escape). CS-escape has received much 
research attention in non-human animals and is typically examined in a 
so-called escape-from-fear paradigm. This paradigm is highly similar to 
the aforementioned fear and instrumental conditioning framework, 
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characterized by the termination of CS presentation (and the US it sig-
nals) by executing a designated escape response (Amorapanth, LeDoux, 
& Nader, 2000; Cain & LeDoux, 2007; McAllister & McAllister, 1971; see 
Fig. 1a). The acquisition of CS-escape is thought to be reinforced by the 
removal of a feared CS: the termination of the CS reduces conditioned 
fear, negatively reinforcing CS-escape (Hull, 1943; Mowrer, 1960). 

CS-escape is of clinical importance, as it provides insights into how 
clinically anxious individuals escape from feared situations or stimuli. 
For instance, a socially anxious individual may leave a conversation (i. 
e., response that terminates a CS) to prevent humiliation (US). Despite 
the clinical significance of CS-escape, it will not be covered in detail in 
the current review as our focus is on avoidance responses (excellent 
overviews on CS-escape paradigms can be seen in LeDoux & Daw, 2018; 
LeDoux, Moscarello, Sears, & Campese, 2017; McAllister & McAllister, 
1991). 

1.3. Avoidance 

Avoidance refers to responses that prevent a feared or threatening 
stimulus. Unlike escape responses, avoidance does not terminate expo-
sure to any ongoing stimulus. Depending whether an avoidance 
response prevents a threat (US) or even the feared stimulus (CS), 
avoidance can be categorized into safety behavior or avoidance of learnt 
fear. 

1.3.1. Safety behavior 
Safety behavior refers to behavioral responses that prevent (or 

greatly reduce) a threat when confronting a situation or stimulus that 
signals threat. Safety behavior is typically adaptive when it effectively 
reduces threat. For instance, wearing a seatbelt is adaptive given that it 
significantly reduces serious injuries in vehicle accidents. Safety 
behavior in anxiety-related disorders is, however, oftentimes maladap-
tive given the high cost of execution and its persistence in the absence of 
realistic threat (Pittig et al., 2020). 

Safety behavior has been studied extensively in the laboratory via a 
fear and avoidance conditioning framework. In this framework, after 
acquiring conditioned fear to the CS, performing a designated response 
during CS presentation effectively prevents the US. Thus, this behavioral 
response is referred to as “US-avoidance” given it prevents US occurrence 
(see Fig. 1b). Importantly, despite both CS-escape and US-avoidance 
prevent US occurrence, US-avoidance does not necessarily terminate 
CS presentation, thus rendering it qualitatively different from CS-escape. 
Furthermore, US-avoidance is thought to be driven by US omission 
(Lovibond, 2006; Seligman & Johnston, 1973) or positively reinforced 
by the presence of safety signals after executing US-avoidance (e.g., 
Fernando, Urcelay, Mar, Dickinson, & Robbins, 2014; Morris, 1974), 
whereas CS-escape is thought to be predominantly driven by negative 
reinforcement linked to CS termination (Dinsmoor, 1954; Schoenfeld, 
1950). 

Fear conditioning research has substantially contributed to our un-
derstanding of dysfunctional safety behaviors. Numerous studies found 
the persistence of US-avoidance even when it becomes costly (e.g., 
Claes, Karos, Meulders, Crombez, & Vlaeyen, 2016; Pittig, 2019; Rattel, 
Miedl. Blechert, & Wilhelm, 2017; van Damme, Van Ryckeghem, Wyf-
fels, van Hulle, & Crombez, 2012). Compared to low-cost US-avoidance 
(in which cost or effort for executing US-avoidance is minimal), incor-
porating a cost into US-avoidance arguably increases face validity 
(Krypotos et al., 2018), as it parallels to maladaptive costly safety 
behavior commonly observed in anxiety-related disorders. Interestingly, 
costly US-avoidance may also enhance diagnostic validity, as pre-
liminary evidence revealed that clinically anxious individuals were 
more likely to engage in costly US-avoidance than healthy controls, even 
in the absence of threat (Pittig, Boschet, Glück, & Schneider, 2021). 

Laboratory studies also found a reduction in anticipatory fear to the 
fear-related CS after executing US-avoidance (Pittig, 2019; Rattel, 
Miedl, Blechert, & Wilhelm, 2017; Wong & Pittig, 2021). This parallels 

the reduction of fear after engaging in safety behavior when confronting 
fear-related situations or objects. US-avoidance also generalizes to other 
generalization stimuli (GSs) that perceptually (e.g., Meulders, Jans, & 
Vlaeyen, 2015; San Martin, Jacobs, & Vervliet, 2020; van Meurs, Wig-
gert, Wicker, & Lissek, 2013) or conceptually (e.g., Boyle, Roche, 
Dymond, & Hermans, 2016; Dymond, Roche, Forsyth, Whelan, & Rho-
den, 2007; Dymond, Schlund, Roche, & Whelan, 2014) resemble the CS. 
Thus, a wide range of stimuli that resemble the fear-related CS are able 
to evoke US-avoidance. 

Furthermore, laboratory studies suggested that excessive engage-
ment with US-avoidance precludes extinction learning to the fear- 
related CS, that is, protecting one from learning that the CS no longer 
signals an US (protection from extinction; see Section 5 for more de-
tails). The pathological characteristic of excessive US-avoidance is 
exacerbated with laboratory findings showing the persistence of US- 
avoidance after response-prevention extinction learning (Klein, Shner, 
Ginat-Frolich, Vervliet, & Shechner, 2020; Krypotos & Engelhard, 2018; 
van Uijen, Leer, & Engelhard, 2018; Vervliet & Indekeu, 2015). 

Collectively, there are ample laboratory studies examining the 
acquisition of safety behavior and its interaction with conditioned fear 
within a fear and avoidance conditioning framework. While there are 
still important future directions (Pittig et al., 2020), these studies pro-
vide insights into how safety behavior gains its pathological quality in 
anxiety-related disorders. 

1.3.2. Avoidance of learnt fear 
Avoidance of learnt fear is another form of fear-related avoidance. It 

refers to avoidance to situations or stimuli that signal a fear-related 
stimulus. This means, a behavioural response that prevents the occur-
rence of a feared stimulus or situation itself. Clinical evidence showed that 
individuals with anxiety-related disorders not only execute safety 
behavior when confronting objects of fear, but also actively avoid situ-
ations or stimuli that signal the presence of fear-related objects (Now-
akowski, Rogojanski, & Antony, 2013). For instance, individuals with 
PTSD are likely to avoid situations or stimuli that signal the presence of 
trauma reminders (Ehlers & Clark, 2000; Sareen, 2014). Similarly, in-
dividuals with phobias would avoid places or stimuli that signal 
phobic-related objects (e.g., Katz, 1974; Kleinknecht & Lenz, 1989; 
Sawchuk, Lohr, Tolin, Lee, & Kleinknecht, 2000; Walz, Mühlburger, & 
Pauli, 2016). Similar to safety behavior, avoidance of learnt fear be-
comes pathological when it severely impairs daily life and is not in 
relation to the actual threat. For instance, clinically anxious individuals 
reported taking a lengthy detour to avoid places where trauma re-
minders or feared objects are likely to be encountered (Corrigan, 
Samuelson, Fridlund, & Thomé, 2007; Walz, Mühlburger, & Pauli, 
2016). Thus, it is important to understand the role of avoidance of learnt 
fear in anxious psychopathology. 

In a conditioning framework, avoidance of learnt fear can be oper-
ationalized as “CS-avoidance” (hereinafter we refer avoidance of learnt 
fear as CS-avoidance). It refers to behavioral responses that prevent the 
occurrence of a fear-related CS (Krypotos et al., 2018; Pittig et al., 2020). 
Conceptually, CS-avoidance is executed upon stimuli or contexts to 
prevent the upcoming CS (see Fig. 1c). CS-avoidance is unique from 
US-avoidance and escape responses as it prevents the occurrence of both 
CS and US, and does not involve the termination of exposure to ongoing 
threat signal or harm, respectively. 

Importantly, CS-avoidance is linked to stimuli or contexts preceding 
the feared stimulus that have no direct association with the US (e.g., an 
individual with dog phobia avoids going to a park that is not directly 
associated with a dog attack). Thus, CS-avoidance seemingly shares a 
similar mechanism with generalization of avoidance, given that both 
entail avoidance to stimuli or contexts that have no direct link with the 
US. However, there is a fine distinction between CS-avoidance and 
generalization of avoidance. While generalization of avoidance entails a 
spread of avoidance to GSs that perceptually or conceptually resemble 
the CS+, these GSs do not necessarily predict the onset of CS+. CS- 
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avoidance, on the other hand, entails avoidance to stimuli or contexts 
that directly signal the onset of CS+. Therefore, CS-avoidance, in its own 
right, provides a unique account on why clinically anxious individuals 
avoid a broad range of stimuli or contexts that are seemingly unrelated 
to their pathogenesis of fear. 

In sum, although there is an increasing interest in defensive 
behavior, in particular avoidance in humans, most studies focused on 
the acquisition, maintenance and reduction of safety behavior (see Pittig 
et al., 2020). CS-avoidance, on the other hand, received little attention, 
despite its potential for providing a unique account of pathological 
avoidance. It is thus important to further the understanding of 
CS-avoidance and its underlying mechanisms. CS-avoidance can be 
further elucidated in highly controlled laboratory paradigms (Richter, 
Pittig, Hollandt, & Lueken, 2017). The aim of the current article is thus 
four-fold:  

i) Proposing potential behavioral mechanisms of CS-avoidance 
based on preliminary evidence in humans. 

ii) Providing an overview of preliminary fear and avoidance condi-
tioning research on CS-avoidance and discuss paradigms suitable 
for examining it.  

iii) Proposing neural circuits potentially involved in CS-avoidance 
based on preliminary evidence. 

iv) Discussing relevant clinical prospects and future research di-
rections of CS-avoidance. 

2. Potential behavioral mechanisms of CS-avoidance 

Given the lack of laboratory research in CS-avoidance, the specific 
behavioral mechanisms are largely unknown. Based on findings on 
related avoidance research, we propose four potential underlying 
mechanisms that underlie the acquisition and maintenance of CS- 
avoidance, namely threat expectancy, safety signal, negative valence, 
and automatic avoidance tendency. 

2.1. CS-avoidance driven by threat expectancy 

One intuitive assumption is that CS-avoidance ultimately prevents an 

US: CS-avoidance not only prevents the CS, but also prevents the sub-
sequent US it signals. Thus, CS-avoidance and US-avoidance may be 
driven by a common mechanism that serves to prevent the US. Recent 
studies in humans provided some preliminary evidence to support this 
notion. In Wong and Pittig (2020), participants were asked to choose 
between two options on every test trial after differential fear condi-
tioning. One option led to a higher chance of reward, but also signalled 
the presence of a novel exemplar that belonged to the same category of 
the CS+ (GS+), whereas another option led to a lower chance of reward 
but signalled the presence of a novel exemplar of the same category of 
the CS- (GS-). After choosing one of the options, participants were 
prompted to indicate their US expectancy ratings to the exemplar pre-
sented corresponding to the chosen option. Participants exhibited higher 
US expectancy ratings to the GS+ than the GS-, indicating fear gener-
alization. US expectancy ratings to the GS+ decreased across 
non-reinforced test trials due to extinction learning; importantly, this 
decrease in US expectancies aligned with a decrease in avoidant decision 
to the option linked to the GS+ (i.e., generalization of CS-avoidance). 
This pattern suggests that CS-avoidance (and its generalization) was at 
least partly linked to participants’ threat expectancy. 

Furthermore, Lemmens, Smeets, Beckers, and Dibbets (2021) 
employed a novel fear conditioning design that allowed simultaneous 
investigation of both CS-avoidance and US-avoidance. Participants 
could choose to avoid a fear-related CS, however, approaching this CS 
was incentivized by a competing reward. A novel aspect was that par-
ticipants could still engage in US-avoidance after approaching the CS (i. 
e., not executing CS-avoidance), which would, however, omit the 
competing reward. Results showed that when the CS was approached, 
participants only rarely engaged in a subsequent US-avoidance (27% of 
trials). This pattern suggests that participants who wanted to avoid an 
US already engaged in CS-avoidance, whereas those who chose to 
approach to obtain the competing reward were unlikely to further 
engage in US-avoidance. High levels of retrospective US expectancy 
ratings to the CS complemented the notion that CS-avoidance was driven 
by US anticipation. 

These preliminary studies suggest that CS-avoidance may operate on 
a chain-like structure: engaging in CS-avoidance prevents the CS and the 
subsequent US it signals. If CS-avoidance is largely driven by threat 

Fig. 1. A) The acquisition of CS-escape in a typical 
escape-from-fear paradigm. After acquiring CS-US 
contingency, executing a designated escape response 
during CS presentation terminates the CS and prevents 
the aversive US that follows. In contrast, not 
executing the designated escape response leads to 
persistent CS presentation and US administration. B) 
The acquisition of safety behavior in a typical US- 
avoidance paradigm in humans. Executing a desig-
nated avoidance response during CS presentation pre-
vents the aversive US. In contrast, not executing the 
designated avoidance response leads to US adminis-
tration. US-avoidance only prevents the US, but does 
not terminate CS presentation. C) The proposed 
acquisition of avoidance of learnt fear in a CS- 
avoidance paradigm in humans. The hexagon repre-
sents a stimulus that signals a fear-related CS. 
Executing a designated avoidance response during this 
stimulus preceding the CS prevents CS presentation, 
thus effectively prevents the US. In contrast, not 
executing the designated avoidance response leads to 
CS presentation, and the subsequent US is either 
presented or not depending on the experimental 
design.   
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expectancy, severing the association between the CS and the stimulus 
preceding it, or extinguishing the CS-US association (CS-extinction) 
could then reduce CS-avoidance. Preliminary studies in humans (Van-
steenwegen, Crombez, Baeyens, Hermans, & Eelen, 2000) found a 
reduction in conditioned fear to the stimulus that signalled the CS+ after 
extinguishing the link between these two stimuli. This pattern thus 
suggests that breaking up this chain may speculatively help reducing 
CS-avoidance. In a similar vein, if CS-avoidance is purely driven by this 
chain-like structure characterised by threat anticipation, extinguishing 
CS-US contingency should also reduce CS-avoidance. 

If CS-avoidance is purely driven by US anticipation, then it may be 
intuitive to assume CS-avoidance as a form of US-avoidance. However, 
we see CS-avoidance as qualitatively different from US-avoidance, given 
these two types of avoidance are acquired to and evoked by different 
stimuli (that is not via stimulus generalization). Thus, future studies 
examining CS-avoidance should avoid confounding CS-avoidance with 
US-avoidance. 

2.2. CS-avoidance driven by safety signals 

The safety signal account (Weisman & Litner, 1972) puts forward the 
idea that executing US-avoidance would generate some safety signals; 
these safety signals include interoceptive stimuli (Rescorla, 1968) or 
proprioceptive stimulations (e.g., tactile stimulation of executing 
US-avoidance). These safety signals are thought to serve as conditioned 
inhibitors which positively reinforce US-avoidance (Fernando et al., 
2014; Morris, 1974). 

The idea of conditioned inhibition may explain the reinforcement of 
CS-avoidance. CS-avoidance not only prevents CS occurrence, but also 
the subsequent US that follows. Thus, the absence of an US after 
executing CS-avoidance combined with the safety signals generated by 
CS-avoidance align with the safety signal account. That is, these safety 
signals serve as conditioned inhibitors that reinforce CS-avoidance. 

If the safety signal account is accepted as a model that explains the 
acquisition of CS-avoidance, then severing the link between the CS and 
its preceding stimulus or extinguishing the CS-US association may not 
effectively reduce CS-avoidance, given that safety signals drive CS- 
avoidance. 

2.3. CS-avoidance driven by negative valence 

Some human fear conditioning studies suggest that CS-avoidance 
persists even after successful extinction learning to the CS+ (Blechert, 
Michael, Vriends, Margraf, & Wihelm, 2007; Engelhard, Leer, Lange, & 
Olatunji, 2014). After fear extinction, participants were more likely to 
choose a reward that was associated with a CS- over another reward 
associated with an extinguished CS+, despite both rewards were equally 
appetitive. Mason and Richardson (2010) also found that visual avoid-
ance to the CS+ persisted even after US expectancies to it had been 
extinguished. Besides the safety signal account, the persistence of 
CS-avoidance after CS-extinction could also be due to the acquired 
negative valence to the CS+ and/or the stimulus that signalled it after 
fear acquisition (Baeyens, Eelen, & Crombez, 1995; Hermans, Van-
steenwegen, Crombez, Baeyens, & Eelen, 2002, 2005). Negative 
valence, unlike conditioned fear, is typically less affected by extinction 
learning (see Dirikx, Hermans, Vansteenwegen, Baeyens, & Eelen, 
2004). Negative valence per se is also thought to be sufficient to guide 
avoidance (Chen & Bargh, 1999; Hans Phaf, Mohr, Rotteveel, & 
Wicherts, 2014; Krieglmeyer, Deutsch, De Houwer, & De Raedt, 2010), 
even when an aversive US is not expected (see referential account; see 
Baeyens et al., 1995; De Houwer, Thomas, & Baeyens, 2001). Pre-
liminary studies showed that a stimulus that signalled a CS+ gained 
negative valence, thus suggesting the possibility that negative valence is 
involved in driving CS-avoidance (Wong & Pittig, 2022; Yu, Lang, Bir-
baumer, & Kotchoubey, 2014). However, it is still largely unclear 
whether CS-avoidance is driven by the negative valence of the stimulus 

that signals a CS+, negative valence of the CS+, or a combination of 
both. Future research is required to unravel these potential factors. 

2.4. CS-avoidance driven by automatic avoidance tendency 

A related mechanism of CS-avoidance is the automatic avoidance 
tendency acquired to a feared stimulus. Proponents have suggested that 
fear serves as an emotional disposition for defensive behaviors, for 
instance, fight or flight (Frijda, 2010; Lang, Bradley, & Cuthbert, 1998; 
Mauss & Robinson, 2009). In fear conditioning, the acquired fear to the 
CS+ is proposed to facilitate avoidance, by activating an automatic 
tendency to avoid. Evidence supportive of this notion (Krypotos, Effting, 
Arnaudova, Kindt, & Beckers, 2014, 2015) found a tendency to avoid the 
CS+ even in the absence of any instrumental training. After differential 
fear conditioning, participants were asked to control a manikin to either 
approach or avoid the CS+ or the CS-. In congruent trials, participants 
were instructed to avoid the CS+ (and approach the CS-), whereas in 
incongruent trials, participants were instructed to approach the CS+
(and avoid the CS-). Participants exhibited faster reaction time to 
execute the behavioral response on congruent trials than incongruent 
trials. Specifically, they were faster to avoid the CS+ than to approach 
the CS+. This pattern was interpreted as fear acquired to the CS+ acti-
vating the tendency of avoidance, supporting the idea that fear facili-
tates avoidance. Interestingly, this avoidance tendency is thought to be 
activated by conditioned fear to the CS+ regardless of threat expectancy: 
First, there was no instrumental training of US-avoidance, meaning that 
participants did not acquire any behavioral responses to prevent an US 
prior to test. Second, the US electrodes were disconnected during test, 
thus suggesting that the avoidance tendency was not driven by US 
anticipation. Empirical studies have shown an increase in fear to a 
stimulus or context that signals the CS+ (e.g., Baas, Nugent, Lissek, Pine, 
& Grillon, 2004; Davey & Arulampalam, 1982; Dunsmoor, White, & 
LaBar, 2011; Siddle, Bond, & Friswell, 1987; van Ast, Vervliet, & Kindt, 
2012; Vansteenwegen et al., 2000; see Section 3 for details). If condi-
tioned fear facilitates avoidance (Frijda, 2010; Lang et al., 1998; Mauss 
& Robinson, 2009), it is speculated that fear acquired to these 
CS-predicting stimuli or contexts would evoke a tendency to avoid, 
driving overt CS-avoidance. Automatic avoidance tendencies may also 
help to further understand the effects of negative valence. Negative 
valenced stimuli have been linked to faster avoidance tendencies 
(Buetti, Juan, Rinck, & Kerzel, 2012; Chen & Bargh, 1999; Eder & 
Rothermund, 2008). Thus, both mechanisms do not seem to be exclu-
sive, but rather interacting. 

In sum, CS-avoidance could be driven by threat anticipation (and its 
prevention) or reinforced by safety signals generated by CS-avoidance. 
However, additional mechanisms, such as negative valence or auto-
matic avoidance tendencies, may contribute to CS-avoidance. More 
empirical studies and experimental models are required for detailed 
understanding of CS-avoidance. 

3. CS-avoidance in fear and avoidance conditioning 

In the following, we will briefly review different paradigms suitable 
for examining distinct forms of CS-avoidance, namely higher-order 
conditioning, decision making paradigm, and context-cue condition-
ing. As research in humans is oftentimes preliminary, we will briefly 
review research in non-human animals, before reviewing preliminary 
evidence in humans for each paradigm. 

3.1. CS-avoidance in higher-order conditioning paradigms 

In higher-order conditioning paradigms, conditioned responses 
could be evoked by a stimulus that has direct association with the CS+, 
but has no direct association with the US (Gewirtz & Davis, 2000). 
Higher-order conditioning could be typically categorized into sensory 
preconditioning and second-order conditioning. 
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3.1.1. Sensory preconditioning 
In sensory preconditioning, a neutral CS is repeatedly paired with 

another neutral CS, with the latter afterwards paired with an US. The 
latter CS represents a first-order CS and the former a higher-order CS. 
The higher-order CS comes to evoke conditioned responses, despite not 
directly associated with the US (Brogden, 1939; Pfautz, Donegan, & 
Wagner, 1978; Rizley & Rescorla, 1972). This evoked conditioned 
response can be explained by stimulus-stimulus associations: the 
higher-order CS activates the representation of the first-order CS, which 
in turn activates US representation (Gewirtz & Davis, 2000). Alterna-
tively, higher-order cognitive accounts propose that the higher-order CS 
signals an ultimate anticipation of an US, therefore evoking anticipatory 
responses (see Boddez, Moors, Mertens, & De Houwer, 2020; Mitchell, 
De Houwer, & Lovibond, 2009). 

Sensory preconditioning in the aversive domain has been primarily 
investigated in non-human animals. Typically, the higher-order CS was 
found to evoke conditioned fear (e.g., Holmes, Parkes, Killcross & 
Westbrook, 2013; Prewitt, 1967; Tait, Marquis, Williams, Weinstein, & 
Suboski, 1969; Wong, Westbrook, & Holmes, 2019) or avoidance (Davis 
& Thompson, 1969; Hoffeld, Kendall, Thompson, & Brogden, 1960). The 
latter could be seen as CS-avoidance as the avoidance response prevents 
CS presentation. 

Sensory preconditioning studies in humans, especially in the aver-
sive domain, are scarce. Nonetheless, similar to non-human animal 
studies, humans exhibited conditioned fear to a higher-order CS that 
signalled the fear-related first-order CS+ (Dunsmoor et al., 2011; Van-
steenwegen et al., 2000). In addition, Declercq and De Houwer (2009) 
found that a button press that prevented an aversive US during 
first-order CS presentation transferred to a higher-order CS that 
signalled the first-order CS. In other words, the presence of a 
higher-order CS evoked an avoidance response that had previously 
prevented an US. This avoidance response also generalized to novel 
stimuli that perceptually resembled the higher-order CS (Cho & Mitch-
ell, 1971). 

3.1.1.1. Precautions of examining CS-avoidance in sensory pre-
conditioning. It is intuitive to interpret the conditioned fear evoked by a 
higher-order CS via stimulus generalization (i.e., fear generalizes from 
the first-order CS to the higher-order CS). However, a higher-order CS 
evoked little to no conditioned responses if it was not paired with the 
first-order CS prior to first-order CS-US pairings (e.g., Prewitt, 1967; 
Rizley & Rescorla, 1972). Thus, sensory preconditioning cannot be 
simply explained by stimulus generalization. 

Furthermore, preliminary human studies found that US-avoidance 
acquired to a first-order CS transferred to a higher-order CS (Declercq 
& De Houwer, 2009), or to other stimuli that were perceptually similar 
to the higher-order CS (Cho & Mitchell, 1971). These findings precluded 
any interpretation of CS-avoidance given that avoidance was acquired to 
the CS+ (i.e., US-avoidance) which then generalized to other GSs. 
Indeed, these findings were highly similar to symbolic generalization of 
US-avoidance (Dymond, Schlund, Roche, De Houwer, & Freegard, 2012; 
Dymond et al., 2014; Dymond et al., 2011). These studies employed a 
matching-to-sample task, in which a neutral stimulus (A1) was pre-
sented alongside a set of comparison stimulus ([B1, B2, B3] or [C1, C2, 
C3]. Choosing B1 or C1 in the presence of A1 was reinforced by 
corrective feedback, thereby associating A1 with B1 and C1. B1 was then 
paired with an aversive US, followed by the acquisition of US-avoidance 
to B1. Dymond et al. (2011, 2012, 2014) found that such US-avoidance 
generalized from B1 to A1 and C1, despite A1 and C1 had no direct 
association with the US, thus indicating a symbolic generalization of 
US-avoidance. Therefore, to examine CS-avoidance in a sensory pre-
conditioning paradigm, future studies have to ensure that the acquisition 
of avoidance is restricted to the higher-order CS (see Wong & Pittig, 2022). 
This allows any avoidance responses to the higher-order CS to be clearly 
interpreted as CS-avoidance, precluding it to be confounded with 

generalization of US-avoidance (see Fig. 2a for an overview of exam-
ining CS-avoidance in a sensory preconditioning paradigm). 

3.1.2. Second-order conditioning 
In second-order conditioning, a first-order CS+ comes to signal 

threat after repeated pairings with an US. Another neutral stimulus, a so- 
called second-order CS, is then paired with the CS+. Empirical studies in 
non-human animals showed that second-order CS was able to evoke 
conditioned fear (e.g., Holmes, Cai, Lay, Watts, & Westbrook, 2014; Lay, 
Westbrook, Glanzman, & Holmes, 2018; Rescorla, 1982; Rizley & 
Rescorla, 1972) and avoidance (Tabone & de Belle, 2011; Topál & 
Csányi, 1999), despite it had no direct association with the US. 

Similar to sensory preconditioning, the ability of a second-order CS 
to evoke conditioned responses is contingent on the pairing between the 
second-order CS and the first-order CS+, rather than a by-product of 
stimulus generalization (Parkes & Westbrook, 2010; Witnauer & Miller, 
2011; Yin, Barnet, & Miller, 1994). 

Evidence for second-order conditioning in humans is relatively 
scarce in the aversive domain. Some studies showed that adults (Davey 
& Arulampalam, 1982; Siddle et al., 1987) and children (Reynolds, 
Field, & Askew, 2017) acquired conditioned fear to a second-order CS. 
Interestingly, Wessa and Flor (2007) showed that individuals with PTSD 
showed enhanced conditioned fear to a second-order CS compared to 
healthy controls, suggesting a model of the acquisition of excessive fear 
to cues that signal trauma reminders. 

Fear-related avoidance was rarely measured in human second-order 
conditioning studies. Davey and Arulampalam (1982) instructed one 
group of participants that a key press during first-order CS+ presenta-
tion would prevent the US. This, however, rendered the button press 
responding as US-avoidance given that participants were explicitly 
instructed to press the key during first-order CS+ presentation. Another 
study (Malloy & Levis, 1988) used a serial second-order conditioning 
procedure, in which a second-order CS was followed by a first-order 
CS+, which in turn was followed by an US. In a following phase, par-
ticipants were instructed that pulling a hand-dynanometer would 
terminate all stimuli. This, however, allowed participants to execute the 
avoidance response during either the second-order CS or the first-order 
CS+, confounding CS-avoidance and US-avoidance, respectively. 

More recently, Klein, Berger, Vervliet, and Shechner (2021) specif-
ically examined CS-avoidance in a serial second-order conditioning 
paradigm in humans (cf. Malloy & Levis, 1988). That is, avoidance re-
sponses were confined to the presentation of second-order CS. Executing 
avoidance would prevent all subsequent stimuli. Participants exhibited 
avoidance more frequently to the second-order CS compared to a CS-, 
allowing a clear interpretation of the acquisition of CS-avoidance. 

3.1.2.1. Precautions of examining CS-avoidance in second-order condi-
tioning procedure. In second-order conditioning, the first-order CS is 
conventionally unreinforced by an US during pairings of the second- 
order CS and the first-order CS. This procedure is highly similar to 
conditioned inhibition (A+, AX-) which may generate inhibitory 
responding to the second-order CS (Pavlov, 1927; Rescorla, 1973). A 
recent review (Lee, 2021) suggested to direct participants’ attention to 
the association between the first- and second-order CS, or discourage 
learning of the association between the second-order CS and the absence 
of an US, to minimize inhibitory learning to the second-order CS (see 
Fig. 2a for an overview of examining CS-avoidance in a second-order 
conditioning paradigm). 

3.2. CS-avoidance in decision making paradigms involving approach- 
avoidance conflict 

In approach-avoidance conflict tasks, individuals typically have to 
decide whether to approach or avoid an option that is associated with 
both aversive and appetitive outcomes. Decision making in non-human 
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animals had been traditionally investigated in different approach- 
avoidance conflict paradigms (e.g., Howard & Pollard, 1977; Millan, 
2003; Vogel, Beer, & Clody, 1971), laying the foundation for human 
studies. Despite increasing attention in examining approach-avoidance 
conflict in humans, the major focus has been the decision to engage in 
US-avoidance (e.g., Lindström, Golkar, Jangard, Tobler, & Olsson, 2019; 
Norbury, Kurth-Nelson, Winston, Roiser, & Husain, 2015; Norbury, 
Valton, Rees, Roiser, & Husain, 2016; Pittig & Scherbaum, 2020; Sier-
ra-Mercado et al., 2015; Talmi, Dayan, Kiebel, Frith, & Dolan, 2009), 
whereas the investigation in CS-avoidance in similar paradigms received 
relatively less attention. 

Acquisition of CS-avoidance can be examined in the form of avoidant 
decisions to options linked to a CS+. Pittig, Schulz, Craske, and Alpers 

(2014) combined fear conditioning with a modified Iowa gambling task 
(Bechara, Damasio, Damasio, & Anderson, 1994). After differential fear 
conditioning, participants were asked to choose one of the two decks 
presented in a gambling task. One deck led to a greater chance of 
reward, but also signalled the CS+ (high-reward option), whereas 
another deck led to a lower chance of reward but signalled the CS- 
(low-reward option). Participants were more likely to choose the 
low-reward option, at the cost of greater chance to obtain a reward, 
despite none of the CSs were reinforced in test. This pattern was inter-
preted as a costly, maladaptive decision to execute CS-avoidance in two 
ways: first, participants actively avoided choosing the more optimal 
high-reward option, despite the CS+ that followed was no longer rein-
forced by an US. Second, persistent avoidant decision to the high-reward 

Fig. 2. Graphic depiction of the examination of CS-avoidance in different laboratory paradigms. A) Higher-order conditioning: Hexagon represents a higher-order 
CS. It signals a first-order CS either before (sensory preconditioning) or after (second-order conditioning) first-order CS-US pairings. In avoidance test, avoidance to 
the higher-order CS is measured (represented by the button press icon). B) Decision making paradigms involving approach-avoidance conflict: After differential 
conditioning to the two CSs, two options are given to choose from in the avoidance test: one option is linked to the CS+ and a large amount of reward, whereas 
another option is linked to the CS- with a small amount of reward. C) Context-cue conditioning: The single context-cue conditioning entails CS-US pairings in a 
particular context. This context is presented in avoidance test alone, and avoidance responses to it are measured. To prevent the formation of context-US association, 
context-cue conditioning can be employed via a higher-order conditioning procedure, in which the CS-US pairings occur in a context other than the context in 
avoidance test. Alternatively, CS-avoidance to a context can be tested in a conditional discrimination task, in which the CS+ signals threat in one context but not the 
other, whereas the CS- signals safety in both contexts. In avoidance test, both contexts are presented simultaneously and the frequency of choosing each of the context 
can serve as an indicator of CS-avoidance. 
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option also precluded one from extinction learning to the CS+, leading 
to protection from extinction (see Section 5). Interestingly, costly avoi-
dant decision also generalizes to novel stimuli categorically related to 
the CS+ (Wong & Pittig, 2020): participants were more likely to avoid 
choosing a more optimal, high-reward option that signalled novel 
stimuli (e.g., dog) belonging to the same category of the CS+ (e.g., 
mammal; see Fig. 2b for an overview of examining CS-avoidance in a 
decision making paradigm). 

Other decision making studies in humans examined the acquisition 
of CS-avoidance via a higher-order conditioning paradigm (Gerraty, 
Davidow, Wimmer, Kahn, & Shohamy, 2014; Luettgau, Porcu, Temel-
mann, & Jocham, 2021; Rouhani et al., 2019). Two higher-order CSs 
were paired with two first-order CSs respectively, either via sensory 
preconditioning (Gerraty et al., 2014) or second-order conditioning 
(Luettgau, Porcu, Tempelmann, & Jocham, 2021). The higher-order CSs 
were then presented in a two-alternative-force-choice test. Results 
showed that the higher-order CS associated with an appetitive CS was 
preferred over the higher-order CS associated with an aversive CS. 
Although this pattern could be interpreted as CS-avoidance to a stimulus 
that signalled an aversive warning signal, it could be alternatively 
interpreted as CS-approach to a stimulus that signalled an appetitive 
signal. Using a similar procedure, Rouhani et al. (2019) pitted a 
higher-order CS that signalled a warning signal against another 
higher-order CS that signalled a neutral CS. Participants more frequently 
decided to approach the latter, providing more persuasive evidence for 
CS-avoidant decisions. 

While the aforementioned paradigms primarily investigated the 
outcome of decision making, other paradigms investigated the process 
leading to the final decision. For example, we recently adapted a well- 
established discounting paradigm (see Dshemuchadse, Scherbaum, & 
Goschke, 2012; Scherbaum, Dshemuchadse, & Goschke, 2012) to 
examine CS-avoidance (Boschet, Scherbaum, & Pittig, 2021). Pre-
liminary findings showed that the probability of CS+ occurrence had a 
larger and faster impact during the decision process compared to reward 
information, suggesting information regarding CS+ plays a major role in 
deciding the execution of CS-avoidance. 

3.3. Context-cue conditioning 

Clinically anxious individuals not only avoid discrete stimuli that 
signal fear-related stimuli, but also situations where the fear-related 
stimuli are likely to be encountered. In the laboratory, fear and avoid-
ance to situations can be examined in a context-cue conditioning para-
digm (Lonsdorf et al., 2017). In this paradigm, a CS is paired with an US 
in a given context. Specifically, US occurrence is contingent upon the CS, 
but not to the context where the CS is presented. Thus, this paradigm 
allows simultaneous assessment of learnt fear to the discrete fear-related 
CS and the surrounding context (e.g., Baas et al., 2004; Grillon, Baas, 
Cornwell, & Johnson, 2006). 

3.3.1. Contextual fear and CS-avoidance 
Using a context-cue conditioning paradigm, it has been well estab-

lished in rodent studies that not only the discrete CS+ evoked condi-
tioned fear, but also the training context itself (Kim & Fanselow, 1992; 
Phillips & LeDoux, 1992). Similar to higher-order conditioning, 
context-cue conditioning allows the examination of CS-avoidance given 
that the context signals the presence of a fear-related CS. That is, fear 
and avoidance to the context is evoked via a context-CS association. 

Early studies in non-human animals have provided some evidence to 
support the idea of the formation of a context-CS association. Balay, 
Capra, Kasprow, and Miller (1982) pre-exposed rodents to a training 
context. After receiving CS-US pairings in the same context, rodents 
showed enhanced conditioned suppression to this context alone 
compared to a novel context alone. The increase in fear responses to the 
training context was not likely due to a direct context-US association, 
given that pre-exposure to the training context should have minimized 

the formation of a context-US association via latent inhibition (Lubow, 
1973; Lubow & Moore, 1959). Similarly, in a second-order conditioning 
study, Helmstetter and Fanselow (1989) found that rodents exhibited 
stronger conditioned fear to a context that signalled a CS+ compared to 
another context that signalled a CS-, despite no reinforcement was car-
ried out in neither context. That is, any direct associations between the 
context and the US were precluded (see also Rescorla [1984, Experiment 
2] for a similar study employing a sensory preconditioning paradigm, 
albeit in an appetitive domain). 

Context-cue conditioning paradigm in humans also shed light on the 
acquisition of fear to the training context. Preliminary studies (Grillon 
et al., 2006; Hasler et al., 2007; Lonsdorf, Haaker, & Kalisch, 2014) 
showed heightened retrospective anxiety ratings and EMG startle re-
sponses to a context where the CS-US pairings occurred. The heightened 
conditioned fear to this context is thought to reflect a context-CS asso-
ciation, giving way to the interpretation that the context evokes fear 
because it signals a fear-related CS. 

There is little research in humans on CS-avoidance to a context. 
Rinck et al. (2016) presented a museum in virtual reality to spider 
fearful and non-fearful participants. Their task was to find a target 
painting by walking around this virtual museum. On half of the trials, 
the target painting was located in a room with spider pictures. Spider 
fearful participants were less likely to visit these spider rooms compared 
to non-fearful participants, indicating CS-avoidance to a context that 
signalled fear-related CSs. Similarly, in a virtual reality Morris water 
maze task, participants exhibited higher latency to enter the target 
quadrant where a fear-related CS was located, compared to a control 
pool where the fear-related CS was absent in the same quadrant 
(Cornwell, Overstreet, Krimsky, & Grillon, 2013). This pattern indicated 
passive CS-avoidance to a context that signalled a fear-related CS. In 
sum, there is some preliminary evidence for CS-avoidance to a context in 
humans, but more research is required. 

Intriguingly, the context can oftentimes set an occasion of whether a 
CS signals an US or not, that is, context can serve as occasion setters 
when its presence governs whether an US follows a CS or not (see 
Holland, 1992; Maren, Phan, & Liberzon, 2013; Trask, Thraikill, & 
Bouton, 2017). Importantly, seminal studies have showed that occasion 
setting is unique from simple Pavlovian conditioning, as the occasion 
setters determine responding to a CS via modulation of the CS-US as-
sociation instead of forming a direct association with the US (Holland, 
1986, 1989; Holland, Lamoureux, Han, & Gallagher, 1999; Holland & 
Lamarre, 1984; Lamarre & Holland, 1985, 1987). 

Inspired by studies examining occasion setting, studies involving 
conditional discriminative training found that contexts allow the acti-
vation of CS-US association or CS-no US association, depending on the 
history of reinforcement in each context. Two human studies (Baas et al., 
2004; van Ast et al., 2012) carried out differential fear conditioning in 
two contexts: the CS+ signalled an US in one context (threat context) but 
not in another context (safe context), whereas the CS- was not reinforced 
in neither context. In test, participants exhibited greater EMG startle 
responses to the threat context alone compared to the safe context alone. 
The results suggested that a context signalling a fear-related CS does not 
always evoke fear (safe context), but only when it renders the CS 
threatening (threat context). This puts forward the idea that fear to the 
context could also be acquired via a context-CS′ association, which the 
apostrophe denotes that the threatening property of the fear-related CS 
is modulated by the context. This resembles clinically anxious in-
dividuals showing less fear to a feared object in a “safe” context (e.g., 
clinician’s office) but stronger fear outside of a safe context (i.e., 
dysfunction in contextualization, see Acheson, Gresack, & Risbrough, 
2012; Cohen, Liberzon, & Richter-Levin, 2009; Liberzon & Sripada, 
2008). Despite preliminary evidence in humans showing that fear to a 
context can be acquired via a context-CS′ association, more research is 
required to examine whether CS-avoidance to a context can be acquired 
via this pathway (see Fig. 2c for an overview of examining CS-avoidance 
in a context-cue conditioning paradigm). 
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3.3.2. Precautions of examining CS-avoidance in context-cue conditioning 
Fear and avoidance to a context could be acquired via two alternative 

pathways: direct context-US association and chronic anxiety due to 
unawareness of stimuli contingencies. Avoidance to a context acquired 
via these alternative pathways may preclude the interpretation of CS- 
avoidance to a context. 

3.3.2.1. Direct context-US association. The first alternative pathway is 
the formation of a direct context-US association, meaning that the 
context evokes fear because it directly signals an US, not because of it 
signalling a fear-related CS. This precludes any avoidance to the context 
to be interpreted as CS-avoidance. Indeed, Rescorla (1972) suggested 
that the context acts as another stimulus that competes with the CS for 
US association (see also Hull, 1952; Mackintosh, 1974). There are two 
ways that favour the formation of a context-CS association over a 
context-US association. First, high CS-US contingency, which refers to a 
CS reliably signalling an US, is suggested to inhibit the formation of a 
context-US association (Baker, Mercier, Gabel, & Baker, 1981; Murphy 
& Baker, 2004; Odling-Smee, 1975; Rescorla & Heth, 1975). Second, 
close CS-US contiguity, which refers to a close temporal distance be-
tween the CS and an US (Pavlov, 1927, 1932), is suggested to inhibit the 
formation of a context-US association (Odling-Smee, 1978). 

3.3.2.2. Awareness of stimuli contingency. A second pathway for the 
context to evoke apparent fear is determined by the awareness of stimuli 
contingencies. Grillon (2002) found that participants unaware of the 
CS-US contingency exhibited greater EMG startle responses to the 
context during the intertrial intervals compared to the aware partici-
pants. This pattern suggests that not being aware of the CS-US contin-
gency leads to a failure to identify safety stimuli (e.g., CS-) and safety 
periods (e.g., intertrial intervals when the CS+ is absent, see also the 
safety signal hypothesis, Seligman & Binik [1977]). This leads to a 
chronic state of anxiety, resulting in an apparent increase in fear to the 
context. Similarly, studies (Baas, van Ooijen, Goudriaan, & Kenemans 
2008; Baas, 2013) found participants who were unaware of stimuli 
contingencies showed heightened fear to the context, reflecting chronic 
anxiety due to a failure in identifying safety periods. 

Therefore, to examine CS-avoidance to a context, studies should 
employ experimental parameters that minimize the formation of a 
context-US association. This could be achieved by entailing high CS-US 
contingency, close CS-US contiguity, or employing a higher-order con-
ditioning paradigm (cf. Helmstetter & Fanselow, 1989; Rescorla, 1984) 
which precludes the training context to acquire a direct association with 
the US. Furthermore, studies can employ verbal instructions that facil-
itate the awareness of CS-US contingency (see Mertens, Boddez, Kry-
potos, & Engelhard, 2021) to minimize chronic anxiety to the context 
due to being unaware of relevant stimuli contingencies. 

In summary, we propose that higher-order conditioning paradigms, 
decision making paradigms involving approach-avoidance conflict, and 
context-cue conditioning paradigms are well-fitted to examine the 
distinct forms of CS-avoidance. 

4. Neural circuits of fear-related avoidance 

The underlying neural circuits of fear-related avoidance have long 
been studied in rodents. In short, the tripartite circuit consisting of the 
hippocampus, medial prefrontal cortex (mPFC), and the amygdala, and 
the circuit’s projection to the nucleus accumbens (NAcc), are well 
accepted to be responsible for the acquisition and expression of fear- 
related avoidance (Duvarci & Pare, 2014; Fendt & Fanselow, 1999; 
Janak & Tye, 2015; Killcross, Robbins, & Everitt, 1997; Oleson, Gentry, 
Chioma, & Cheer, 2012; Ramirez, Moscarello, LeDoux, & Sears, 2015; 
Sangha, Diehl, Bergstrom, & Drew, 2020). Similar to rodent models, 
neuroimaging studies in humans found that fear-related avoidance ac-
tivates the human homolog of tripartite circuit, consisting of the 

hippocampus, amygdala, and ventral striatum, in addition to the thal-
amus and orbitofrontal cortex (Bolstad et al., 2013; Eldar, Hauser, 
Dayan, & Dolan, 2016; Jensen et al., 2003; Kim, Shimojo, & O’Doherty, 
2006; Levita, Hoskin, & Champi, 2012; Mobbs et al., 2009; Schlund, 
Magee, & Hudgins, 2011). However, the neural circuits underlying 
CS-avoidance are largely unknown to date in both rodent and human 
models. In the following, we will briefly review the neural circuits in 
rodents, followed by human imaging studies in the three paradigms 
reviewed in the previous sections. We then provide some speculations of 
the potential neural circuits underlying CS-avoidance in humans. 

4.1. Neural circuits of higher-order conditioning 

Rodent studies in higher-order conditioning have shown that 
different brain circuits are activated during presentation of a higher- 
order CS, either before CS+ obtains threat value (i.e., sensory pre-
conditioning) or after CS+ obtains threat value (i.e., second-order con-
ditioning). In sensory preconditioning, the hippocampus and the 
adjacent perirhinal cortex, but not the basolateral amygdala (BLA), are 
responsible for associating the neutral higher-order CS and the first- 
order CS together (Eichenbaum, Otto, & Cohen, 1992; Murray & Bus-
sey, 1999; Nicholson & Freeman, 2000; Talk, Gandhi, & Matzel, 2002; 
Wimmer & Shohamy, 2011; Winters, Saksida, & Bussey, 2008), and play 
an important role in transferring the newly learnt value of the first-order 
CS to the higher-order CS after fear conditioning. In second-order con-
ditioning, both the hippocampus and BLA are responsible for associating 
a neutral second-order CS with a fear-related first-order CS (Gewirtz & 
Davis, 1997; Gilboa, Sekeres, Moscovitch, & Winocur, 2014; Parkes & 
Westbrook, 2010). 

Neuroimaging studies in human higher-order fear conditioning are 
relatively scarce. Strong activation of the left hippocampus was 
observed when a higher-order CS associated with a fear-related CS was 
presented in sensory preconditioning (Yu et al., 2014), whereas the 
anterior hippocampus and amygdala were strongly activated when a 
second-order CS associated with an aversive CS was presented in 
second-order conditioning (Luettgau et al., 2021). These findings align 
with rodent studies in which the hippocampus and amygdala play an 
important role in higher-order fear conditioning (Gilboa et al., 2014; 
Parkes & Westbrook, 2010; Talk et al., 2002; Wimmer & Shohamy, 
2011). 

4.2. Neural circuits in decision making tasks involving approach- 
avoidance conflict 

In rodents, it is well accepted that the ventral hippocampus (vHPC), 
BLA, mPFC, and ventral striatum modulate avoidance or approach via 
their inputs to the NAcc (Bannerman et al., 2003; Ito & Lee, 2016; Jinks 
& McGregor, 1997; Kjelstrup et al., 2002; Shah & Treit, 2003), which 
controls for the expression of motor behaviour (Bryant & Barker, 2020; 
Ito & Lee, 2016; Kirlic, Young, & Aupperle, 2017). In particular, the 
vHPC has been suggested to serve as a behavioural inhibition system 
when confronted with stimuli of conflicting outcomes (Bannerman et al., 
2002; Gray, 1982; Kjelstrup et al., 2002; McHugh, Deacon, Rawlins, & 
Bannerman, 2004; Padilla-Coreano et al., 2016; Treit & Menard, 1997; 
Trivedi & Coover, 2004). This system is characterized by its functional 
heterogeneity in which some subfields promote approach responses 
whereas other subfields promote avoidance responses (Schumacher 
et al., 2018; Yeates, Ussling, Lee, & Ito, 2020). 

Studies examining the neural circuits of decision making in human 
approach-avoidance conflict tasks are sparse compared to rodent 
studies. Preliminary studies showed strong activation of the anterior 
hippocampus (aHPC) when confronting a conflict in responding (Bach 
et al., 2014; Loh et al., 2017; O’Neil et al., 2015). In particular, Bach 
et al. (2014) found that activation of the aHPC was positively associated 
with threat level, suggesting that the aHPC is involved in monitoring 
threat level and the subsequent decision in either avoiding or 
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approaching (see also Abivardi, Khemka, & Bach, 2020). These findings 
align with rodent studies given that the aHPC is the human homolog of 
vHPC in rodents (Fanselow & Dong, 2010). Of note, other neuroimaging 
studies (Aupperle & Paulus, 2010; Aupperle, Melrose, Francisco, Paulus, 
& Stein, 2015; Schlund et al., 2016) found that other downstream re-
gions from the hippocampus, such as the mPFC, amygdala, and NAcc, 
were also activated during conflict. 

4.3. Neural circuits of context-cue conditioning 

In rodent models, it is well accepted that the hippocampus is 
responsible for encoding the context (Fanselow, 2000; Kim & Cho, 2020; 
Myers & Gluck, 1994) and conveying the representation of the context to 
the mPFC and amygdala, for the expression of contextual fear (Corcoran 
& Quirk, 2007; Frankland, Bontempi, Talton, Kaczmarek, & Silva, 2004; 
Goshen, Brodsky, Prakash, & Deisseroth, 2011; Helmstetter & Bellgo-
wan, 1994; Kim & Cho, 2017; Muller, Corodimas, Fridel, & LeDoux, 
1997; Quinn, Ma, Tinsley, Koch, & Fanselow, 2008). In regard to 
avoidance to a fear-related context, Moscarello and Maren (2018) pro-
posed that the hippocampus activates its downstream projections to the 
NAcc via the BLA and mPFC, which in turn promotes avoidance. 

In humans, preliminary studies found activation of the aHPC, ventral 
striatum, thalamus, and cerebellum when presented with a context 
associated with a fear-related CS (Hasler et al., 2007; Lonsdorf et al., 
2014), aligning with the neural circuit responsible for the expression of 
contextual fear in rodents. There is, however, no neural imaging studies 
on CS-avoidance in context-cue conditioning. 

In sum, built on rodent models, preliminary studies in humans sug-
gested that the hippocampus, mPFC, amygdala, and thalamus project 
their inputs to the NAcc and ventral striatum to express fear-related 
avoidance. It is speculated that CS-avoidance would be regulated by a 
similar circuit. Of note, the aHPC in humans plays a pivotal role in 
associating a higher-order CS with a fear-related CS, monitoring threat 
level, inhibiting behavioral approach or avoidance when confronting a 
conflict, and conveying the representation of a context that is associated 
with a fear-related CS to its downstream projections. Therefore, it is 
conjectured that the aHPC plays an important role in executing CS- 
avoidance. Interestingly, some preliminary evidence found that the 
cerebellum was activated in the presence of a stimulus or context that 
signalled a fear-related CS (Hasler et al., 2007; Lonsdorf et al., 2014; Yu 
et al., 2014). Cerebellum is associated with an anticipation of pain 
(Moulton, Schmahmann, Becerra, & Borsook, 2010; Ploghaus et al., 
1999), thus this finding hints toward that CS-avoidance may be at least 
partly driven by US anticipation. 

5. Clinical prospects 

Exposure-based therapy is one of the most common and effective 
treatments for anxiety-related disorders (Craske & Mystkowski, 2006). 
The reduction of avoidance is a precondition for exposure to be effective 
(Dymond, 2019; Pittig et al., 2020). This reduction of avoidance entails 
a decrease in both CS-avoidance and safety behavior (US-avoidance), in 
which the former allows an individual to confront the stimulus or situ-
ation of fear whereas the latter allows an individual to learn that the 
fear-related stimulus or situation is no longer threatening. In fact, lab-
oratory studies have showed that excessive engagement in US-avoidance 
during extinction precluded extinction learning to the CS+, leading to 
“protection from extinction” (Lovibond, Mitchell, Minard, Brady, & 
Menzies, 2009; Pittig, 2019; Rattel et al., 2017). Protection from 
extinction due to US-avoidance was traditionally explained via an 
associative account: the safety signal generated by US-avoidance served 
as conditioned inhibitors that cancel out the excitatory strength of CS+, 
thus leading to zero extinction learning. A more recent cognitive account 
proposes that protection from extinction is due to attributing US omis-
sion to the execution of US-avoidance, thus precluding extinction 
learning (Lovibond, 2006; Lovibond et al., 2009). It is speculated that 

reducing CS-avoidance is a necessary precursor for reducing 
US-avoidance and initiates extinction learning. In other words, reducing 
both CS-avoidance and US-avoidance are pivotal to minimize protection 
from extinction (see Fig. 3 for the laboratory and clinical models). 

Furthermore, strategies on reducing CS-avoidance may have varying 
effects, depending on the underlying mechanisms that drive CS- 
avoidance. For instance, if CS-avoidance is largely driven by the ulti-
mate anticipation of a threatening outcome, strategies that rely on 
reconstructing threat beliefs combined with exposure-based sessions 
may be more effective in decreasing CS-avoidance. 

Other interventions may be suitable if CS-avoidance is largely driven 
by the negative emotions (e.g., emotional distress, negative valence) 
associated with the fear-related stimulus regardless of its status of threat 
predictiveness (see referential account, Baeyens et al., 1995; De Houwer 
et al., 2001). For instance, acceptance-commitment therapy (Hayes, 
Strosahl, & Wilson, 2003) may be more effective in reducing 
CS-avoidance by educating clinically anxious individuals to embrace 
with the emotional distress associated with the feared stimulus. Alter-
natively, treatments can incorporate techniques of counterconditioning. 
In contrast to standard fear extinction which a non-reinforced CS+ was 
presented repeatedly, counterconditioning involves a CS+ that is 
repeatedly paired with an appetitive outcome. Empirical findings have 
shown that counterconditioning can more effectively alleviate negative 
valence of the CS+ and minimize return of fear (Dirikx et al., 2004; 
Engelhard, Leer, Lange, & Olatunki, 2014; Zbozinek, Holmes, & Craske, 
2015; Hofmann, De Houwer, Perugini, Baeyens, & Crombez, 2010; see 
also Keller, Hennings, & Dunsmoor [2020] for a review; but see Pittig 
et al., 2020; van Dis, Hagenaars, Bockting, & Engelhard, 2019). Coun-
terconditioning is also more effective in reducing US-avoidance to the 
CS+ compared to standard fear extinction (Dour, Brown, & Craske., 
2016; Newall, Watson, Grant, & Richardson, 2017; Reynolds et al., 
2017). 

In a similar vein, US revaluation after conditioning was found to 
have an impact on CS valence (De Houwer et al., 2001). In particular, 
pairing an aversive US with stimuli of positive valence after conditioning 
reduced the negative valence of both the US and CS (e.g., Baeyens, 
Eelen, Van den Bergh, & Crombez, 1992; Walther, Gawronski, Blank, & 
Langer, 2009). In the clinical context, US revaluation may, for example, 
be achieved with cognitive restructuring in cognitive-behavioral thera-
pies, which involves challenging and re-evaluating the feared outcome 
(Marks, Lovell, Noshirvani, Livanou, & Trasher, 1998; Mueser et al., 
2015). Thus, if CS-avoidance is largely driven by the negative valence of 
the CS+ or the CS-predicting cues, then implementing techniques of 
counterconditioning or US revaluation in a clinical context may boost 
reduction of CS-avoidance. 

In sum, we speculate that a reduction of CS-avoidance is necessary 
for exposure-based therapies to take place. However, it is still largely 
unknown whether CS-avoidance would lead to protection from extinc-
tion, or which treatment (or a combination of treatments) can most 
effectively reduce CS-avoidance. Future research is required to further 
the understanding of CS-avoidance in a clinical setting and its clinical 
implications. 

6. Future directions 

Collectively, CS-avoidance is a maladaptive behavior commonly 
observed in anxiety-related disorders. It provides a unique account for 
explaining avoidance to a wide range of stimuli or contexts, which is 
distinct from the generalization of safety behavior. Its reduction is 
deemed as a necessary precursor prior to the reduction of fear and safety 
behavior to a fear-related stimulus. In sum, the reviewed studies tenta-
tively hint at a unique role of CS-avoidance, which, however, remains 
speculative in numerous ways. Therefore, much future research is 
required to address these gaps. Perhaps future research on CS-avoidance 
should prioritized on establishing the groundwork of the acquisition of 
CS-avoidance, given the little research on it (e.g., Klein et al., 2021; 
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Lemmens et al., 2021; Pittig et al., 2014; Wong & Pittig, 2022). We have 
discussed three potential paradigms within a fear conditioning frame-
work, including higher-order conditioning, decision making paradigms, 
and context-cue conditioning. Future research can utilize these para-
digms to examine the acquisition of CS-avoidance. Furthermore, much 
research is required in improving our understanding on the behavioral 
mechanisms and neural circuits underlying CS-avoidance. 

Besides the aforementioned gaps in the literature, there are also 
multiple exciting avenues for future research in CS-avoidance. First, 
future research can examine whether the distinct mechanisms of safety 
behavior operate similarly on CS-avoidance. There has been a wealth of 
research in the distinct mechanisms of safety behavior (see Pittig et al., 
2020). For instance, the generalization of safety behavior has been 
well-documented (Arnaudova, Krypotos, Effting, Kindt, & Beckers, 
2017; Cameron, Schlund, & Dymond, 2015; Dymond et al., 2011; 
Dymond et al., 2014; Hunt, Cooper, Hartnell, & Lissek, 2019; van Meurs 
et al., 2013), demonstrating that safety behavior generalizes to novel 
stimuli that perceptually or conceptually resemble the fear-related 
stimulus. Preliminary evidence suggests that CS-avoidance generalizes 
to other novel stimuli that conceptually resemble the CS+ (Wong & 
Pittig, 2020). Recently, there has been an increase in research on the 
acquisition of habitual safety behavior. It has been demonstrated that 
repetitively executing a goal-directed response, for instance, safety 
behavior that aims to prevent a threatening outcome, could transform 
into habitual responses (Balleine & Dickinson, 1998; Balleine & 
O’Doherty, 2010), which become insensitive to goal devaluation (Bal-
leine & O’Doherty, 2010; Dayan & Niv, 2008; Dolan & Dayan, 2013; 
Wood & Runger, 2016). Laboratory studies have demonstrated the 
acquisition of habitual safety behavior in healthy samples (e.g., Flores, 
Lopez, Vervliet, & Cobos, 2018; Glück, Zwosta, Wolfensteller, Ruge, & 
Pittig, 2021) and clinical samples (Gillan et al., 2014). However, it is 
largely unknown whether CS-avoidance could become habitual. 
Furthermore, research has focused on the impact of relief on safety 
behavior. Relief refers to a pleasant affective state induced by the 
removal of an expected negative outcome (Roseman, 1996; Roseman, 
Spindel, & Jose, 1990). Preliminary studies have showed that executing 
safety behavior led to an increase in relief ratings (San Martin et al., 
2020; Vervliet, Lange, & Milad, 2017), which the relief experienced 
after US omission is suggested to further reinforce safety behavior. It is 
largely unknown whether these distinct mechanisms would also apply to 

CS-avoidance. Future research is required to examine these distinct 
mechanisms on CS-avoidance. 

Second, future research can examine whether factors that have an 
impact on safety behavior would also affect CS-avoidance in a similar 
way. Laboratory studies have found multiple factors that either directly 
or indirectly enhance or dampen safety behavior (see Pittig et al., [2020] 
for a review). For instance, vulnerability individual traits such as trait 
anxiety (Gorka, LaBar, & Hariri, 2016; Pittig & Scherbaum, 2020) and 
intolerance of uncertainty (Flores et al., 2018; Hunt et al., 2019), and 
external factors such as acute stress (e.g., Vogel & Schwabe, 2019) are 
associated with enhanced safety behavior. In contrast, resilient indi-
vidual traits such as distress tolerance (Vervliet et al., 2017) and 
sensational seeking (Rattel et al., 2020), and external factors such as the 
cost of executing safety behavior (e.g., Pittig, 2019; Rattel et al., 2017; 
van Meurs et al., 2013; Wong & Pittig, 2021) are associated with a 
decrease in safety behavior. Of note, we have recently found that 
low-cost per se motivates the execution of safety behavior (Wong & 
Pittig, 2021). Therefore, we suggest future research to incorporate a cost 
in CS-avoidance, which also increases the diagnostic validity of avoid-
ance (Krypotos et al., 2018). 

Third, future research can examine whether interventions that 
reduce safety behavior would also reduce CS-avoidance to a similar 
extent. As mentioned previously, certain factors serve to dampen safety 
behavior, therefore enabling extinction learning to take place (Pittig 
et al., 2020). For instance, incorporating financial incentives (e.g., Pit-
tig, 2019; Wong & Pittig, 2021) or social incentives (Pittig, Hengen, 
Bublatzky, & Alpers, 2018; Pittig, Treanor, LeBeau, & Craske, 2018) for 
behavioral approach, or mere verbal instructions or observation to 
initiate approach (Pittig & Wong, 2021) could effectively reduce safety 
behavior. Interestingly, Bennett et al. (2020) recently found that 
installing behavior that competed with safety behavior greatly reduced 
safety behavior generalization. Thus, it is speculated whether these in-
terventions would also reduce CS-avoidance. 

7. Conclusion 

In the past decade, research on fear-related avoidance has greatly 
furthered the understanding of the acquisition and maintenance of 
pathological avoidance in anxiety-related disorders, and the different 
interventions to reduce it. However, much research focused on safety 

Fig. 3. CS-avoidance and US-avoidance in the labo-
ratory, and their clinical analog to avoidance of learnt 
fear and safety behavior, respectively. Blue lines 
represent the pathway of CS-avoidance (avoidance of 
learnt fear), whereas red lines represent the pathway 
of US-avoidance (safety behavior). Solid lines repre-
sent an outcome or behavior that follows the pre-
ceding stimulus or behavior; whereas dotted lines 
represent an outcome or behavior prevented by the 
preceding stimulus or behavior. Both CS-avoidance 
and US-avoidance prevent threat occurrence, pre-
cluding extinction learning when the CS is no longer 
reinforced. This leads to protection from extinction, 
analog to the preservation of maladaptive threat be-
liefs. See the color version of this figure online.   
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behavior, while CS-avoidance received little attention despite its unique 
role and clinical importance in anxiety-related disorders. In this article, 
we propose the potential underlying mechanisms of CS-avoidance, and 
review preliminary evidence of CS-avoidance and paradigms suitable for 
examining it, namely higher-order conditioning, decision making, and 
context-cue conditioning. These paradigms allow the investigation of 
CS-avoidance in the form of avoidance responses to stimuli or contexts 
that signal a CS, or avoidant decision to an option linked to the CS. We 
also discuss some pitfalls for examining CS-avoidance (e.g., confounding 
CS-avoidance with US-avoidance), and methods to minimize such issues. 
Future experimental research focusing on the underlying behavioral 
mechanisms and neural circuits of CS-avoidance, and factors that either 
directly or indirectly amplify or dampen CS-avoidance (e.g., vulnerable 
or resilient individual traits) is much required. 
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