DNA methylation of dopamine-related gene promoters is associated with line bisection deviation in healthy adults
DNA methylation of dopamine-related gene promoters is associated with line bisection deviation in healthy adultsHandedness and language lateralization are the most investigated phenotypes among functional hemispheric asymmetries, i.e. differences in function between the left and the right half of the human brain. Both phenotypes are left hemisphere-dominant, while investigations of the molecular factors underlying right hemisphere-dominant phenotypes are less prominent. In the classical line bisection task, healthy subjects typically show a leftward attentional bias due to a relative dominance of the right hemisphere for visuospatial attention. Based on findings of variations in dopamine-related genes affecting performance in the line bisection task, we first tested whether DNA methylation in non-neuronal tissue in the promoter regions of DBH , SLC6A3 , and DRD2 are associated with line bisection deviation. We replicated the typical behavioral pattern and found an effect of DNA methylation in the DBH promoter region on line bisection deviation in right-aligned trials. A second exploratory analysis indicated that an overall DNA methylation profile of genes involved in dopamine function predicts line bisection performance in right-aligned trials. Genetic variation in dopamine-related genes has been linked to attention deficit hyperactivity disorder (ADHD), a neurodevelopmental trait associated with rightward attentional bias. Overall, our findings point towards epigenetic markers for functional hemispheric asymmetries in non-neuronal tissue not only for left hemisphere-dominant, but also for right hemisphere-dominant phenotypes.https://www.psych.uni-goettingen.de/de/biopers/publications_department/schmitz-kumsta-et-al-2019https://www.psych.uni-goettingen.de/@@site-logo/university-of-goettingen-logo.svg
J Schmitz, R Kumsta, D Moser, O Güntürkün and S Ocklenburg
DNA methylation of dopamine-related gene promoters is associated with line bisection deviation in healthy adults
Scientific Reports
Handedness and language lateralization are the most investigated phenotypes among functional hemispheric asymmetries, i.e. differences in function between the left and the right half of the human brain. Both phenotypes are left hemisphere-dominant, while investigations of the molecular factors underlying right hemisphere-dominant phenotypes are less prominent. In the classical line bisection task, healthy subjects typically show a leftward attentional bias due to a relative dominance of the right hemisphere for visuospatial attention. Based on findings of variations in dopamine-related genes affecting performance in the line bisection task, we first tested whether DNA methylation in non-neuronal tissue in the promoter regions of DBH , SLC6A3 , and DRD2 are associated with line bisection deviation. We replicated the typical behavioral pattern and found an effect of DNA methylation in the DBH promoter region on line bisection deviation in right-aligned trials. A second exploratory analysis indicated that an overall DNA methylation profile of genes involved in dopamine function predicts line bisection performance in right-aligned trials. Genetic variation in dopamine-related genes has been linked to attention deficit hyperactivity disorder (ADHD), a neurodevelopmental trait associated with rightward attentional bias. Overall, our findings point towards epigenetic markers for functional hemispheric asymmetries in non-neuronal tissue not only for left hemisphere-dominant, but also for right hemisphere-dominant phenotypes.