Publikationen
2018
                                    - Rothe, A., Deverett, B., Mayrhofer, R. & Kemp, C. (2018). Successful structure learning from observational data. Cognition, 179, 266-297.
 - Stephan, S., Mayrhofer, R. & Waldmann, M. (2018). Assessing singular causation: The role of causal latencies. In T.T. Rogers, M. Rau, X. Zhu, & C. W. Kalish (Eds.), (pp. 1080-1085). : Cognitive Science Society.
 
2017
                                    - Bramley, N., Mayrhofer, R., Gerstenberg, T. & Lagnado, D. (2017). Causal learning from interventions and dynamics in continuous time. In G. Gunzelmann, A. Howes, T. Tenbrink, & E. Davelaar (Eds.), (pp. 150-155). : Cognitive Science Society.
 - Meder, B. & Mayrhofer, R. (2017). Diagnostic reasoning. In M. R. Waldmann (Ed.), (pp. 433-458). : Oxford University Press.
 - Meder, B. & Mayrhofer, R. (2017). Diagnostic causal reasoning with verbal information. Cognitive Psychology, 96, 54-84. https://dx.doi.org/10.1016/j.cogpsych.2017.05.002, ISSN: 0010-0285.
 
2016
                                    - 
  
	
	  Mayrhofer, R. &  Waldmann, M.
	  (2016).
	  Sufficiency and necessity assumptions in causal structure induction.
	  Cognitive Science, 
	  40(8), 
	  2137-2150.
	  
		https://dx.doi.org/10.1111/cogs.12318,  ISSN: 0364-0213.
	  
	
  
  
	
	  
		
	  
	
 - 
  
	
	  Mayrhofer, R. &  Waldmann, M.
	  (2016).
	  Causal agency and the perception of force.
	  Psychonomic Bulletin & Review, 
	  23(3), 
	  789-796.
	  
		https://dx.doi.org/10.3758/s13423-015-0960-y,  ISSN: 1069-9384.
	  
	
  
  
	
	  
		
	  
	
 - 
  
  
	
	  Waldmann, M. R. &  Mayrhofer, R.
	  (2016).
	  Hybrid causal representations.
	  In B. Ross (Ed.), 
	  The Psychology of Learning and Motivation.
	  
	  (pp. 85-127). New York: Academic Press.
	  
		ISBN: 978-0-12-804790-3.
	  
	
  
	
	  
		
	  
	
 
2015
                                    
                                2014
                                    - 
  
	
	  Mayrhofer, R. &  Waldmann, M.
	  (2014).
	  Indicators of causal agency in physical interactions: The role of the prior context.
	  Cognition, 
	  132(3), 
	  485-490.
	  
		https://dx.doi.org/10.1016/j.cognition.2014.05.013,  ISSN: 0010-0277.
	  
	
  
  
	
	  
		
	  
	
 - 
  
	
	  Meder, B., Mayrhofer, R. &  Waldmann, M.
	  (2014).
	  Structure induction in diagnostic causal reasoning.
	  Psychological Review, 
	  121(3), 
	  277-301.
	  
		https://dx.doi.org/10.1037/a0035944,  ISSN: 0033-295X.
	  
	
  
  
	
	  
		
	  
	
 - Neth, H., Engelmann, N. & Mayrhofer, R. (2014). Foraging for alternatives: Ecological rationality in keeping options viable. (). : .
 
2013
                                    - Hagmayer, Y. & Mayrhofer, R. (2013). Hierarchical Bayesian models as formal models of causal reasoning. Argument & Computation, 4, 36-45.
 - Mayrhofer, R. & Waldmann, M. R. (2013). Agency intuitions in physical interactions. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th Annual Conference of the Cognitive Science Society. (pp. 996-1001). Austin, TX: Cognitive Science Society. ISBN: 978-0-97-683189-1.
 - Meder, B. & Mayrhofer, R. (2013). Sequential diagnostic reasoning with verbal information. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), (pp. 1014-1019). : Cognitive Science Society.
 
2010
                                    - 
  
  
	
	  Mayrhofer, R., Hagmayer, Y. &  Waldmann, M.
	  (2010).
	  Agents and causes: A Bayesian error attribution model of causal reasoning.
	  In S. Ohlsson & R. Catrambone (Eds.), 
	  
	  
	  (pp. 925-930). : Cognitive Science Society.
	  
	
  
	
	  
		
	  
	
 - 
  
  
	
	  Mayrhofer, R., Nagel, J. &  Waldmann, M.
	  (2010).
	  The role of causal schemas in inductive reasoning.
	  In S. Ohlsson & R. Catrambone (Eds.), 
	  
	  
	  (pp. 1082-1087). : Cognitive Science Society.
	  
	
  
	
	  
		
	  
	
 
2009
                                    - 
  
  
	
	  Griffiths, O., Mayrhofer, R., Nagel, J. &  Waldmann, M. R.
	  (2009).
	  Causal schema-based inductive reasoning.
	  In N. Taatgen, H. van Rijn, L. Schomaker & J. Nerbonne (Eds.), 
	  Do Voters Use Episodic Knowledge to Rely on Recognition?.
	  
	  (pp. 691-696). Austin, TX: Cognitive Science Society.
	  
		ISBN: 978-0-9768318-5-3.
	  
	
  
	
	  
		
	  
	
 - Mayrhofer, R. (2009). Kausales Denken, Bayes-Netze und die Markov-Bedingung.
 - 
  
  
	
	  Meder, B., Mayrhofer, R. &  Waldmann, M. R.
	  (2009).
	  A rational model of elemental diagnostic inference.
	  In N. Taatgen, H. van Rijn, L. Schomaker & J. Nerbonne (Eds.), 
	  Proceedings of the 31st Annual Conference of the Cognitive Science Society.
	  
	  (pp. 2176-2181). Austin, TX: Cognitive Science Society.
	  
		ISBN: 978-0-9768318-5-3.
	  
	
  
	
	  
		
	  
	
 
2008
                                    - 
  
  
	
	  Mayrhofer, R., Goodman, N. D., Waldmann, M. R. &  Tenenbaum, J. B.
	  (2008).
	  Structured correlation from the causal background (PSYNDEXshort).
	  In B. C. Love, K. McRae, & V. M. Sloutsky (Eds.), 
	  Proceedings of the 30th Annual Conference of the Cognitive Science Society.
	  
	  (pp. 303-308). Austin, TX: Cognitive Science Society.
	  
		ISBN: 978-0-9768318-4-6.